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Uniformly resolvable decompositions of A-fold complete multipartite
graph into 4-star

Li Wang®

?School of Mathematics and Physics, Sugian University, Suqgian 223800, China

Abstract. Let AK,[g] be the A-fold complete multipartite graph with u parts of size g. A (K ,, A)-resolvable
group divisible design (RGDD) of type g" is a K; ,-decomposition of the graph AK,[g] into parallel classes
each of which is a partition of the vertex set. A (Kj,, A)-frame of type g" is a K ,-decomposition of AK,[g]
into partial parallel classes each of which is a partition of the vertex set except for those vertices in one of
the u parts. In this paper, we completely solve the existence of a (Kj 4, A)-frame and a (K; 4, A)-RGDD of type
g" for any admissible parameters g, u and A.

In this paper, we will focus on a problem of graph decomposition. We denote the vertex set and edge
set (or edge-multiset) of a graph G (or multigraph) by V(G) and E(G), respectively. Given a collection of
graphs H, an H-decomposition of a graph G is a set of subgraphs (blocks) of G whose edge sets partition
E(G), and each subgraph is isomorphic to a graph from H. When H = {H}, we write H-decomposition as
H-decomposition for brevity. A parallel class of a graph G is a set of subgraphs whose vertex sets partition
V(G). A parallel class is called uniform if each block of the parallel class is isomorphic to the same graph. An
‘H-decomposition of a graph G is called (uniformly) resolvable if the blocks can be partitioned into (uniform)
parallel classes.

A graph G is called a complete u-partite graph denoted by K[m, m, ..., m,] if V(G) can be partitioned into
u parts (called groups) M;, 1 < i < u, such that two vertices of G, say x and y, are adjacent if and only if x € M;
and y € M; with i # j. We use AK[my,my,...,m,] for the A-fold of the complete u-partite graph with m;
vertices in the group M;. When A = 1, we usually omit A in the notation. We denote the complete u-partite
graph with u parts of size g by K,[g] and by K, the complete graph on v vertices. There are many results on
uniformly resolvable H-decompositions of K, especially on uniformly resolvable H-decompositions with
H ={G1,G»},see[1,9,10, 12-16].

A (resolvable) H-decomposition of AK[my,my,...,my] is called a (resolvable) group divisible design,
denoted by (H, A)-(R)GDD. The fype of an (H, 1)-GDD is the multiset of group sizes |M;|, 1 < i < u, and
we usually use the “exponential” notation for its description: type g}'g,” ... g denotes n; occurrences of g;
for 1 <i < sin the multiset. If ¥ = {H}, we denote it by (H, A)-GDD. Let L be a set of positive integers. A
pairwise balanced design, denoted by (L, A, v)-PBD, is a ({K : k € L}, 1)-GDD of type 1°.

For brevity, we use (a;b1,by, ..., bx) to denote the k-star K;; with vertex set {a,b1,b,, ..., b} and edge
set {{a,b;} | 1 <i < k}. Tarsi has solved the existence of a (Kj, A)-GDD of type 1" in [18]. There are some
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known results on the existence of K; 3-RGDDs. For instance, (K33, 1)-RGDDs of types 2% and 4* have been
constructed in [11], and the existence of a (Kj 3, 1)-RGDD of type 12" for any u > 2 has been solved in [1].

A set of subgraphs of a complete multipartite graph covering all vertices except those belonging to one
part M is said to be a partial parallel class missing M. A partition of an (H, 1)-GDD of type g* into partial
parallel classes is said to be an (H, A)-frame of type g". Frames are important combinatorial structures
used in graph decompositions. The existence of a (Ky, A)-frame of type g* has been completely solved in
[4, 6-8, 17, 19, 20]. Chen and Cao have proved the existence of a (Kj 3, A)-frame of type g* in [2]. It is not
difficult to get the following necessary conditions for the existence of two designs.

Theorem 0.1. The necessary conditions for the existence of a (Ky ,, A)-frame of type g* are Ag(n +1) = 0 (mod 2n),
gu—-1)=0 (mod n+1),u>3,and g=0 (mod n + 1) when u = 3.

Theorem 0.2. The necessary conditions for the existence of a (K1, A)-RGDD of type g" are Ag(u—1) = 0 (mod 2n),
gu=0 (modn+1),u>2and g=0 (mod n+ 1) when u = 2.

In this paper, we focus on two designs related to the 4-star K; 4 and prove the following main results.

Theorem 0.3. There exists a (Ky 4, A)-frame of type g" if and only if A\g = 0 (mod 8), g(u —1) =0 (mod 5), u >3
and g =0 (mod 5) when u = 3.

Theorem 0.4. A (K4, A)-RGDD of type g* exists if and only if Ag(u — 1) = 0 (mod 8), gu = 0 (mod 5), u > 2,
and g =0 (mod 5) when u = 2.

1. The existence of (Kj 4, A)-frames

Now we state some basic recursive constructions for a (K ,, A)-frame. Similar proofs of these construc-
tions can be found in [2].

Construction 1.1. If there exists a (Ky,, A)-frame of type gy'g5>...q,", then there is a (Ki,, A)-frame of type
(mg1)"1(mgo)"2 ... (mgy)™ for any m > 1.

Construction 1.2. If there exist a ({K : k € L},1)-GDD of type ¢} gy> ... ;" and a Ky, \)frame of type m* for
each k € L, then there exists a (Ki,,, A)-frame of type (mgq )" (mga)"> ... (mge)™.

Construction 1.3. If there is a (K, A)-RGDD of type g%, then there exists a (Ky,, A)-frame of type g***! for any
u>1.

Construction 1.4. If there exist a (Ky,,, A)-frame of type (m19)" (mag)> ... (mig)" and a (Ky,, A)-frame of type
g"ire for any 1 < i < t, then there exists a (Ky,, A)-frame of type ngzl it where e = 0, 1.

1.1. (Kya, 1)-frames
First, we give a direct construction about n-star.

Lemma 1.5. Let n > 4 be even. There exists a (Ky ,, 1)-frame of type (2n)"*2.

Proof: Let the vertex set be Zy,(,42), and let the groupsbe G, = {u+v(n+2)|0 <v <2n-1},0 <u <n+1. The
required n + 1 partial parallel classes with respect to the group G, are {Q, ={Si+I+ul|le®n +2)Zonni2)} 11 <
i<n+1},whereS;=(;i+cn,...,i+cy),1<i<n+1,and

ci=m+2)(i-1)+j-i+1,1<i<§, i<j<n,

ci=m+2)(i-1)+j—i 2<i<™2,1<j<i
Cij = n(n +2) = Cpyo-ips1-j, 1 = ”T“, ”T+2 <j<nor ”Zﬂ <i<n+1,1<j<n
Foreach1<i<n+1,then+1integers i, i+c;j, 1 < j < n,are all distinct modulo 7 + 2. Then each Qi isa
partial parallel class. [J
We provide a construction about a (Kj ,,, 1)-RGDD of type (211(1 + 1))%. Note that another solution for the
case n = 4 is provided in [10].
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Lemma 1.6. Let n > 4 be even. There exists a (K1, 1)-RGDD of type (2n(n + 1))

Proof: Let the vertex set be Z4y(,+1), and let the groups be {1 +2v|0 < v < 2n(n+1)—1}, u = 0, 1. The required
(n+1)? parallel classes can be generated from n +1 parallel classes {P; = {S;+, T; +1 |1 € 2(n+1)Zspn+1y} | 0 <
i < n},by +2s (mod 4n(n + 1)), 0 < s < n, where S; = (si; 511, - - -, Sin), Ti = (tio; tir, - -, tin), 0 < i <, and
sip=0;8;=2ni+2j-1,0<i<n, 1<j<n,
tio=2n+1-2i tij=to+cj 0<i<n, 1<j<n,

ci=2m+1)i+2j+1,0<i<%2 i<j<n,

cj=2m+1)i+2j-2n-3,1<i<5,1<j<i,

cj=2n(n+1)—Cpoijpa1—j, i=%, B2 <j<nmor B2 <i<n 1<j<n

For each 0 < i < n, since the 2(n + 1) integers s;;, t;;, 0 < j < n, are all distinct modulo 2(n + 1), each P; is a
parallel class. The proof is complete. [

Lemma 1.7. There exists a (K4, 1)-frame of type 40" for u > 3.

Proof: For two values u = 3, 5, there exists a (K 4, 1)-RGDD of type 40* by Lemma 1.6. Apply Construction 1.3
to get the required (Kj 4, 1)-frame of type 40".

For u = 4,6,8, let the vertex set be Zy,,, and let the groupsbe G; = {i +uj|[0<j<39},0<i<u-1
The required 25 partial parallel classes with respect to the group G; can be generated from 5 partial parallel
classes {Qi = {B+1+i|B € Cy, |Cl =u—1,1 € (5u)Zsou} | 1 <k <5} by +us (mod 40u), 0 < s < 4. The blocks
in each Cy are listed below respectively.

u=4 C (1,2,3,6,7)
C>  (1;18,19,23,26)
Cs  (1;31,34,35,38)
Cs  (1;47,50,51,54)
Cs (1;55,71,78,86)

(1;2,3,4,5)

(9;25,26,28,29)

C,  (1;16,22,23,26)
(5;44,49, 50, 51)

Cs  (1;29,34,50,51)
(5;75,82, 86, 88)

Ci  (1;53,58,62,64)
(9;89,100,103, 131)

Cs  (1;86,87,88,104)

(8; 115,125,129, 137)

(1;2,3,4,5)

(10;25,30,31,33)

C>  (1;27,28,30,31)
(6;51,63,65, 66)

Cs  (1;38,39,59,62)
(6;92,93,95,100)

Cs  (1;76,77,78,79)
(4;111,113,114, 115)
(9;142,171,173,190)

Cs  (1;109,114,115,116)
(4;150, 151, 153, 165)
(22;61,170,187,197)

(5;14,15,18,19)
(2;13,17,25,31)
(2;29,33,37,59)
(2;45,49, 53, 75)
(9;83,87,102,110)
(7:14,15,16,17)

(10; 41, 50,53, 57)
(2;25,28,29,34)
(13;69,75,77, 87)
(2;43, 53,55, 57)

(9; 67,106,107, 109)
(3;76,79, 82, 85)
(17:105,116, 141, 147)
(2;97,103,106, 130)
(22;81,131,135,173)
(6;11,12,13,15)

(14; 36,39, 61, 69)
(2;33,35,36,37)
(7:59,69,74,78)
(2;65,67,68,70)
(11,106,109, 111, 134)
(2;95,99,101,103)
(5;127,130,132, 134)

(2;118,119,132,137)
(13; 131,166, 167, 214)

(10;13,17,29,31)
(9;35,47,50, 54)
(5;47,63,66,70)
(17;79, 83,86, 98)
(14;53,77,85,119)
(8;13,19,21,22)

(3;37,38,40,41)
(3;68,70,71,74)
(5;74,80,97,98)
(4;33,109,110,119)

(7;17,18,19,20)
(34;62,75,77,78)
(3;39, 45,49, 52)

(10; 93,100,101, 102)
(3;73,76,77,84)
(17;138,141, 143, 155)
(3;105, 106, 108, 109)
(6;137,138,140, 147)

(9;23,26,27,28)
(4;54,55,57,58)

(5;74,87,89,90)

(3;140, 143, 145, 146)
(18;169, 175, 188, 259)

Let L = {3,4,5,6,8}, for all other values of u with u > 3 and u ¢ L, there exists an (L, 1, #)-PBD from
[3] which is actually a ({K : k € L}, 1)-GDD of type 1*. Apply Construction 1.2 with a (L, 1, #)-PBD and a
(K14, 1)-frame of type 40k for each k € L constructed above to obtain the (K14, 1)-frame of type 40" foru > 3

andu¢ L. O

Lemma 1.8. There exists a (Ky 4, 1)-frame of type 8" for u =1 (mod 5) and u > 6.
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Proof: For u = 6, the conclusion comes from Lemma 1.5.

Foru =11, let the vertex set be Zgg, and let the groupsbe G; = {i+11j|0 < j <7},0 <i < 10. The required
5 partial parallel classes with respect to the group G; are {Qu = {B+I+i|B € Cy, |Cil = 2,1 € 11Zg3}|1 < k < 5).
The blocks in each Cj are listed below respectively.

G (1;2,3,4,5) (6;18,19,20,21) C»  (1;6,7,8,9) (2;21,25,26,27)
C;  (1,10,17,18,19) (2;31,36,37,38) Cs (1;21,27,28,29) (2;41,42,47,48)
Cs (1;31,32,39,57)  (4;14,41,51,71)

For u > 16, we begin with a (Kj 4, 1)-frame of type 405 by Lemma 1.7 and apply Construction 1.4 with
¢ =1 to get the required (Kj 4, 1)-frame of type 8", where the input design a (Ky 4, 1)-frame of type 8°. [

Theorem 1.9. There exists a (K4, 1)-frame of type g* if and only if g = 0 (mod 8), g(u —1) =0 (mod 5), u > 3
and g =0 (mod 5) when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following two cases.

1. =0 (mod 40) and u > 3.

There exists a Kj 4-frame of type 40" by Lemma 1.7. Then apply Construction 1.1 with m = g/40 to get
the required design.

2. 9=8,16,24,32 (mod 40)and u =1 (mod 5), u > 6.

A Kj 4-frame of type 8" exists by Lemma 1.8. Then we apply Construction 1.1 with m = g/8 to get a
K 4-frame of type g*. O

1.2. (Ky4,2)-frames

Lemma 1.10. There exists a (Ky4,2)-RGDD of type 207,

Proof: Let the vertex set be Z49, and let the groups be {2u+v|0 < u < 19}, v = 0, 1. For the required 25 parallel
classes, 20 of which can be generated from a parallel class {{(0; 1, 3, 5,7), (2;9,11,13,15), (17;6, 8,12, 30), (19; 4,
16,18,34)} + 20k | h = 0,1} by +i (mod 40), 0 < i < 19. The last 5 parallel classes can be generated from a
parallel class {(0;17,19,21,23) + 5/ |0 < I < 7} by +j (mod 40),0<j<4. O

Lemma 1.11. There exists a (Ky 4, 2)-frame of type 20" for u > 3.

Proof: For u = 3,5, there exists a (Ky,4,2)-RGDD of type 20> by Lemma 1.10. Apply Construction 1.3 to get
the required (K 4, 2)-frame of type 20*.

For u =4, 6,8, let the vertex set be Zy,, and let the groupsbe G; = {i + uj |0 < j <19},0 <i<u—1. The
required 25 partial parallel classes with respect to the group G; are {Qf.k ={i+ul+Q}|1<k<50<1<4},
where each Qx = {B +5ut | B € Cy,|Cil = u—1,0 < t < 3} is a partial parallel class with respect to Gy. The
blocks in each Cy are listed below.
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u=4: G (1;2,63,66,67) (5;10,34,71,15) (18;9,39,37,53)
C,  (1;3,55,14,71) (2;19,9,53,5) (7:10,38,26,57)
Cs  (1;14,18,35,47) (2;17,43,9,25) (13; 46, 51,50, 39)
Cs  (1;23,70,26,79) (2;29,27,25,51) (15;53,77,58, 74)
Cs  (1;31,46,7,10) (2;29,43,35,13) (19; 14, 18,25, 77)
u=6: C (1;34,3,35,2) (11;7,8,10,39) (15;77,29,76,26) (43;82,51,23,80)
(44; 58,87, 85,79)
C,  (2;109,77,97,105)  (13;118,46,111,44) (27:4,59,35, 86) (31;69,8,11,100)
(33; 85,112, 80, 113)
Cs  (1;111,82,50,17) (2;58,115,113,27) (3;59,19,97,95) (4;98,69,13,71)
(45; 74,116, 100, 76)
Ci  (1;58,94,119,38) (3;80,47, 49, 106) (2,101,103, 37, 70) (35; 82,75, 85,81)
(83; 39, 86,104, 117)
Cs (1;52,16,23,28) (2;103,65,77,9) (4;86,111,71,14) (8;19,70,37,3)
(25;20,29,57,75)
u=8 C (1;22,110,45,101)  (28;126,151,2,26) (39;157,129, 18, 84) (67;54,97,76,100)
(93;145,35,33,143)  (95;118,34,139,123)  (149;130,127,131,12)
C,  (3;113,74,49,105)  (53;79,137,150,52) (62;19, 55,103, 149) (100;27, 31, 26, 6)
(124;2,41,21,155)  (127;138,117,116,68)  (130;118,5,94,51)
Cs  (13;60,33,74,102)  (17;155,109,70,147)  (47;129,94,139,12) (77;106,79,23,108)
(84;55,45,101,158)  (105;71,46,130,51) (121;138,3, 76, 82)
Ci (18;73,137,93,55)  (51;61,50,106,100) (121;159,118,124,85)  (59;74,86,87,2)
(68;49,54,3,111) (143;147,77,150,155)  (145;69, 62,36,92)
Cs (11;2,6,78,138) (39;130, 19,53, 153) (68;147,62,117,41) (76;71,146,89, 154)

(109;103, 75, 14, 84)

(110;25,17,12,125)

(123;141,15,60,127)

Let L = {3,4,5,6,8}, for all other values of u with u > 3 and u ¢ L, apply Construction 1.2 with

a (L,1,u)-PBD from [3] and a (Kj4,2)-frame of type 20% for each k € L constructed above to obtain the
conclusion. [J

Lemma 1.12. There exists a (K 4,2)-frame of type 4" for u =1 (mod 5) and u > 6.

Proof: For u = 6,11, let the vertex set be Zy,, and let the groupsbe G; = {i,i + u,i +2u,i + 3u},0<i<u-—1.
The required 5 partial parallel classes with respect to the group G; are {Qi = {B+i+uj| B € C, |Ck| =
410 < j <3}|1 <k <5). The blocks in each Cy are listed below respectively.

u=6 G (%913,11,4) C,
Cs (3;8,11,13,22)

(1,23,21,22,2) Cs (1;22,11,21,14) Cs (2;1,9,10,11)

u=11: € (1;2,3,4,5) (6;7,8,9,10) C>  (1;6,7,8,9) (2;10,12,14,15)
Cs  (1;6,7,8,10) (2;12,14,15,16) Cs (1;10,15,16,17)  (2;18,19,20,21)
Cs (1;16,18,19,20)  (4;24,25,27,28)

For u > 16, we begin with a (K 4, 2)-frame of type 205 by Lemma 1.11 and apply Construction 1.4 with
¢ =1 to get the required (K 4, 2)-frame of type 4%, where the input design a (Kj 4, 2)-frame of type 45 O

Theorem 1.13. There exists a (K4, 2)-frame of type g* if and only if g = 0 (mod 4), g(u —1) =0 (mod 5), u > 3
and g =0 (mod 5) when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following two cases.

1. =0 (mod 20) and u > 3.

There exists a (Kj 4, 2)-frame of type 20" by Lemma 1.11. Then apply Construction 1.1 with m = g/20 to
get the required design.

2.9=4,8,12,16 (mod 20) and u =1 (mod 5), u > 6.

A (Kj4,2)-frame of type 4" exists by Lemma 1.12. Then we apply Construction 1.1 with m = g/4 to get a
(K1,4,2)-frame of type g*. [

1.3. (Ki,4,4)-frames
Lemma 1.14. There exists a (Ky,4,4)-RGDD of type 10%.
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Proof: Let the vertex set be Zy, and let the groups be {2u +i]|0 < u <9}, i = 0, 1. For the required 25 parallel
classes, 20 of which can be generated from a parallel class {(0; 1, 3, 5,7), (2;9,11,13,15), (17;6, 8,10, 12),(19; 4,
14,16,18)} by +1 (mod 20). The last 5 parallel classes can be generated from a parallel class {(0;1,3,17,19) +
5110<1<3}by+j (mod 20),0<j<4. O

Lemma 1.15. There exists a (Ky 4,4)-frame of type 10* for u > 3.

Proof: For u = 3,5, there exists a (K 4,4)-RGDD of type 10> by Lemma 1.14. Apply Construction 1.3 to get
the required (K 4, 4)-frame of type 10*.

For u = 4,6,8, let the vertex set be Z;(,, and let the groupsbe G; = {i + uj|0< j<9},0<i<u—1. The
required 25 partial parallel classes with respect to the group G; are {Q, = {i +ul + Q} |1 <k <5,0 <1< 4},
where each Qr = {B +5ut | B € Ct,|Cx| = u —1,t = 0,1} is a partial parallel class with respect to Gy. The

blocks in each Cy are listed below.

u=4 C (1,2,3,67) (5;10,11,14,15)  (18;9,13,17,19)
C:  (1;2,3,6,7) (5;11,14,15,18)  (10;13,17,19,29)
Cs  (1;3,11,14,15) (2;5,9,13,19) (7:10,17,18,26)
C:  (1;3,14,15,18) (2;5,9,13,27) (17;6,10,31,39)
Cs (1;14,15,18,19)  (2;17,23,25,27)  (11;26,29,30,33)
u=6: C (1;34,3,2,35) (7:10,9,41,8) (13;47,16,15,14)  (19;22,23,21,20)
(29;25, 58,57, 56)
C, (3;19,20,17,14)  (31;8,11,9,40)  (32;13,7,45,46)  (34;51,55,26,53)
(57;28,29,5,52)
Cs  (1;11,8,39,10) (2;37,15,16,13)  (3;47,49,20,14)  (34;51,26,55,23)
(57;29,35,28,52)
Ci (2;21,22,15,47)  (3;43,19,16,53)  (5;44,58,56,37)  (20;27,4,55,59)
(31;40,9,8,41)
Cs (1;16,8,4,51) (2;39,47,7,22)  (3;26,59,58,44)  (10;35,41,43,25)
(23;15,19,50,57)
u=8 € (1;53,5,43,31) (22;65,28,19,58)  (27:77,74,10,42)  (47;54,12,11,73)
(57:78,69,66,36)  (61;23,6,39,75)  (70;20,15,44,49)
Cr  (3;34,9,2,53) (18; 4,57, 54, 5) (20;22,7,77,61)  (26;12,71,75,68)
(33;29,50,23,55)  (39;46,65,27,19)  (76;70,51,38,1)
Cs  (2;25,49,15,7) (17:43,6,63,69)  (35;53,28,36,26)  (41;58,37,19,12)
(44;78,71,61,62)  (45;34,30,33,11)  (60;54,50,67,39)
C:  (5:42,46,63,52)  (14;25,34,66,10) (22;61,7,77,3) (38;41,35,51,33)
(39;49,68,70,19)  (58;60,76,29,15)  (67;53,31,44,57)
Cs (3;5,1,74,12) (29;14,10,17,28)  (30;53,65,75,77)  (33;67,6,44,76)

(42;47,23,15,61)

(62;9,11,31,59)

(78;60, 26,58, 79)

Let L = {3,4,5, 6, 8}, for all other values of u with u > 3 and u ¢ L, apply Construction 1.2 with a (L, 1, u)-
PBD from [3] and a (K 4, 4)-frame of type 10* for each k € L constructed above to get the conclusion. [

Lemma 1.16. There exists a (Ky4,4)-frame of type 2 for u =1 (mod 5) and u > 6.
Proof: For u = 6,11, let the vertex set be Zy,, and let the groups be G; = {i,i+u}, 0 <i < u—1. The required 5

partial parallel classes with respect to the group G; are {Qjx = {B+i+uj|B € Ci, |Cil = ”?_1,] =0,1}|1 <k <5}
The blocks in each Cy are listed below respectively.

u=6 C (111,294 C> (1;8,4,3,5 C3 (21,459 Cs (21,345 Cs (3;7,810,11)
u=11: G (1;2,3,4,5  (67,8,9,10) G (1,6,7,9,8) (2;10,14,15,16)
C;  (1;2,3,45)  (67,8,9,10) Cs (1;6,7,8,9) (3;10,13,16,15)

Cs  (1;6,7,8,14) (4;9,10,13,16)

For u > 16, we begin with a (K1 4,4)-frame of type 105 by Lemma 1.15 and apply Construction 1.4 with
¢ = 1 to get the required (Kj 4, 4)-frame of type 2“, where the input design a (Kj 4,4)-frame of type 2°. [

Theorem 1.17. There exists a (K 4,4)-frame of type g* if and only if g = 0 (mod 2), g(u —1) =0 (mod 5), u > 3
and g =0 (mod 5) when u = 3.
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Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following 2 cases.

1. =0 (mod 10) and u > 3.

There exists a (Kj4,4)-frame of type 10 by Lemma 1.15. Then apply Construction 1.1 with m = g/10 to
get the required design.

2.9=2,4,6,8 (mod 10) and u =1 (mod 5), u > 6.

A (Kj4,4)-frame of type 2" exists by Lemma 1.16. Then we apply Construction 1.1 with m = g/2 to get a
(K1,4,4)-frame of type g*. [

1.4. (Ky4,8)-frames
Lemma 1.18. There exists a (K1 4,8)-RGDD of type 5°.

Proof: Let the vertex set be Zjy and the groups be {i,2 +i,4+i,6 +i,8+1i}, i = 0,1. For the required
25 parallel classes, 20 of which can be generated from two parallel classes {(0;1,3,5,7),(9;2,4,6,8)} and
{(0;1,3,5,9),(7;2,4,6,8)} by +1 (mod 10). The last 5 parallel classes can be generated from a parallel class
{0;1,3,7,9),(5;6,8,2,4)} by +j (mod 10),0<j<4. O

Lemma 1.19. There exists a (Ky 4, 8)-frame of type 5" for u > 3.

Proof: For u = 3,5, there exists a (Ky,4,8)-RGDD of type 5* by Lemma 1.18. Apply Construction 1.3 to get
the required (Kj 4, 8)-frame of type 5".

For u = 4,6,8, let the vertex set be Zs,, and let the groupsbe G; = {i+uj|0<j<4},0<i<u-1
The required 25 partial parallel classes with respect to the group G; can be generated from 5 partial parallel
classes {Qi = {i + Qi) | 1 < k < 5} by +u (mod 5u), where Oy is a partial parallel class with respect to Go.

The blocks in each Qy are listed below.

u=4 Qi (1;10,6,19,3) (2;7,13,17,9) (5;18,15,11,14)
Q, (215,9,5,17) (13;7,11,6,3) (19;18,14,1,10)
Qs (1;15,3,6,7) (5;2,14,11,18)  (10;13,19,9,17)
Qs (3;14,2,9,6) (17:7,18,11,19)  (15;13,10,1,5)
Qs (7:18,9,6,10) (2;1,3,5,15) (14;19,13,17,11)
u=6: Qi (11;28,20,22,27) (13;2,8,9,17) (26;10,21,25,29)  (7;16,14,5,23)  (419,15,3,1)
Q,  (22;2,15,26,1) (29;25,7,16,21)  (27;17,8,19,4) (9;10,11,20,23)  (28;3,14,13,5)
Qs (10;9,11,3,23) (25;29,8,28,21)  (22;17,20,2,14)  (16;27,15,19,7)  (4;1,26,5,13)
Qs (8;3,25,15,22) (28;5,23,17,20)  (16;14,19,7,27)  (9;29,26,10,11)  (4;21,13,2,1)
Qs (25;17,20,27,15)  (23;13,3,8,9) (26;22,16,11,29)  (5;1,21,14,28)  (2;7,19,10,4)
u=8 Q (23;26,33,34,35) (21;36,22,20,3) (31;27,2,30,17)  (9;6,29,18,37)
(10;12,39,38,15)  (13;11,25,28,4)  (1;19,14,7,5)
Q, (35;31,17,38,9)  (26;3,6,7,5) (29;11,22,12,4)  (23;1,34,18,33)
(14;13,39,15,20)  (25;10,36,2,37)  (21;28,27,19,30)
Qs (10;27,14,15,38)  (31;33,26,1,11)  (4;23,22,18,17)  (30;37,25,9,19)
(6;12,21,20,2) (36;13,5,39,29)  (34;3,28,35,7)
Qs (35:4,37,12,17)  (27;21,1,39,34)  (11;13,25,14,2)  (30;36,10,3,7)
(18;29,15,28,22)  (38;9,19,20,23)  (5;26,6,33,31)
Qs (11;13,6,21,38)  (9;35,36,5,34)  (10;15,14,23,17)  (28;18,30,7,37)

(12;2,19,39,22)

(4;3,25,27,1)

(26;29,20,33,31)

Let L = {3,4,5, 6, 8}, for all other values of u with u > 3 and u ¢ L, apply Construction 1.2 with a (L, 1, u)-
PBD from [3] and a (K4, 8)-frame of type 5% for each k € L constructed above to obtain the conclusion. [

Lemma 1.20. There exists a (K4, 8)-frame of type 1" for u =1 (mod 5) and u > 6.

Proof: For u = 6,11, let the vertex set be Z,, and let the groups be G; = {i}, 0 < i
partial parallel classes with respect to the group G; are {Qx = {B+i| B € Cx, |Cil

blocks in each Cy are listed below respectively.

u — 1. The required 5
1)1 <k <5} The

I IA

u=6: C (12,345 C (1,345 C3 (31,245 Ci (41,235 (5;1,2,3,4)
u=11: C (21,564  (3;7,8,10,9) G (1;2,9,3,10) (56,8,7,4)

C;  (69,10,7,8) (1,3,5,2,4) C: (1,53,2,6) (48,7,10,9)

Cs  (1,24,6,7)  (53,8,9,10)
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For u > 16, we begin with a (Kj 4, 8)-frame of type 55 by Lemma 1.19 and apply Construction 1.4 with
¢ =1 to get the required (K 4, 8)-frame of type 1", where the input design a (Kj 4, 8)-frame of type 1°. [

Theorem 1.21. There exists a (Kj 4, 8)-frame of type g* if and only if gu —1) = 0 (mod 5), u > 3and g = 0
(mod 5) when u = 3.

Proof: The necessary condition is obvious by Theorem 0.1. We distinguish the sufficient conditions into the
following 2 cases.

1. =0 (mod 5)and u > 3.

There exists a (K 4, 8)-frame of type 5" by Lemma 1.19. Then apply Construction 1.1 with m = g/5 to get
the required design.

2.9=1,2,3,4 (mod 5)and u =1 (mod 5), u > 6.

A (Kjy4,8)-frame of type 1" exists by Lemma 1.20. Then we apply Construction 1.1 with m = g to get a
(K14, 8)-frame of type g*. O

1.5. Main results on (K4, A)-frames

Proof of Theorem 0.3: The necessary conditions for the existence of a (Kj 4, A)-frame of type g* are clearly
established by Theorem 0.1. Now we consider its sufficiency and distinguish into 4 cases.

1. A=1 (mod 2).

There exists a Kj 4-frame of type g* by Theorem 1.9. Repeat each block A times to get a (K4, A)-frame of
type g*.

2. A =2 (mod 4).

A (Ky4,2)-frame of type g" exists by Theorem 1.13. Repeat each block 4/2 times to get the conclusion.

3. A =4 (mod 8).

A (Ky4,4)-frame of type g* exists by Theorem 1.17. Repeat each block A/4 times to get a (K4, A)-frame
of type g*.

4. A =0 (mod 8).

There exists a (Kj 4, 8)-frame of type g" by Theorem 1.21. Repeat each block A/8 times to get the required
design. [

2. The existence of (Kj4, A)-RGDDs

Now we state some basic recursive constructions for (Kj ,, A)-RGDDs. Similar proofs of these construc-
tions can be found in [1, 2, 5].

Construction 2.1. If there exists a (Ky,,, A)-RGDD of type g*, then there is a (K1 ,, A)-RGDD of type (mg)" for any
m=1.

Construction 2.2. If there exist a (K1, A)-RGDD of type (gu)' and a (K1, A)-RGDD of type g*, then there is a
(Ky,1, A)-RGDD of type g".

Construction 2.3. If there exist a (Ky,,, A)-frame of type (g(u — 1)) and a (Ky,,, A)-RGDD of type g", then there
exists a (Ky,,, A)-RGDD of type g"“~D+1,

Proof: Suppose there is a (Kj,, A)-frame of type (g(u — 1))’ with the groups G, 1 < j < I, then there are
W partial parallel classes missing G, 1 < j < I, denoted by {Q; |1 <i< W}. Add g new
common vertices to the vertex set of G;j and form a new vertex set G}. Then break up G;. with a (Ky,,, A)-
RGDD of type g* with the groups G}, G?, eee, G;.“l,M, where the g common vertices are viewed as a new

W parallel classes, denoted by {P;. |1<i< W}

class of the required (Kj ,, 1)-RGDD of type gD+ 1 < i < W, 1 < j <1 Thus, we get
parallel classes as required. [

group M. It has . Hence, Q; U P; is a parallel
Agl(n+1)(u—-1)

2n
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Before the following construction, we first introduce a concept. Suppose H is a subgraph of a graph
G, we use G — V(H) to denote the subgraph of G obtained by deleting the vertices in V(H) and all edges
incident with them, and use G — E(H) to denote a subgraph of G obtained by deleting all edges in E(H).

Definition 2.4. Let G be a A-fold complete (u+1)-partite graph with u+1 groups My, My, ..., M4 such that IM;| = g
foreach1 <i<u+1 Let H bea A-fold complete I-partite graph with | groups (called holes) M1, Mys2, - .., M.
An incomplete resolvable (Ky,, A)-group divisible design of type g" with I holes, denoted by (Ki,,, A)-IRGDD of
type g+ is a resolvable (Ky,,, A)-decomposition of G — E(H) in which there are 22 parallel classes of G and

2n
M%L)(H) partial parallel classes of G — V(H).

Lemma 2.5. There exists a (Ky 4,1)-IRGDD of type 1652,

Proof: Let the vertex set be Zy U {oog, 001, ..., 0024}, and let the groups be {u}, u € Z4, and {oo;}, 0 < | < 24.
The required 25 parallel classes and 15 partial parallel classes can be generated from 5 parallel classes
{P; |1 <i <5}, and 3 partial parallel classes {Q; | 1 < j < 3}, by +8 (mod 40), respectively. The blocks in
each P; and Q j are listed below respectively.

Py (0;14, 15, 007, 00¢) (1;16,17, 0011, 0012) (2;10,11, 0017, c0g) (3;12,21, 00pp, 0013)
(4;23, 009, 005, 0018) (5,29, 0019, 0023, 0014)  (6;36,0015,0016,0019)  (7;22, 0050, 0021, 0924)
(000;8,9,18,19) (0071;26,27,20,13) (00p;28,37,30,31) (003;38,39,24,25)
(c04;32,33,34,35)

Py (0;16,17,0015, 0011) (1;18,19, 0014, 0017) (2;12,22, 0093, 0013) (3;28,29, 005, 001g)
(4;31,0014,0019,0023)  (5;14,0015,003,0019)  (6;13, 0030, 0021, 0024) (7,23, 000, 0071, 004)
(c05;8,9,10,11) (c06;26,27,20,21) (c07; 36,37, 30, 15) (c0s; 38,39, 24, 25)
(c09; 32,33, 34, 35)

P3  (0;18,21, 0017, 0014) (1; 23,28, 001, 0020) (2;8,9, 009, 0018) (3;11,30, 007, 003)
(4;12,0019,0015,003)  (5;39,0099,008,0024)  (14;29, 00, 001, 004) (7;38, 005, 006, 009)
(0010;16,17,10,19)  (0011;26,27,20,13)  (co1: 36,37, 6,15) (c013;22, 31,24, 25)
(0014;32,33,34,35)

Py (0;22,23, 0093, 0071) (1;21,29, 001, 002) (2;28,35, 007, 0023) (3;8,9, 0012, 003)
(4;10, 0094, 0029, 008)  (13;31,000,0013,004)  (6;12, 005, 004, 009) (7;30, 0019, 0011, 0014)
(c015:16,17,18,11)  (0016;26,19,20,5) (0017;36,37,14,15)  (co1g; 38,39, 24, 25)
(0019,' 32, 33, 34, 27)

Ps (0;28,29, 00y, 001) (1,30, 31, 00g, 007) (2;23,37, 0013, 003) (3;36, 38, 0017, 00g)
(4;9, 004, 009, 0013) (5; 18, 005, 0018, 009) (6;16, 0019, 0011, 0014)  (7;19, 0015, 001, 0919)
(c02038,17,10,11) (0021;26,27,12,13)  (0022;20,21,14,15)  (con3;22,39,24, 25)
(c0n4: 32,33, 34, 35)

o (0:1,2,3,4) (5:6,7,8,9) (10;11,12,13, 14) (15;16,17,18,19)
(20;21,22,23,24) (25;26,27,28,29) (30;31,32, 33, 34) (35:36,37,38,39)

Q  (0;5,6,7,8) (1;,9,10,11,12) (2,13, 14,15, 16) (3;17,18,19,20)
(4;21,22,24,26) (23;28,31,32,34) (29;35,36,37,39) (38;25,27,30,33)

Qs (0;9,10,11,12) (1,7,8,13,15) (2;,17,18,19,21) (3;16,22,23,24)
(4;20,25,29,30) (5;31,32,35,36) (14; 26,33,37,38) (39;6,27,28,34)

[

Lemma 2.6. There exists a (Ky 4, 1)-IRGDD of type 4155

Proof: Let the vertex set be Z4o U {00g, 01, ..., 0019}, and let the groups be {1, 10 + 1,20+ 1,30+ u},0 <u <9,
and {oo;, 005,7, 001041, 01541}, 0 < | < 4. The required 25 parallel classes and 10 partial parallel classes can
be generated from 5 parallel classes {P; | 1 < i < 5}, and 2 partial parallel classes {Q; |1 < j < 2}, by +8
(mod 40), respectively. The blocks in each P; and Q; are listed below respectively.
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P1  (0;9,11, 005, 006) (1;8,14, 009, 0019) (2,10,17, 0014, 0015)  (3;12,16, 0018, 0019)
(4:15,18,005,007)  (5:19,20, 008, 0011)  (6;13,21, 001, 0013)  (7:22,23, 001, 0017)
(000;24,25,26,27)  (c01;34,35,28,29)  (002;36,37,38,39)  (c03;30,31,32,33)

P, (0;14,15, 0og, 0019) (1;16,17,0013,014)  (2;8,9, 0018, 0019) (3;10,11, 00y, 003)
(412,19, 005,0017)  (5;18,21,0015,0015)  (6;20,23,0016,0017)  (7;13,38, 00p, 007)
(c04;24,25,26,27)  (005;34,35,28,29)  (c0g;36,37,30,39)  (c07;22,31,32,33)

P;  (0;16,17,0013,0014)  (1;15,18,0017,0018)  (2;19,20, 00, 003) (3;8,9, 006, 007)
(4,10,11, 0013, 0015)  (5;12,14, 0014, 0019)  (6;22,39, 00p, 1) (7;21,29, 0oy, 005)
(c0g;24,25,26,27)  (009;34,35,28,13)  (c010:36,37,30,31) (001123, 38,32, 33)

Py (0;18,19,0017,0018)  (1;20,22, 001, 007) (2;21,23, 0og, 007) (3; 14,25, 0019, 0011)
(4;9,31, 0016, 0019) (5;10,11, 00g, 003) (6;24,29, 00y, 005) (7;12,16, 00g, 009)
(c012;8,17,26,27) (c013;34,35,28,13) (c014;36,37,38,39) (c015; 15,30, 32, 33)

Ps (0;21, 23, 001, 007) (1,28, 29, 005, 00g) (2;18,30, 0019, 0011)  (3;22,31, 0014, 0015)

(4;16,20, 00, 003)
(0016;8,9,10,11)

(13;24,35, 004, 007)
(0017;34,27,36,37)

(6;17,19, 0og, 009)
(0018;5,7,12,14)

(15;26,33, 001, 013)
(001025, 32, 38, 39)

1726

Q1 (0;1,2,3,4) (5;6,7,8,9) (10;11,12,13,14)  (15;16,17,18,19)
(20;21,22,23,24)  (25;26,27,28,29)  (30;31,32,33,34)  (35;36,37,38,39)
0 (0;56,7,8) (1;9,10,12,13) (2;11,14,15,16)  (3;17,18,19,20)
(4;21,22,23,32)  (30;25,35,36,38)  (37;24,26,28,29)  (39;27,31,33,34)
O

Construction 2.7. Suppose there exist a (Ky,, A)-frame of type (qu), a (Ky,, A)-IRGDD of type g“*'P, and a
(K11, A)-RGDD of type g"*!, then there exists a (K ,, A)-RGDD of type g"*!.

Proof: We start with a (Kj,,, A)-frame of type (gu)" with the groups G;, 1 < j < t. There are Ag”(nﬂ)

partial
parallel classes missing G, denoted by {Q;. 11<i<? ”2(Z+1 }. Add gl new common vertices to the vertex set
of each G; and form a new vertex set G’

For1 < j <t-1, break up G w1th a (Ki,n, A)-IRGDD of type """ with the groups G},G3,..., G,

M, M?,...,M!, where the gl common vertices are viewed as [ holes M!, M?,..., M'. It has Agu(n+1) u("+1) parallel

classes (denoted by {R; |1 <i< %}) and M partial parallel classes (denoted by {S’ |1 <i<

Ag(n+1)(l—1)})
2n :
For the last set G/, we break up it with a (K1, 1)-RGDD of type g"*! with the groups G},G?,...,G",
p , ‘ ype g groups G, G t
M, M2, M Tts M parallel classes are denoted by (R |1 < i < 220D+,
/\Ju(le) _
LetFl=RIUQ,1<i<™i 1<j<tandlet Te=R, * " U(ULISH, 1 <k< 0 Ttis easy

to see Fj and Tk are parallel classes of the required (Kj ,, A)-RGDD of type g**. [

+k

Construction 2.8. Suppose there exist a (K ,, A)-IRGDD of type 1“*') and a (K1 ,, A)-RGDD of type 1!, then there
exists a (K14, A)-RGDD of type 1"+,

Proof: We start with (K;,, )-IRGDD of type 1¢+) whose & = 21 parallel classes are denoted by
{Pill <i < a}, and whose = w partial parallel classes are denoted by {Q; |1 < j < f}. And
(K11, A)-RGDD of type 1! with f parallel classes denoted by {Pi11<j<p) LetAj=Q;UP,1<j<p. Then
both A; and P; are parallel classes on the whole vertex set, and they form a (K3, A)-RGDD of type 1 g

2.1. (Ki4,1)-RGDDs
Lemma 2.9. There exists a (Ky4,1)-RGDD of type 5% foru =1 (mod 8) and u > 9.

Proof: Foru =9, let the vertex setbe Z5, and let the groups be {i+97]0 < j < 4},0 <i < 8. LetC; =(0;1,2,3,4)
and C; = (0;6,7,8,14). For j = 1,2, each C; can generate a parallel class P; by +5 (mod 45). P; can generate 5
parallel classes by +7 (mod 45), 0 < r < 4. Thus, we get 10 parallel classes. The other 15 parallel classes can
be generated from a parallel class {(0;5,10,11,12), (1;6,13,14, 16),(2;7,15,17,18),(3; 19, 20, 24, 37), (4; 21, 25,
26,36) (8;27,29, 30,33),(9; 28,31, 39,44), (22; 32, 38,41, 42), (23; 34, 35,40, 43)} by +3 (mod 45).
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For u = 17, let the vertex set be Z17 X Zs, and let the groups be {i} X Zs, i € Z;;. For each 1 < j < 16, the
block C; can generate a parallel class by (+1 (mod 17), ). The other 34 parallel classes can be generated
from two parallel classes P; and P, by (+1 (mod 17),—). Py, P, and C; are listed below respectively.

P1 (7483,123,04,84) (03;43,24,54,104) (81;61,71,42,113) (139; 19, 40,101,11y4)

(50; 20,150, 31,93) (153;02,13,73,163) (91,11, 41,142,124) (121;09, 60, 109, 21)
(152;80,140,131,162)  (120;110,160,151,72)  (114;01,141,82,122)  (32;62,102,63,103)

(132; 2,112, 14,34) (12;52,92,23,44) (33,133,143, 144,164) (94,53, 64,134,154)
(%0;30,70,51,161)

Py (152;32,83,113,143)  (162;133,94,134,144)  (70;12,42,33,53) (04;30,62,82,132)
(104; 50, 160, 24,124) (34; 00, 80,129, 61) (154; 60,9, 92, 147) (54;10,01,91,107)
(63;119,81,111,121)  (31;161,22,112,123)  (164;71,151,13,44) (20;52,72,102,163)

(64;40,100,21,41)
(84;11,141,02,73)
C1 (00;81,92,53,164) Co  (00;51,62,33,104) C3  (00;41,42,23,74)  Cs  (00;11,22,13,14)
Cs  (01;80,72,73,164) Cs  (01;70,62,53,105) C7  (01;60,42,23,84)  Cs  (01;10,32,13,64)
Co  (02;70,71,63,164) Cio  (02;40,61,53,134)  Ci11 (02;20,51,43,124) C1z (02;10,21,23,24)
Ciz (03;80,91,92,9)  Cis (03,70,81,82,74)  Cis  (03;60,71,62,64)  Cis  (03;10,31,52,34)

(43;130,140,150,51)  (103;123,153,14,74)  (131;03,23,93,114)

Foru > 25,a(Kj 4, 1)-frame of type 40'F exists by Theorem 1.9 and a (Kj 4, 1)-RGDD of type 5° constructed
above, we get the conclusion by applying Construction 2.3. [J

Lemma 2.10. There exists a (Kj 4,1)-RGDD of type 1* for u = 25 (mod 40) and u > 25.

Proof: For u = 25, let the vertex set be Zs X Z5, and let the groups be {i}, i € Z5 X Zs. The block
C1 = (0o; 10,20, 31,42) can generate a parallel class P; by (-, +1 (mod 5)). The blocks C, = (0g; 01,02, 33, 14)
and Cz = (0p; 11,12,23,34) can generate two parallel classes P, and P3; by (+1 (mod 5),—). We can get 5
parallel classes from P; by (+1 (mod 5), —) and 10 parallel classes from P, and Pz by (-, +1 (mod 5)). We
get the required 15 parallel classes.

For u = 65, there exist a (Ky4,1)-IRGDD of type 1©5%) by Lemma 2.5 and a (Kj 4, 1)-RGDD of type 1%
constructed above, we get a (Kj 4,1)-RGDD of type 1%° by using Construction 2.8.

For u = 105, let the vertex set be Z; X Zs, and let the groups be {i}, i € Z5; X Zs. For each 1 < j < 44, the
block C; can generate a parallel class by (+1 (mod 21), —). The other 21 parallel classes can be generated
from a parallel classes P by (+1 (mod 21), —). The blocks in P and C; are listed below respectively.

P (0o;30,20,10,01) (11;31,191,21,02) (12;32,22,192,83) (13;23,133,33,174)
(14524, 74,44, 40) (50;100,119,90,193)  (51;101,91,201,34) (52;102,92,162,200)
(63;113,123,103,87) (64;154,84,144,87) (60;180,179,111,113)  (61;184,161,42,163)
(62;12,,18,,183,104)  (203;93,173,54,120)  (114;164,184,13¢,41)  (70; 150, 140, 53, 124)
(71;141,151,194,16¢)  (72;145,20,,80,121)  (73;03,153,131,157) (94;204,134,13,,43)

(190; 17] ’ 172, 143, 04)

C1 (01;02,03,04,19) C2 (02;03,04,00,31) Cs  (03;04,00,11,12)
Cs  (04;00,11,12,13) Cs  (09;11,12,13,14) Cs  (01;12,13,14,30)
C7 (02;15,14,30,41) Cs  (03;14,10,31,22) Co  (04;10,31,32,23)
Cio (00;21,22,23,34) Ci1 (01;22,23,24,40) Cio (02;23,24,40,61)
Ciz (03;24,30,41,32) Cisa (04;40,41,52,33) Cis5 (00;31,32,33,44)
Cis  (01;32,33,34,50) Ci7 (02;33,34,50,71) Cis  (03;34,40,51,42)
C1o  (04;50,51,62,43) C  (00;41,42,43,64) Co1 (01;42,43,44,60)
Cx (02;43,54,60,81) Cxs (03;44,60,71,52) Cas (04;60,61,72,63)
Cos  (09;61,72,53,74) Cz6  (01;52,53,54,70) Co7 (02;53,64,70,91)
Cas  (03;74,80,81,62) Cr  (04;70,71,82,73) Cso  (00;71,82,63,84)
C31 (01;62,63,64,80) Cz2 (02;63,74,80,101) Csz  (03;84,90,91,72)
Cas  (04;80,81,92,83) Css  (00;81,92,73,94) Css  (01;72,73,84,100)
Cs7 (02;83,84,9,114) Css  (03;94,100,101,102)  Cs9  (04;90,101,102,93)
Cs  (00;91,102,93,104) Cy1 (01;82,83,94,11p) Ci2 (02;93,94,100,121)

Csz (03;104,119,121,112)  Cyg (04,100, 114,113,103)

For u > 145, a (Ky 4, 1)-frame of type 40'%" exists by Theorem 1.9, a (Kj 4, 1)-IRGDD of type 1?9 exists
by Lemma 2.5, and a (Kj 4, 1)-RGDD of type 1° which is constructed above. Then apply Construction 2.7
to get the required design. [J

Lemma 2.11. There exists a (K1 4,1)-RGDD of type 2 for u = 5 (mod 20) and u > 5.
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Proof: For u =5, let the vertex set be Zj,, and let the groups be {i,i + 5}, 0 < i < 4. The required 5 parallel
classes are {(0;1,2,3,4) +i,(6;7,8,9,10) + i}.

For u > 25, a (Ky4,1)-frame of type 85 exists by Theorem 1.9 and a (Kj4,1)-RGDD of type 25 is
constructed above, we get the conclusion by applying Construction 2.3. O

Lemma 2.12. There exists a (K14, 1)-RGDD of type 10" for u = 1 (mod 4) and u > 5.

Proof: For u = 5, apply Construction 2.1 with m = 5 and a (K4, 1)-RGDD of type 2° which exists by
Lemma 2.11 to obtain the conclusion.

For u =9, apply Construction 2.1 with m = 2 and a (Kj 4, 1)-RGDD of type 5% which exists by Lemma 2.9
to obtain the required design.

For u > 13, a (Ky4,1)-frame of type 40T exists by Theorem 1.9 and a (Kj4,1)-RGDD of type 10° is
constructed above, we get the conclusion by using Construction 2.3. [J

Lemma 2.13. There exists a (Ky4,1)-RGDD of type 20* for u =1 (mod 2) and u > 3.

Proof: For u = 3, the conclusion comes from [10].

For u = 5, apply Construction 2.1 withm = 10and a (Ky 4, 1)-RGDD of type 2° which exists by Lemma 2.11
to obtain the conclusion.

For u > 7, there exist a (Ky 4, 1)-frame of type 407 by Theorem 1.9 and a (Kj 4, 1)-RGDD of type 203 from
[10], we get the conclusion by using Construction 2.3. [

Lemma 2.14. There exists a (Ky4,1)-RGDD of type 4" for u =5 (mod 10) and u > 5.

Proof: For u = 5, apply Construction 2.1 with m = 2 and a (K4, 1)-RGDD of type 2° which exists by
Lemma 2.11 to obtain the conclusion.

For u = 15, let the vertex set be Zg, and let the groups be {i + 15j | 0 < j < 3}, 0 < i < 14. The block
(0;4,23,31,32) can generate a parallel class P; by +5 (mod 60). The block set {(7; 20,21, 23,29), (5;10,11,12,
13),(19;39,44,52,58),(0;1, 2, 3,24), (8; 26,27, 34,25),(6;15, 16,17, 18)} can generate a parallel class P, by +30
(mod 60). We can get 5 parallel classes from P; by +r (mod 60), 0 < r < 4, and 30 parallel classes from P,
by +s (mod 60), 0 < s < 29. Thus, we get the required 35 parallel classes.

For u = 25, apply Construction 2.1 with m = 4 and a (Ky4,1)-RGDD of type 1* which exists by
Lemma 2.10 to obtain the conclusion. ,

For u > 35, a (Kj 4, 1)-frame of type 40 exists by Theorem 1.9, a (Kj 4, 1)-IRGDD of type 4159 exists by
Lemma 2.6, and a (Kj 4, 1)-RGDD of type 4" which is constructed above. Then apply Construction 2.7 to
get the required design. O

Lemma 2.15. There exists a (K 4,1)-RGDD of type 8" for u = 0 (mod 5) and u > 5.

Proof: For u = 5, apply Construction 2.1 with m = 4 and a (Ky4,1)-RGDD of type 2° which exists by
Lemma 2.11 to obtain the conclusion.

For u = 10, let the vertex set be Zg;, and let the groups be {i+10j|0 < j<7},0<i < 9. Foreach1 <[ <4,
the block set C; can generate a parallel class P; by +10 (mod 80). Each P; can generate 10 parallel classes by
+r (mod 80), 0 < r < 9. The block (0;36,37, 38, 39) can generate a parallel class P5 by +5 (mod 80). Ps can
generate 5 parallel classes by +s (mod 80), 0 < s < 4. The blocks in C; are listed below respectively.

G (0;1,2,3,4) (5;16,17,18,19) C, (0;5,6,7,8) (1;19,22,23,24)
Cz  (0;9,15,16,17) (1;28,32,33,34) Cs (0;19,24,25,26) (3;31,32,37,38)

For u > 15, there exist a (K3 4, 1)-RGDD of type 405 from [10] and a (K1,4,1)-RGDD of type 8% which is

constructed above, we get the conclusion by using Construction 2.2. [J

Theorem 2.16. A K;4-RGDD of type g" exists if and only if g(u —1) = 0 (mod 8), gu = 0 (mod 5), u > 2, and
g =0 (mod 5) when u = 2.
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Proof: The necessary condition is obvious by Theorem 0.2. We distinguish the sufficient conditions into the
following 8 cases.

1. =0 (mod 40) and u > 2.

There exists a K 4-RGDD of type 40" from [10]. Then apply Construction 2.1 with m = ¢/40 to get the
required design.

2. 9=4,12,28,36 (mod 40) and u =5 (mod 10), u > 5.

A K;4-RGDD of type 4" exists by Lemma 2.14. Then we apply Construction 2.1 with m = g/4 to get a
K;4-RGDD of type gu_

3.9=8,16,24,32 (mod 40) and u =0 (mod 5), u > 5.

Similarly, we can use Construction 2.1 with m = g/8 and a K;4-RGDD of type 8" by Lemma 2.15 to
obtain the required design.

4. g =20 (mod 40) and u =1 (mod 2), u > 3.

We apply Construction 2.1 with m = g/20 and a K; 4-RGDD of type 20" by Lemma 2.13 to get a K; 4.-RGDD
of type g*.

5.9=10 (mod 20) and u =1 (mod 4), u > 5.

A K; 4-RGDD of type 10" exists by Lemma 2.12. Then we apply Construction 2.1 with m = g/10 to get a
K1,4-RGDD of type g".

6.9=2,6,14,18 (mod 20) and u =5 (mod 20), u > 5.

We apply Construction 2.1 with m = g/2 and a K; 4-RGDD of type 2 by Lemma 2.11 to get a K; 4.-RGDD
of type g*.

7.9=5 (mod 10)and u =1 (mod 8), u > 9.

Similarly, we can use Construction 2.1 with m = g/5 and a K; 4-RGDD of type 5% by Lemma 2.9 to obtain
the required design.

8.9=1,3,7,9 (mod 10) and u = 25 (mod 40), u > 25.

A K 4-RGDD of type 1" exists by Lemma 2.10. Then we apply Construction 2.1 with m = g to get a
K14-RGDD of type g*. O

2.2. (Ky4,2)-RGDDs
Lemma 2.17. There exists a (K 4,2)-RGDD of type 20" for u > 2.

Proof: For u = 1 (mod 2), there exists a K;4-RGDD of type 20" by Theorem 2.16. Repeat each block two
times to get a (Kj4,2)-RGDD of type 20".

For u = 0 (mod 2), we first construct a (Kj 4,2)-RGDD of type 202. Let the vertex set be Zy, and let the
groupsbe {i+2j|0 < j<19},i=0,1. The blockset {(0;1,3,5,7),(2;9,11,13,15), (17;6,8,12,30), (19; 4, 16, 18,
34)} can generate a parallel class P by +20 (mod 40). P; can generate 20 parallel classes by +r (mod 40),
0 < r < 19. The block (0;17,19,21,23) can generate a parallel class P, by +5 (mod 40). P, can generate 5
parallel classes by +s (mod 40), 0 <5 < 4.

When u > 4, we can obtain a (Kj,4,2)-RGDD of type 401 by repeating each block of a K; 4-RGDD of type
403 (Theorem 2.16) two times. Then apply Construction 2.2 with a (Kj 4,2)-RGDD of type 202 constructed
above to get the required design. [

Lemma 2.18. There exists a (Ky4,2)-RGDD of type 1% for u =5 (mod 20) and u > 5.
Proof: For u = 5, let the vertex set be Zs5, and the groups be {i}, i € Zs. The required parallel classes are
0;1,2,3,4)+i,0<i < 4.

For u > 25, there exist a (K 4, 2)-frame of type 47 by Theorem 1.13 and a (K3 4, 2)-RGDD of type 1°, we
get the conclusion by using Construction 2.3. [J

Lemma 2.19. There exists a (K1 4,2)-RGDD of type 10" for u = 1 (mod 2) and u > 3.
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Proof: For u = 3, let the vertex set be Z3, and let the groups be {i +3j |0 < j <9}, 0 <i < 2. The block
set {(25; 24,15, 23,20), (6; 28,17, 26,22), (14;1,12,18, 19)} can generate a parallel class P; by +15 (mod 30). P;
can generate 15 parallel classes by +r (mod 30), 0 < r < 14. The blocks (7;18,6,15,14) and (0;4, 7,13, 16)
can generate 2 parallel classes P, and P3 by +5 (mod 30). Each P; (I = 2,3) can generate 5 parallel classes
by +s (mod 30),0 <s < 4.

For u = 5, there exists a K; 4-RGDD of type 10° by Theorem 2.16. Repeat each block two times to get the
required design.

For u > 7, there exist a (Kj 4, 2)-frame of type 207 by Theorem 1.13 and a (Kj 4,2)-RGDD of type 103, we
get the conclusion by using Construction 2.3. [J

Lemma 2.20. There exists a (Ky4,2)-RGDD of type 2" for u =5 (mod 10) and u > 5.

Proof: For u = 5, there exists a K; 4-RGDD of type 2° by Theorem 2.16. Repeat each block two times to get
the required design.

For u > 15, there is a (Kj4,2)-RGDD of type 103 by Lemma 2.19 and a (K 4,2)-RGDD of type 2° which
is constructed above, we get the conclusion by using Construction 2.2. [

Lemma 2.21. There exists a (K 4,2)-RGDD of type 4* for u = 0 (mod 5) and u > 5.

Proof: For u = 5, there exists a K; 4-RGDD of type 4° by Theorem 2.16. Repeat each block two times to get
the required design.

For u > 10, there exist a (Kj 4, 2)-RGDD of type 205 by Lemma 2.17 and a (Kj 4,2)-RGDD of type 45 we
get the conclusion by using Construction 2.2. [

Lemma 2.22. There exists a (Ki4,2)-RGDD of type 5" for u =1 (mod 4) and u > 5.

Proof: For u = 5, there exists a (Ky,4,2)-RGDD of type 1° by Lemma 2.18. Then apply Construction 2.1 with
m = 5 to get the conclusion.

For u = 9, there exists a K1 4-RGDD of type 5° by Theorem 2.16. Repeat each block two times to get the
required design.

For u > 13, there exist a (Ky 4, 2)-frame of type 207 by Theorem 1.13 and a (Kj 4, 2)-RGDD of type 55, we
get the conclusion by using Construction 2.3. [

Theorem 2.23. A (Kj4,2)-RGDD of type g* exists if and only if g(u — 1) = 0 (mod 4), gu = 0 (mod 5), u > 2,
and g =0 (mod 5) when u = 2.

Proof: The necessary conditions for the existence of a (Kj4,2)-RGDD of type g* are clearly established by
Theorem 0.2. Now we consider its sufficiency and distinguish into the following 6 cases.

1. =0 (mod 20) and u > 2.

We use Construction 2.1 with m = /20 and a (Kj 4, 2)-RGDD of type 20 by Lemma 2.17 to obtain the
required design.

2.9=2,6,14,18 (mod 20) and u =5 (mod 10), u > 5.

A (Ky,4,2)-RGDD of type 2" exists by Lemma 2.20. We apply Construction 2.1 with m = g/2 to obtain a
(K1,4, 2)-RGDD of type gu.

3.9=4,8,12,16 (mod 20) and u =0 (mod 5), u > 5.

Similarly, we can use Construction 2.1 with m = g/4 and a (Kj4,2)-RGDD of type 4" by Lemma 2.21 to
obtain the required design.

4. 9=10 (mod 20)and u =1 (mod 2), u > 3.

A (K 4,2)-RGDD of type 10" exists by Lemma 2.19. We apply Construction 2.1 with m = g/10 to obtain
a (Ky,4,2)-RGDD of type g".

5.g=5 (mod 10)and u =1 (mod 4), u > 5.

We apply Construction 2.1 with m = g/5 and a (Ki4,2)-RGDD of type 5" by Lemma 2.22 to get a
(K1,4,2)-RGDD of type g".

6.9=1,3,7,9 (mod 10) and u =5 (mod 20), u > 5.

Similarly, we can use Construction 2.1 with m = g and a (Kj4,2)-RGDD of type 1% by Lemma 2.18 to
obtain the required design. [
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2.3. (K1/4, 4)-RGDDS
Lemma 2.24. There exists a (K1 4,4)-RGDD of type 10" for u > 2.

Proof: For u =1 (mod 2), there exists a (Kj 4, 2)-RGDD of type 10" by Theorem 2.23. Repeat each block two
times to get the required design.

For u = 0 (mod 2), we first construct a (Kj 4,4)-RGDD of type 102. Let the vertex set be Z,,, and let the
groupsbe {i+2j]0 < j <9},i =0,1. Theparallelclass P; = {(0;1,3,5,7), (2;9,11,13,15),(17;6, 8,10, 12),(19; 4,
14,16, 18)} can generate 20 parallel classes by +1 (mod 20). The block (0;1,3,17,19) can generate a parallel
class P, by +5 (mod 20). P, can generate 5 parallel classes by +s (mod 20), 0 <s < 4.

When u > 4, we can obtain a (Kj4,4)-RGDD of type 20z by repeating each block of a (Kj4,2)-RGDD
of type 207 (Theorem 2.23) two times. Then apply Construction 2.2 with a (Kj4,4)-RGDD of type 102
constructed above to get the required design. [

Lemma 2.25. There exists a (Kj 4,4)-RGDD of type 5% for u =1 (mod 2) and u > 3.

Proof: For u = 3, let the vertex set be Z3, and let the groups be {i + 3|0 < j <4}, 0 <i < 2. The parallel class
P, ={(0;1,2,4,5),(3;7,8,11,13), (14; 6,9, 10, 12)} can generate 15 parallel classes by +1 (mod 15). The blocks
(0;1,2,4,8) and (0;1, 2, 8,14) can generate 2 parallel classes P, and P3 by +5 (mod 15). Each P; (I = 2,3) can
generate 5 parallel classes by +s (mod 15),0 <s < 4.

For u = 5, there exists a (Kj 4,2)-RGDD of type 5° by Theorem 2.23. Repeat each block two times to get
the required design.

For u > 7, there exist a (K 4,4)-frame of type 107 by Lemma 1.15 and a (Kj 4,4)-RGDD of type 5%, we
get the conclusion by using Construction 2.3. O

Lemma 2.26. There exists a (K 4,4)-RGDD of type 1* for u =5 (mod 10) and u > 5.

Proof: For u = 5, there exists a (K1,4,2)-RGDD of type 1° by Theorem 2.23. Repeat each block two times to
get the required design.

For u > 15, there exist a (K1 ,4,4)-RGDD of type 55 by Lemma 2.25 and a (Kj 4,4)-RGDD of type 1°, we
get the conclusion by using Construction 2.2. [J

Lemma 2.27. There exists a (Ky4,4)-RGDD of type 2" for u = 0 (mod 5) and u > 5.

Proof: For u = 5, there exists a K3 4-RGDD of type 2> by Theorem 2.16. Repeat each block four times to get
the required design.

For u > 10, there exist a (K 4,4)-RGDD of type 103 by Lemma 2.24 and a (Kj 4,4)-RGDD of type 25 we
get the conclusion by using Construction 2.2. [

Theorem 2.28. A (Kj4,4)-RGDD of type g" exists if and only if g(u — 1) = 0 (mod 2), gu = 0 (mod 5), u > 2,
and g =0 (mod 5) when u = 2.

Proof: The necessary condition is obvious by Theorem 0.2. We distinguish the sufficient conditions into the
following 4 cases.

1. =0 (mod 10) and u > 2.

There exists a (Kj 4,4)-RGDD of type 10" by Lemma 2.24. Then apply Construction 2.1 with m = g/10 to
get the required design.

2.g=5 (mod 10)and u =1 (mod 2), u > 3.

A (Ky,4,4)-RGDD of type 5" exists by Lemma 2.25. Then we apply Construction 2.1 with m = g/5 to get
a (Ky,4,4)-RGDD of type g".

3.9=1,3,7,9 (mod 10) and u =5 (mod 10), u > 5.

Similarly, we can use Construction 2.1 with m = g and a (K 4,4)-RGDD of type 1* by Lemma 2.26 to
obtain the required design.

4.9=2,4,6,8 (mod 10) and u =0 (mod 5), u > 5.

We apply Construction 2.1 with m = g/2 and a (Kj4,4)-RGDD of type 2* by Lemma 2.27 to get a
(K1,4,4)-RGDD of type g*. O
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2.4. (Ky4,8)-RGDDs

Lemma 2.29. There exists a (K1 4,8)-RGDD of type 5" for u > 2.

Proof: For u =1 (mod 2), there exists a (Kj 4,4)-RGDD of type 5" by Theorem 2.28. Repeat each block two
times to get the required design.

For u = 0 (mod 2), we first construct a (Kj4,8)-RGDD of type 52. Let the vertex set be Z;o, and
let the groups be {i +2j |0 < j < 4}, i = 0,1. Two parallel classes P; = {(0;1,3,5,7),(9;2,4,6,8)} and
P, ={(0;1,3,5,9),(7;2,4,6,8)} can generate 20 parallel classes by +1 (mod 10). The block (0;1,3,7,9) can
generate a parallel class P; by +5 (mod 10). P; can generate 5 parallel classes by +s (mod 10), 0 < s < 4.
When u > 4, we can obtain a (Kj 4, 8)-RGDD of type 102 by repeating each block of a (Kj 4,4)-RGDD of type
105 (Theorem 2.28) two times. Then apply Construction 2.2 with a (Kj4,8)-RGDD of type 5? constructed
above to get the required design. [

Lemma 2.30. There exists a (Ki4,8)-RGDD of type 1* for u = 0 (mod 5) and u > 5.

Proof: For u = 5, there exists a (Kj 4,2)-RGDD of type 1° by Theorem 2.23. Repeat each block four times to
get the required design.

For u > 10, there exist a (Kj 4, 8)-RGDD of type 55 by Lemma 2.29 and a (Kj 4, 8)-RGDD of type 1°, we
get the conclusion by using Construction 2.2. [J

Theorem 2.31. A (K 4,8)-RGDD of type g exists if and only if gu = 0 (mod 5), u > 2,and g = 0 (mod 5) when
u=2

Proof: The necessary conditions for the existence of (Kj4,8)-RGDD of type g* are clearly established by
Theorem 0.2. Now we consider its sufficiency and distinguish into 2 cases.

1.9=0 (mod 5) and u > 2.

We use Construction 2.1 with m = g/5 and a (Kj 4, 8)-RGDD of type 5" by Lemma 2.29 to obtain the
required design.

2.9=1,2,3,4 (mod 5)and u =0 (mod 5), u > 5.

A (K14, 8)-RGDD of type 1" exists by Lemma 2.30. We apply Construction 2.1 with m = g to obtain a
(K1,4,8)-RGDD of type g*. O

2.5. Main result on (Ky 4, A)-RGDDs

Now we prove our main result. By Theorem 0.2, it is easy to see that the 4 cases A = 1, 2,4, 8 are crucial
for the whole problem.
Proof of Theorem 0.4: We distinguish 4 cases.

1. A=1 (mod 2).

There exists a K; 4-RGDD of type g* by Theorem 2.16. Repeat each block A times to get a (Kj 4, A)-RGDD
of type g*.

2. A =2 (mod 4).

A (K1,4,2)-RGDD of type g* exists by Theorem 2.23. Repeat each block A/2 times to get the conclusion.

3. A =4 (mod 8).

A (Ky,4,4)-RGDD of type g* exists by Theorem 2.28. Repeat each block A/4 times to get a (Kj 4, 1)-RGDD
of type g*.

4. A =0 (mod 8).

There exists a (Kj 4, 8)-RGDD of type g* by Theorem 2.31. Repeat each block A/8 times to get the required
design. O
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