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Abstract. We employ the M-P inverses and ranks of quaternion matrices to establish the necessary and
sufficient conditions for the solvability of a system of the dual quaternion matrix equations (AX,XC) = (B,D),
along with providing an expression for its general solution. In addition, we investigate the solutions to
the dual quaternion matrix equations AX = B and XC = D, including η-Hermitian solutions. Serving as
applications, we design a scheme for encrypting and decrypting color images based on this system of dual
quaternion matrix equation, and experimental results show that the scheme is highly feasible.

1. Introduction

Hamilton’s discovery of quaternions [19] opened the door to their widespread applications, spanning
various domains such as mechanics, quantum physics, signal processing, and color image processing.
Subsequent to this, in 1849, James Cockle introduced the concept of split quaternions, which attracted
the attention of scholars due to its relevance to solving matrix equations in control theory. Such as Liu
et al. and Yuan et al. have conducted work on solving split quaternion matrix equations, as evidenced
by references [17, 23–25]. Owing to the non-commutative nature of quaternions and split quaternions in
multiplication, Segre introduced the concept of commutative quaternions. Following that, researchers Xie
et al. [13], Ren et al. [3], Chen et al. [26] and Zhang et al. [28] have explored the solutions for matrix
equation systems involving commutative quaternion matrices. Furthermore, distinct from the methods
employed in solving matrix equations previously, Kyrchei utilizes Cramer’s rules to solve the quaternion
Sylvester-type matrix equations(see [9, 10]). In 1873, Clifford [20] introduced the concepts of dual numbers
and dual quaternions. Since then, dual quaternions have discovered extensive utility in fields such as
robotics, 3D motion modeling, and computer graphics, etc (see [2, 11, 12, 16, 21, 22]). They have become a
fundamental component in solving significant engineering challenges, including the formation control of
unmanned aerial vehicles and small satellites. This has captured the interest of numerous scholars.
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In 2022, Ling et al. [4] conducted a study on the singular values and low-rank approximations of dual
quaternion matrices. This provides crucial theoretical support for the subsequent practical applications
of dual quaternions in real-world problems. In [7], Zhuang et al. framed the hand-eye calibration model
issue as a solving problem of the matrix equation AX = YB. Subsequently, Li et al. [1] transformed the
matrix equation AX = ZB into a dual quaternion equation q̂Aq̂X = q̂Zq̂B by using dual quaternions. In [31],
Chen et al. have transformed the hand-eye calibration problems A(i)X = XB(i) and A(i)X = ZB(i) into dual
quaternion optimization problems min ∥ax − xb∥2 and min ∥ax − zb∥2, respectively. In the process of solving
the hand-eye calibration problem, both references [1] and [31] have employed singular value decomposition
to provide numerical solutions. On the one hand, there has been limited information available regarding
the use of matrix M-P inverse and rank as tools to offer exact solutions for dual quaternion matrix equation
systems. On the other hand, in the context of the system of classical matrix equations{

AX = B,
XC = D, (1)

a multitude of papers have put forth a range of solutions, including Hermitian solutions [5], the minimum
possible rank of solutions [18], (R,S)-conjugate solutions [8], reducible solutions [27], (P,Q)-(skew)symmetric
extremal rank solutions [15], and so on. Recently, Chen et al. [29] studied the dual quaternion matrix
equation AXB = C. Additionally, the system (1) finds applications in solving linear systems, eigenvalue
problems, and least squares problems. To enrich the theory and applications of the system of matrix
equations (1), we investigate its solutions with respect to dual quaternions in this paper.

The structure of this paper unfolds as follows. In Section 2, we revisit the definitions of dual numbers
and dual quaternions, provide the definition of η-Hermitian dual quaternion matrix, and present a crucial
lemma and theorem. We devote Section 3 to establish the necessary and sufficient conditions for the
solvability of the system of dual quaternion matrix equations (1), and derive an expression for the general
solution when the system (1) is consistent. Additionally, we delve into the solutions and η-Hermitian
solutions of the dual quaternion matrix equations AX = B and XC = D. Within the scope of the application,
we use the system of dual quaternion matrix equation (1) to design a scheme for encrypting and decrypting
color images, and validate it through experiments in Section 4. Finally, we summarize the main content of
this paper in Section 5.

Presently, we offer a succinct overview of the notation and properties employed throughout this paper.
Let R,H be the real number field, quaternions, respectively. We denote DQk×l ( or Hk×l

)
as the set of all

k × l matrices over DQ ( orH). For A ∈ Hk×l, the symbol r(A) represents the rank of A, and A∗ stands for
the conjugate transpose of A. We denote the M-P inverse of A ∈ Hk×l as A†, and it fulfills the following
equations:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

Moreover, we use the notations LA and RA to represent the projectors I − A†A and I − AA†, respectively. It
is evident that

LA = (LA)∗ = (LA)2 = L†A,RA = (RA)2 = (RA)∗ = R†A, (LA)η
∗

= RAη∗ , (RA)η
∗

= LAη∗ .

2. Preliminary

In this section, we define dual numbers, dual quaternions, and dual quaternion matrices, and describe
key operations related to them. We also present an important theorem and lemma that play a fundamental
role in deriving the main outcome.

2.1. Definition of dual numbers and dual quaternions

The collection of dual numbers is represented by [14]

D = {a = a0 + a1ϵ : a0, a1 ∈ R and ϵ2 = 0}, (2)



L.-M. Xie, Q.-W. Wang / Filomat 39:5 (2025), 1477–1490 1479

where ϵ denotes the infinitesimal unit. We refer to a0 as the real part or standard part of a, and a1 as the
dual part or infinitesimal part of a. The infinitesimal unit ϵ commutes in multiplication with real numbers,
complex numbers, and quaternions. Assume that a = a0 + a1ϵ, b = b0 + b1ϵ ∈ D, γ ∈ R, then we have

a + b = (a0 + b0) + (a1 + b1)ϵ,
ab = ba = a0b0 + (a0b1 + a1b0)ϵ,
γa = γ(a0 + a1ϵ) = γa0 + γa1ϵ.

Now, we provide the definition of a dual quaternion. Denotes the assemblage of dual quaternions as

DQ = {c = c0 + c1ϵ : c0, c1 ∈H and ϵ2 = 0}, (3)

where c0, c1 are the standard part and the infinitesimal part of c, respectively.

Remark 2.1. Based on the definition of dual quaternions, just as quaternions are non-commutative under multipli-
cation, dual quaternions similarly do not commute under multiplication.

Definition 2.2. [14] Let d = d0 + d1ϵ ∈ DQ. Then the conjugate of d is defined as follows:

d∗ = d∗0 + d∗1ϵ.

In a similar manner, we can provide the definition of dual quaternion matrix along with several relevant
properties.

2.2. The definition of dual quaternion matrix

A dual quaternion matrix is denoted by A = A0 + A1ϵ ∈ DQ
m×n, where A0,A1 ∈ Hm×n. For B = B0 + B1ϵ ∈

DQm×n, if A0 = B0 and A1 = B1 are obeyed, then A = B. The conjugate transpose of A is designated as
A∗ = A∗0 + A∗1ϵ. Should A∗ = A and A is a square dual quaternion matrix, it qualifies as a dual quaternion
Hermitian matrix, with both its real part and dual part being quaternion Hermitian matrices.

Definition 2.3. If A = A0 + A1ϵ ∈ DQ
n×n, fulfills condition

A = Aη
∗

, Aη
∗

:= −ηA∗η = −ηA∗0η + (−ηA∗1η)ϵ = Aη
∗

0 + Aη
∗

1 ϵ,

where η ∈ {i, j, k}, then the dual quaternion matrix A is termed an η-Hermitian matrix.

Proposition 2.4. Let A = A0 + A1ϵ,B = B0 + B1ϵ ∈ DQ
n×n. Then

1. (A + B)η
∗

= Aη∗ + Bη∗ ;
2. (AB)η

∗

= Bη∗Aη∗ ;
3. (Aη∗ )η∗ = A.

Proof. For 1, we have
(A + B)η

∗

= −η(A + B)∗η = −η [(A0 + B0) + (A1 + B1)ϵ]∗ η
= −η[(A0 + B0)∗ + (A1 + B1)∗ϵ]η
= −η[A∗0 + B∗0 + A∗1ϵ + B∗1ϵ]η

= −η(A∗0 + A∗1ϵ)η − η(B
∗

0 + +B∗1ϵ)η = Aη
∗

+ Bη
∗

.

In relation to claim 2, we discover that

(AB)η
∗

= −η(AB)∗η = −η[(A0B0)∗ + (A0B1 + A1B0)∗ϵ]η
= −η[(B∗0A∗0) + (B∗1A∗0 + B∗0A∗1)ϵ]η = −η(B∗A∗)η

= −ηB∗η(−η)A∗η = Bη
∗

Aη
∗

.
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The answer to 3 is
(Aη

∗

)η
∗

= −η(Aη
∗

)∗η = −η[−ηA∗0η + (−η)A∗1ηϵ]
∗η

= −η(Aη
∗

0 + Aη
∗

1 ϵ)
∗η = −η(Aη

∗

0 )∗η + (−η)(Aη
∗

1 )∗ηϵ

= (Aη
∗

0 )η
∗

+ (Aη
∗

1 )η
∗

ϵ = A.

2.3. An important lemma and theorem

To solve the system of dual quaternion matrix equations (1), we begin by presenting a lemma and theorem
related to quaternion matrix equation systems.

Lemma 2.5. [30] Let Ai,Bi and Ci(i = 2, 3) be given overH. Set

A00 = A3LA2 ,B00 = RB2 B3,C00 = C3 − A3A†2C2B†2B3,D00 = RA00 A3,
Φ = A†2C2B†2 + LA2 A†00C00B†3 − LA2 A†00A3D†00RA00 C00B†3 +D†00RA00 C00B†00RB2 .

Then the system of matrix equations{
A2YB2 = C2,
A3YB3 = C3

(4)

is solvable if and only if

RA2 C2 = 0,C2LB2 = 0,RA3 C3 = 0,C3LB3 = 0,RA00 C00LB00 = 0.

In this case, the general solution can be expressed as

Y = Φ + LA2 LA00 W1 +W2RB00 RB2 + LA2 W3RB3 + LA3 W4RB2 ,

where Wi(i = 1, · · · , 4) denote arbitrary matrices overH with the suitable dimensions.

Theorem 2.6. Assume that A,A1,B,C,C1, and D are given with appropriate sizes overH. Set

A2 = RAA1,B2 = RC,C2 = RAB,A3 = LA,B3 = C1LC,C3 = DLC,
A00 = A3LA2 ,B00 = RB2 B3,C00 = C3 − A3A†2C2B†2B3,D00 = RA00 A3,
Φ = A†2C2B†2 + LA2 A†00C00B†3 − LA2 A†00A3D†00RA00 C00B†3 +D†00RA00 C00B†00RB2 .

Then the system{
AX + A1YRC = B,
XC + LAYC1 = D (5)

is consistent if and only if

AD = BC,RAi Ci = 0,CiLBi = 0, (i = 2, 3), RA00 C00LB00 = 0. (6)

In this case, the general solution to the system (5) can be expressed as

X = A†(B − A1YRC) + LA(D − LAYC1)C† + LAU1RC,
Y = Φ + LA2 LA00 U2 +U3RB00 RB2 + LA2 U4RB3 + LA3 U5RB2 ,

where Ui(i = 1, · · · , 5) are arbitrary matrices overH with appropriate sizes.
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Proof. It is evident that the solvability of the system (5) is identical to the system{
AX = B − A1YRC,
XC = D − LAYC1.

(7)

By Lemma 2.5, it follows that the system of matrix equations (7) is solvable if and only if

RA(B − A1YRC) = 0, (D − LAYC1)LC = 0,A(D − LAYC1) = (B − A1YRC)C,

i.e., AD = BC and{
RAA1YRC = RAB,
LAYC1LC = DLC,

⇐⇒

{
A2YB2 = C2,
A3YB3 = C3.

(8)

Hence, when the system (7) is solvable, we obtain

X = A†(B − A1YRC) + LA(D − LAYC1)C† + LAU1RC.

Next, it is only necessary to consider the solutions of the system of quaternion matrix equations (8).
According to Lemma 2.5, the system (8) is consistent if and only if the conditions

RAi Ci = 0,CiLBi = 0, (i = 2, 3), RA00 C00LB00 = 0

hold. In this case, the general solution of the system (8) is given by

Y = Φ + LA2 LA00 U2 +U3RB00 RB2 + LA2 U4RB3 + LA3 U5RB2 ,

where random matrices overH of the proper orders are Ui(i = 2, · · · , 5).

3. The solution of (1)

Drawing from the aforementioned theorem and lemma, we can now derive the conditions for the
solvability of the system of dual quaternion matrix equations (1) using the ranks of quaternion matrices,
and present an expression for the general solution of the system (1). Additionally, we provide relevant
applications based on these results.

Due to Marsaglia and Styan [6], the following lemma is known to be readily expanded toH.

Lemma 3.1. Suppose that A ∈Hn×m,B ∈Hn×l,C ∈Hk×m,D ∈Hl1×l and E ∈Hk×l2 are given, then

r
[

A BLD
REC 0

]
= r

 A B 0
C 0 E
0 D 0

 − r(E) − r(D).

Theorem 3.2. Let A = A0 + A1ϵ ∈ DQ
m×n,B = B0 + B1ϵ ∈ DQ

m×k,C = C0 + C1ϵ ∈ DQ
k×l and D = D0 +D1ϵ ∈

DQn×l be given. Set

B11 = B1 − A1(A†0B0 + LA0 D0C†0),D11 = D1 − (A†0B0 + LA0 D0C†0)C1,A11 = A1LA0 ,
C11 = RC0 C1,A2 = RA0 A11,B2 = RC0 ,C2 = RA0 B11,A3 = LA0 ,B3 = C11LC0 ,
C3 = D11LC0 ,A00 = A3LA2 ,B00 = RB2 B3,C00 = C3 − A3A†2C2B†2B3,D00 = RA00 A3,
Φ = A†2C2B†2 + LA2 A†00C00B†3 − LA2 A†00A3D†00RA00 C00B†3 +D†00RA00 C00B†00RB2 .

Then the following statements hold the same meaning:

1. The system (1) is consistent.
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2.

RA0 B0 = 0,D0LC0 = 0, (9)

A0D0 = B0C0,A0D1 − B0C1 = B1C0 − A1D0, (10)

RA2 C2 = 0,C2LB2 = 0,RA3 C3 = 0,C3LB3 = 0,RA00 C00LB00 = 0. (11)

3. The equations in (10) hold, together with the fulfillment of the rank equality conditions, where

r
[
A0 B0

]
= r(A0), r

[
C0
D0

]
= r(C0), (12)

r
[
A0 B1 A1
0 B0 A0

]
= r
[
A0 A1
0 A0

]
, r
[
A0 A1D0 − B1C0

]
= r(A0), (13)

r
[

C0
B0C1 − A0D1

]
= r(C0), r

C0 0
D1 D0
C1 C0

 = r
[
C0 0
C1 C0

]
, (14)

r

B1C1 − A1D1 A0 B1C0 − A1D0
C0 0 0

B0C1 − A0D1 0 0

 = r(A0) + r(C0). (15)

In such circumstances, the general solution of the system (1) can be expressed as X = X0 + X1ϵ, where

X0 = A†0B0 + LA0 D0C†0 + LA0 URC0 , (16)

X1 = A†0(B11 − A11URC0 ) + LA0 (D11 − LA0 UC11)C†0 + LA0 U1RC0 , (17)

U = Φ + LA2 LA00 U2 +U3RB00 RB2 + LA2 U4RB3 + LA3 U5RB2 , (18)

and Ui(i = 1, · · · , 5) are arbitrary matrices with appropriate sizes.

Proof. We divide the proof into two parts.
Part 1. According to the definitions of dual quaternion matrices multiplication and the equality of dual

quaternion matrices, we can derive the system of dual quaternion matrix equations (1) are equivalent to
the system of quaternion matrix equations

A0X0 = B0,
X0C0 = D0,
A0X1 + A1X0 = B1,
X0C1 + X1C0 = D1.

(19)

Hence, solving the system of matrix equations (1) over the dual quaternions is effectively reduced to solving
the system of quaternion matrix equations (19).

Part 2.1⇐⇒ 2. Clearly, the system of matrix equations (19) can be split into{
A0X0 = B0,
X0C0 = D0,

(20)

and {
A0X1 + A1X0 = B1,
X0C1 + X1C0 = D1. (21)
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Therefore, the system of matrix equations (19) has a solution if and only if the system of matrix equations
(20) and (21) have a common solution. According to Lemma 2.5, we can conclude that the system (20) is
consistent if and only if

RA0 B0 = 0,D0LC0 = 0,A0D0 = B0C0.

In this case, the general solution of the system of quaternion matrix equations (20) is expressed as

X0 = A†0B0 + LA0 D0C†0 + LA0 URC0 , (22)

where U is an arbitrary matrix overH.
Substituting equation (22) into the system (21), we can deduce that{

A0X1 + A1(A†0B0 + LA0 D0C†0 + LA0 URC0 ) = B1,
(A†0B0 + LA0 D0C†0 + LA0 URC0 )C1 + X1C0 = D1,

(23)

i.e., {
A0X1 + A11URC0 = B11,
X1C0 + LA0 UC11 = D11.

(24)

By Theorem 2.6, we have the system of quaternion matrix equations (24) is solvable only when

RA2 C2 = 0,C2LB2 = 0,RA3 C3 = 0,C3LB3 = 0,RA00 C00LB00 = 0,

and
A0D11 = B11C0,

⇐⇒ A0[D1 − (A†0B0 + LA0 D0C†0)C1] = [B1 − A1(A†0B0 + LA0 D0C†0)]C0,

⇐⇒ A0D1 − B0C1 = B1C0 − A1D0.

Since A†0B0 + LA0 D0C†0 is a particular solution to the system of matrix equations (20), it satisfies A0(A†0B0 +

LA0 D0C†0) = B0 and (A†0B0 + LA0 D0C†0)C0 = D0. In this situation, the general solution of the system (24) can
be expressed as

X1 = A†0(B11 − A11URC0 ) + LA0 (D11 − LA0 UC11)C†0 + LA0 U1RC0 ,
U = Φ + LA2 LA00 U2 +U3RB00 RB2 + LA2 U4RB3 + LA3 U5RB2 ,

where Ui(i = 1, · · · , 5) are arbitrary matrices with appropriate sizes. At this stage, the general solution
expression for the system (1) is given as X = X0 + X1ϵ.

2 ⇐⇒ 3. We only need to demonstrate (9) ⇐⇒ (12) and (11) ⇐⇒ (13)−(15), respectively. It’s quite
evident that X′

0 := A†0B0 + LA0 D0C†0 is a particular solution to the system of matrix equations (20), satisfying
both A0X′

0 = B0 and X′

0C0 = D0.
Referring to Lemma 3.1, we find that equations (9) is synonymous with equations (12), and obtain

RA0 B0 = 0⇐⇒ r(RA0 B0) = 0⇐⇒ r
[
A0 B0

]
= r(A0),

D0LC0 = 0⇐⇒ r(D0LC0 ) = 0⇐⇒ r
[
C0
D0

]
= r(C0).

Now, our focus shifts to proving (11)⇐⇒ (13)−(15). According to Lemma 3.1 and block Gaussian elimina-
tion, the following descriptions hold.

RA2 C2 = 0⇐⇒ r(RA2 C2) = 0⇐⇒ r
[
A2 C2

]
= r(A2),

⇐⇒ r
[
RA0 A11 RA0 B11

]
= r(RA0 A11),

⇐⇒ r
[
A0 B1 − A1(A†0B0 + LA0 D0C†0) A1LA0

]
= r
[
A0 A1LA0

]
,

⇐⇒ r
[
A0 B1 − A1X′

0 A1
0 0 A0

]
= r
[
A0 A1
0 A0

]
,

⇐⇒ r
[
A0 B1 A1
0 B0 A0

]
= r
[
A0 A1
0 A0

]
,
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C2LB2 = 0⇐⇒ r(C2LB2 ) = 0⇐⇒ r
[
B2
C2

]
= r(B2),

⇐⇒ r
[

RC0

RA0 B11

]
= r(RC0 ),

⇐⇒ r
[
B1 − A1X′

0 A0 0
I 0 C0

]
= r
[
C0 I

]
+ r(A0),

⇐⇒ r
[
A0 A1D0 − B1C0

]
= r(A0).

Similarly, we can demonstrate that

RA3 C3 = 0⇐⇒ r
[

C0
B0C1 − A0D1

]
= r(C0),

and

C3LB3 = 0⇐⇒ r

C0 0
D1 D0
C1 C0

 = r
[
C0 0
C1 C0

]
.

Applying Lemma 3.1 to RA00 C00LB00 = 0, we obtain

r(RA00 C00LB00 ) = 0⇐⇒ r
[
C00 A00
B00 0

]
= r(A00) + r(B00),

⇐⇒ r

C3 − A3A†2C2B†2B3 A3 0
B3 0 B2
0 A2 0

 = r
[
A2
A3

]
+ r
[
B2 B3

]
,

⇐⇒ r

C3 A3 0
B3 0 B2
0 A2 −A2A†2C2B†2B2

 = r
[
A2
A3

]
+ r
[
B2 B3

]
,

⇐⇒ r

C3 A3 0
B3 0 B2
0 A2 −C2

 = r
[
A2
A3

]
+ r
[
B2 B3

]
,

⇐⇒ r

 0 LA0 D11LC0

RC0 0 C11LC0

−RA0 B11 RA0 A11 0

 = r
[

LA0

RA0 A11

]
+ r
[
RC0 C11LC0

]
,

⇐⇒ r


0 A0 −B11 A11

C0 0 0 0
D11 0 0 LA0

C11 0 RC0 0

 = r
[

0 LA0

A0 A11

]
+ r
[

0 C0
RC0 C11

]
,

⇐⇒ r


0 A0 −B11 A1 0

C0 0 0 0 0
D11 0 0 I 0
C1 0 I 0 C0
0 0 0 A0 0

 = r
[

0 I
A0 A1

]
+ r
[
0 C0
I C1

]
,

⇐⇒ r

B1C1 − A1D1 A0 B1C0 − A1D0
C0 0 0

B0C1 − A0D1 0 0

 = r(A0) + r(C0),
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i.e. (11)⇐⇒ (13)−(15).

As several applications of Theorem 3.2, we provide the necessary and sufficient conditions for the
existence of solutions and η−Hermitian solutions to the dual quaternion matrix equations AX = B and
XC = D.

Corollary 3.3. Let A = A0 + A1ϵ ∈ DQ
m×n and B = B0 + B1ϵ ∈ DQ

m×k be given. Set

B11 = B1 − A1A†0B0, A11 = A1LA0 ,A2 = RA0 A11, C2 = RA0 B11.

Then the following descriptions are equivalent:

1. The matrix equation AX = B is solvable.
2. RA0 B0 = 0, RA2 C2 = 0.

3. r
[
A0 B0

]
= r(A0), r

[
A0 B1 A1
0 B0 A0

]
= r
[
A0 A1
0 A0

]
.

In this situation, the general solution of the dual quaternion matrix equation AX = B can be expressed as X = X0+X1ϵ,
where

X0 = A†0B0 + LA0 W,
X1 = A†0(B11 − A11W) + LA0 W1,
W = A†2C2 + LA2 W2,

and Wi(i = 1, 2) represent arbitrary matrices overH with the suitable dimensions.

Corollary 3.4. Suppose that C = C0 + C1ϵ ∈ DQ
m×n, and D = D0 +D1ϵ ∈ DQ

k×n. Define

D11 = D1 −D0C†0C1, C11 = RC0 C1, B3 = C11LC0 , C3 = D11LC0 .

Then the following explanations are interchangeable:

1. The matrix equation XC = D is solvable.
2. D0LC0 = 0, C3LB3 = 0.

3. r
[
C0
D0

]
= r(C0), r

C0 0
D1 D0
C1 C0

 = r
[
C0 0
C1 C0

]
.

In this case, the general solution of the dual quaternion matrix equation XC = D can be expressed as X = X0 + X1ϵ,
where

X0 = D0C†0 +URC0 ,
X1 = (D11 −UC11)C†0 +U1RC0 ,
U = C3B†3 +U2RB3 ,

and Ui(i = 1, 2) are arbitrary matrices overH with appropriate sizes.

Corollary 3.5. Consider the η-Hermitian solutions of the dual quaternion matrix equation AX = B, and Bη∗ = B.
Denote

B11 = B1 − A1(A†0B0 + LA0 B0(Aη
∗

0 )†),D11 = B1 − (A†0B0 + LA0 B0(Aη
∗

0 )†)Aη
∗

1 ,
A11 = A1LA0 ,A2 = RA0 A11,B2 = RAη

∗

0
,C2 = RA0 B11,C3 = D11LAη

∗

0
,

A00 = Bη
∗

2 LA2 ,B00 = RB2 Aη
∗

2 ,C00 = C3 − Bη
∗

2 A†2C2B†2Aη
∗

2 ,D00 = RA00 Bη
∗

2 ,

Φ = A†2C2B†2 + LA2 A†00C00(Aη
∗

2 )† − LA2 A†00Bη
∗

2 D†00RA00 C00(Aη
∗

2 )† +D†00RA00 C00B†00RB2 .

Then the following descriptions hold the same meaning:

1. The matrix equation AX = B is consistent.
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2.

A0B0 = B0Aη
∗

0 ,A0B1 − B0Aη
∗

1 = B1Aη
∗

0 − A1B0, (25)

RA0 B0 = 0,RA2 C2 = 0,RBη
∗

2
C3 = 0,RA00 C00LB00 = 0. (26)

3. The equations in (25) hold, and

r
[
A0 B0

]
= r(A0), (27)

r
[
A0 B1 A1
0 B0 A0

]
= r
[
A0 A1
0 A0

]
, r
[
A0 A1B0 − B1Aη

∗

0

]
= r(A0), (28)

r


B1Aη

∗

1 − A1B1 A0 B1Aη
∗

0 − A1B0

Aη
∗

0 0 0
B0Aη

∗

1 − A0B1 0 0

 = r(A0) + r(Aη
∗

0 ) = 2r(A0). (29)

In this case, the general solution of the matrix equation AX = B can be expressed as X = X0 + X1ϵ, where

X0 =
X̃0 + X̃0

η∗

2
,X1 =

X̃1 + X̃1
η∗

2
,

and

X̃0 = A†0B0 + LA0 B0(Aη
∗

0 )† + LA0 URAη
∗

0
, (30)

X̃1 = A†0(B11 − A11URAη
∗

0
) + LA0 (D11 − LA0 UAη

∗

11)(Aη
∗

0 )† + LA0 U1RAη
∗

0
, (31)

U = Φ + LA2 LA00 U2 +U3RB00 RB2 + LA2 U4RAη
∗

2
+ LBη

∗

2
U5RB2 , (32)

Ui(i = 1, · · · , 5) represent arbitrary matrices.

Proof. By applying the definitions of dual quaternion matrices multiplication and the equality of dual
quaternion matrices, we can establish that the dual quaternion matrix equation AX = B are equivalent to
the system of quaternion matrix equations{

A0X0 = B0,
A0X1 + A1X0 = B1.

(33)

Now, we only need to provide the η-Hermitian solutions to the system of quaternion matrix equations (33).
It is evident that the system (33) possess η-Hermitian solutions if and only if the system

A0X̃0 = B0,

X̃0Aη
∗

0 = B0,

A0X̃1 + A1X̃0 = B1,

X̃1Aη
∗

0 + X̃0Aη
∗

1 = B1

(34)

has solutions. Indeed, if the system (33) has η-Hermitian solutions X0 and X1, it is clear that X0 and X1 serve
as solutions to the system (34). Conversely, if the system (34) has solutions X̃0 and X̃1, then the system (33)
possesses solutions

X0 =
X̃0 + X̃0

η∗

2
,X1 =

X̃1 + X̃1
η∗

2
.

Furthermore, by employing Theorem 3.2, it is possible to establish both the necessary and sufficient
conditions for the solvability of the system (34), along with an expression for its general solution.
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Remark 3.6. By applying the same method, we can obtain η-Hermitian solutions for the dual quaternion matrix
equation XC = D, and since the structure of the solutions is nearly identical to the η-Hermitian solutions of AX = B,
we omit them here.

Example 3.7. Given the dual quaternion matrices:

A = A0 + A1ϵ =

[
i 0
0 j

]
+

[
k j
0 i

]
ϵ,

B = B0 + B1ϵ =

[
i −1
0 i

]
+

[
k −1 + i + j
−1 0

]
ϵ,

C = C0 + C1ϵ =

[
1 + i 0

j k

]
+

[
0 1
j 0

]
ϵ,

D = D0 +D1ϵ =

[
1 + i + k − j
−i −1

]
+

[
2k 1 − j

−i + 2 j − k k

]
ϵ.

Through calculation, it can be determined that

A0D0 = B0C0 =

[
−1 + i − j −k

k − j

]
,A0D1 − B0C1 = B1C0 − A1D0 =

[
− j −k
−2 − i i

]
,

and

r
[
A0 B0

]
= r(A0) = 2, r

[
C0
D0

]
= r(C0) = 2,

r
[
A0 B1 A1
0 B0 A0

]
= r
[
A0 A1
0 A0

]
= 4, r

[
A0 A1D0 − B1C0

]
= r(A0) = 2,

r
[

C0
B0C1 − A0D1

]
= r(C0) = 2, r

C0 0
D1 D0
C1 C0

 = r
[
C0 0
C1 C0

]
= 4,

r

B1C1 − A1D1 A0 B1C0 − A1D0
C0 0 0

B0C1 − A0D1 0 0

 = r(A0) + r(C0) = 4.

Thus, by Theorem 3.2, we conclude that the system of dual quaternion matrix equations (1) is solvable,
with the general solution expressed as

X = X0 + X1ϵ =

[
1 i
0 k

]
+

[
0 i
j 1

]
ϵ.

4. An application

In this section, we devised a scheme for encrypting and decrypting color images based on the system
of dual quaternion matrix equations (1), validated through experiments.

We represent two color images using a dual quaternion matrix. Below is the diagram illustrating the
principles of encrypting and decrypting color images with the system (1).
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Figure 1: The principles of encrypting and decrypting color images

We randomly selected two color images, as shown below.

Figure 2: Two original color images

Based on the principles in Figure 1, encrypt the color images in Figure 2 yields the following results.

Figure 3: Two encrypted color images

According to the encryption matrices A,C, the key D and Theorem 3.2, decrypt the encrypted images in
Figure 3. The results are shown below:
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Figure 4: Two decrypted color images

We use the structural similarity index measure (SSIM) to evaluate the decryption quality, as shown in the
table below:

Color image name SSIM
Flower1 1
Flower2 1

From the table above, it can be seen that the decrypted image is identical to the original image, indicating
the high feasibility of the scheme.

5. Conclusion

In this paper, we have defined η-Hermitian matrices in the context of dual quaternions and investigated
their relevant properties. Subsequently, leveraging matrix Moore-Penrose inverse and rank, we have
established both necessary and sufficient conditions for the solvability of the system of dual quaternion
matrix equations (1). Additionally, we have presented an expression for the general solution when the
system (1) is solvable. In an applied context, we have provided the necessary and sufficient conditions,
as well as the general expressions for solutions and η-Hermitian solutions, for the dual quaternion matrix
equations AX = B and XC = D. Finally, starting from the system of dual quaternion matrix equation (1),
we designed a scheme for image encryption and decryption. Experimental results demonstrate that this
scheme is highly feasible. Due to the connection between the hand-eye calibration model and the matrix
equation AX = ZB, as evidenced by reference [7], we will consider the solutions to the more general matrix
equation AX − ZB = C over the dual quaternion algebra.
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