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Abstract. Using the randomization method of valuation set, we firstly give the definition of t absolute
randomized truth degree of propositional formula in Goguen n-valued propositional logic system of adding
two operators (t takes ∼, ∆), and prove that some inference rules such as MP, HS, intersection inference,
union inference and some related properties of t absolute randomized truth degree. Secondly we introduce
the concepts of t absolute randomized similarity degree and t absolute randomized pseudo-distance of
propositional formulas, prove that some good properties of t absolute randomized similarity degree,
meanwhile discuss the continuity problem of operators ∼, ∆,→, ∧, ∨with respect to t absolute randomized
pseudo-distance ρD in t absolute randomized logical metric space (F(S), ρD). Then we give the concepts of
t absolute randomized divergence degree and t absolute randomized consistency degree of propositional
formulas theory Γ and some good properties between them. Finally, we introduce that three different types
of approximate reasoning patterns in t absolute randomized logical metric space, and they are proved to
be equivalent.

1. Introduction

As we all know, mathematical logic is a formal theory characterized by symbolization, it focuses on
formal deduction rather than numerical calculation. However, numerical calculation pays more attention to
solving problems and rarely uses formal deduction methods. In order to establish the connection between
the two, Wang Guojun created quantitative logic[16, 18–20], which is a combination of mathematical logic
and probability calculation.

The idea of introducing probability methods into mathematical logic has gradually emerged since
the 1950s, and a monograph on“probabilistic logic”[1] has been published. Later, many scholars have
carried out researches on this basis and have made rich achievements. In[4, 10–12, 17], some authors used
the randomization method of valuation set to give the randomized truth degree theory of propositional
formula in the logic system and to establish the randomized logic metric space. It realizes the integration
of probability logic and quantitative logic.
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At present, in the two widely attention logic systems, because of the strong negation in Gödel system
and Goguen system, the related research is affected. In order to overcome it, in[2, 3, 5–7], some authors
introduced two basic connectives ∼ and ∆, and proposed axiomatic extensions of basic logic system BL is
BL∆ system and SBL∼ system, in which ∆ deduction theorem and strong completeness theorem are both
established, so that related research can be carried out smoothly. In[13], the author realized quantitative
research of∆ fuzzy logic system in SBL∼ system. Gödel∼,∆ and Goguen∼,∆ system, as typical representatives
of SBL∼ system, and many scholars have studied in these two systems, among them, in[8, 9, 15], some
authors proposed t truth degree theory, k randomized truth degree theory and Γ − k randomized truth
degree theory in Goguen∼,∆ propositional logic system. In[14], the author evaded infinite product measure
in uniformly distributed probability spaces, and introduced concept of absolute truth degree in Lukasiewicz
propositional logic. Later, many scholars have carried out researches on this basis. So a subsequent question
is whether a similar study of absolute randomization can be carried out in Goguen∼,∆ propositional logic
system, so that the absolute randomized truth degree of any formula can be calculated by computer in a
finite number of steps, which makes the algorithm implementation of the method in this paper possible.

In this paper, using the randomization method of valuation set, we first put forward the definition of t
absolute randomized truth degree of propositional formula in Goguen∼,∆ propositional logic system (t takes
∼, ∆), and prove some inference rules such as MP, HS, intersection inference, union inference of t absolute
randomized truth degree. Then we give the concepts of t absolute randomized similarity degree and t
absolute randomized pseudo-distance of propositional formulas. We also give the concepts of t absolute
randomized divergence degree and t absolute randomized consistency degree of propositional formulas
theory Γ, and introduce three different types of approximate reasoning patterns, which are proved to be
equivalent.

The results of this paper generalize the related work in and enrich the quantification research in
Goguen∼,∆ propositional logic system. Our work provides the basis for the future study of absolute
randomized truth degree in other propositional logic systems.

2. Preliminary

Definition 2.1. ([2]) The axiom system of BL∆ is as follows:

(BL) the axiom system of BL.

(∆1) ∆A∨¬∆A.

(∆2) ∆(A∨B)→(∆A∨∆B).

(∆4) ∆A→∆∆A.

(∆5) ∆(A→B)→(∆A→∆B).

The inference rules in BL∆ is MP rule and ∆ rule; the MP rule is from A, A→B, inferred B; and the ∆ rule
is from A inferred ∆A.

If L is an axiomatic extension of BL, then L∆ is denoted as an extension of L in the same way that BL is
an extension of BL, and the following ∆ deduction theorem holds for the BL∆ system:

Theorem 2.2. ([5]) (∆ deduction theorem) Let L be an axiomatic extension of BL∆. Then for any theory Γ, the
formulas A and B, we have

Γ,A ⊢ B if and only if Γ ⊢ ∆A→ B.

SBL is the axiomatic extension of BL by adding axiom ¬¬A∨¬A. SBL∆ is also an axiomatic extension of
SBL.

The SBL∼ system is a logical system formed by adding the involutive negating connective ∼ on the basis
of the SBL system.
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Definition 2.3. ([3]) As an axiomatic extension of SBL, the axiom system in SBL∼ is as follows:
(SBL) the axiom system of SBL.
(∼1) ∼∼A→A.
(∼2) ¬A→∼A.
(∼3) ∆(A→B)→ ∆(∼B→∼A).

Let ∆A=¬ ∼A in the SBL∼ system. Then we can establish the relationship between the SBL∆ system and
the SBL∼ system, that is, SBL∼ has the following equivalent axiom system:

(SBL∆) the axiom system of SBL∆.
(∼1) ∼∼A→A.
(∼2) ∆(A→B)→ ∆(∼B→∼A).

The inference rules in SBL∆ is MP rule and ∆ rule. If L is an axiomatic extension of SBL, then L∼ is
denoted as an extension of L in the same way that SBL∼ is an extension of SBL, and Gödel∼ and Goguen∼
are the two basic types of axiomatic extension of SBL∼. Because SBL∼ is also an axiomatic extension of BL∆,
∆ deduction theorem in SBL∼ is also holds.

Theorem 2.4. ([3]) (strong completeness theorem) Let L an axiomatic extension of SBL∼. Then for theory Γ and
formula A, the following two conditions are equivalent:

(i) Γ⊢A.
(ii) For every L-algebra and every model e of theory Γ, there are e(A) = 1.

Definition 2.5. ([8]) Let S = {p1, p2, . . .} be a countable set, ∼ and ∆ be two unary operations on S, ∨, ∧ and→ be
three binary operations on S, respectively, F(S) be a free algebra of type (1,1,2,2,2) generated by S. Then the elements
in F(S) are called propositional formulas or formulas, and the elements in S are called atomic formulas.

Definition 2.6. ([8]) The Goguen propositional logic system is also called product system, denote as Π. Let Π∼,∆
= {0, 1

n−1 , . . . ,
n−2
n−1 , 1}. It is stipulated in Π∼,∆: ∀x, y ∈ Π∼,∆, ∼ x = 1 − x, ∆x = {1,x=1

0,x<1, x ∨ y = max{x, y},

x ∧ y = min{x, y}, x → y = {1,x≤y
y
x ,x>y

. The system Goguen∼,∆ is called an expansion of n-valued product propositional

logic system. It is abbreviated as Π∼,∆.

Definition 2.7. ([8]) Let A = A(p1, p2, . . . , pm) ∈ F(S). Then A corresponds to an n-valued m-element function A, in
Π∼,∆, {0, 1

n−1 , . . . ,
n−2
n−1 , 1}

m
→ [0, 1], here A (x1, . . . , xm) is formed by the operation symbols ∼, ∆, ∨, ∧,→ connecting

x1, . . . , xm, in the same way as A = A(p1, p2, . . . , pm) ∈ F(S) is formed by connecting the atomic formulas p1, . . . , pm

using the conjunction ∼, ∆, ∨, ∧,→. Then A is called the function induced by the formula A.

Definition 2.8. ([10]) Let N = (1, 2, . . .), D = (p1, p2, p3), 0 < pn < 1 (n = 1, 2, . . .). Then D is called a randomized
sequence in (0, 1).

Definition 2.9. ([4]) Let D0 = (p01, p02, . . .), D 1
n−1
= {p 1

n−1 1, p 1
n−1 2, . . .},. . ., D1 = (p11, p12, . . .) be an n randomized

sequences in (0, 1), and p0k + p 1
n−1 k + . . . + p1k = 1 (k = 1, 2, . . .). Then D0,D 1

n−1
, . . . ,D n−2

n−1
,D1 (n ≥ 2) is called an

n-valued randomized numbers sequence in (0, 1).

Definition 2.10. ([4]) Suppose that D0,D 1
n−1
, . . . ,D n−2

n−1
,D1 (n ≥ 2) be a series of n randomized numbers in (0, 1),

∀a = (x1, x2, . . . , xm) ∈ {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m. Let φ(α) = Q1 × . . . × Qm, here for any 1 ≤ k ≤ m, when xk = 0,
Qk = d0k; when xk =

i
n−1 , Qk = d i

n−1 k (i = 1, 2, . . . ,n − 2); when xk = 1, Qk = d1k. Then we get a mapping

φ : {0,
1

n − 1
, . . . ,

n − 2
n − 1

, 1}m → [0, 1],

called the D-randomization map of {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m.

Proposition 2.11. ([4]) Let φ be a D-randomization map of {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m. Then∑
{φ(α) : α ∈ {0,

1
n − 1

, . . . ,
n − 2
n − 1

, 1}m} = 1.
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3. Definition and properties of t absolute randomized truth degree of propositional formula

Definition 3.1. Let A = A(p1, p2, . . . , pm) ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized

numbers sequence in (0, 1). Define

[tA]1 = tA
−1

(1),

µ([tA]1) =
∑
{φ(α) : α ∈ tA

−1
(1)},

τD(tA) = |µ([tA]1)|.

Then τD(tA) is called the t absolute randomized truth degree of the propositional formula A, where t takes ∼ and ∆.

Remark 3.2. Unless there are another instructions in the text, the following points remain unchanged: (i) Discuss
in Π∼,∆; (ii) Basic grammar, semantic concepts, etc. are the same as classic proposition logic; (iii) p, q, r, z,m, l take ∼
and ∆.

Theorem 3.3. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). Then
(i) A is tautology if and only if τD(∆A) = 1 and τD(∼ A) = 0, and A is the contradiction if and only if τD(∼ A) = 1.
(ii) A is the contradiction, then τD(∆A) = 0, but the reverse is not true.
(iii) If A ≈ B, then τD(tA) = τD(tB).
(iv) If ⊨ pA→ qB, then τD(pA) ≤ τD(qB).
(v) τD(∼ tA) = 1 − τD(tA).

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm.

(i): A is the tautology if and only if [∆A]1 = ∆A
−1

(1) = {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m. It follows from Definition 3.1

that τD(∆A) = |µ([∆A]1)| = |
∑
{φ(α) : α ∈ ∆A

−1
}| = |

∑
{φ(α) : α ∈ {0, 1

n−1 , . . . ,
n−2
n−1 , 1}

m
}|. Hence by Proposition

2.11, we get that τD(∆A) = 1. Carrying out a similar proof we get that A is the tautology if and only if
τD(∼ A) = 0 and A is the contradiction if and only if τD(∼ A) = 1.

(ii): Carrying out a proof similar to that of (1), we can get that when A is the contradiction, then
τD(∆A) = 0. Conversely, if τD(∆A) = 0, then for any α ∈ {0, 1

n−1 , . . . ,
n−2
n−1 , 1}

m, we have ∆A(α) , 1, that is,
A(α) , 1. So τD(∆A) = 0 as long as A is not tautology.

(iii): By A ≈ B, we have that [A]1 = [B]1, and hence [tA]1 = [tB]1. Thus tA
−1

(1) = tB
−1

(1). It follows from

Definition 3.1 that τD(tA) = |µ([tA]1)| = |
∑
{φ(α) : α ∈ tA

−1
(1)}| = |

∑
{φ(α) : α ∈ tB

−1
(1)}| = τD(tB).

(iv): |= pA → qB if and only if pA→ qB(α) = 1, if and only if pA(α) ≤ qB(α), [pA]1 ≤ [qB]1 and

pA
−1

(1) ≤ qB
−1

(1). It follows from Definition 3.1 that τD(pA) = |µ([pA]1)| = |
∑
{φ(α) : α ∈ pA

−1
(1)}| ≤

|
∑
{φ(α) : α ∈ qB

−1
(1)}| = τD(qB).

(v): It follows from Definition 3.1 that τD(∼ tA) = |µ([∼ tA]1)| = |1 − µ([tA]1)|. As 0 ≤ µ([tA]1) ≤ 1, we
have |1 − µ([tA]1)| = |1| − |µ([tA]1)| = 1 − |µ([tA]1)|. Thus τD(∼ tA) = 1 − |µ([tA]1)| = 1 − τD(tA).

Lemma 3.4. Let ∀a, b ∈ Π∼,∆. Then
(i) 1→ qb = qb.
(ii) pa→ qb ≥ qb.

Proof. (i): (1) Case 1: qb = 1. Then 1→ qb = 1→ 1 = 1 = qb; (2) Case 2: qb < 1. Then 1→ qb = qb.
So to sum up 1→ qb = qb.
(ii): (1) Case 1: pa ≤ qb. Then pa→ qb = 1 ≥ qb; (2) Case 2: pa > qb. Then pa→ qb = qb

pa > qb.
So to sum up pa→ qb ≥ qb.
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Theorem 3.5. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). If |= pA, then
i) τD(pA→ qB) = τD(pA ∧ qB) = τD(qB).
(ii) τD(qB→ pA) = 1.

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm. If |= pA, then for any α ∈ {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m,
we have pA(α) = 1.

(i): For any α ∈ {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m, by Lemma 3.4(i), we have that pA→ qB(α) = (pA → qB)(α) =
pA(α) → qB(α) = 1 → qB(α) = qB(α) and pA ∧ qB(α) = (pA ∧ qB)(α) = pA(α) ∧ qB(α) = 1 ∧ qB(α) = qB(α).

Thus [pA→ qB]1 = [qB]1 and [pA ∧ qB]1 = [qB]1. Then pA→ qB
−1

(1) = qB
−1

(1) and pA ∧ qB
−1

(1) = qB
−1

(1).
It follows from Definition 3.1 that

τD(pA→ qB) = |µ([pA→ qB]1)|

= |

∑
{φ(α) : α ∈ pA→ qB

−1
(1)}|

= |

∑
{φ(α) : α ∈ pA ∧ qB

−1
(1)}|

= |

∑
{φ(α) : α ∈ qB

−1
(1)}|.

Thus τD(pA→ qB) = τD(pA ∧ qB) = τD(qB).
(ii): For any α ∈ {0, 1

n−1 , . . . ,
n−2
n−1 , 1}

m, by Lemma 3.4(ii), we get that qB→ pA(α) = (qB→ pA)(α) ≥ pA(α) =

1. Thus [qB → pA]1 = qB→ pA
−1

(1) = {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m. It follows from Definition 3.1 and Proposition
2.11 that

τD(qB→ pA) = |µ([qB→ pA]1)|

= |

∑
{φ(α) : α ∈ qB→ pA

−1
(1)}|

= |

∑
{φ(α) : α ∈ {0,

1
n − 1

, . . . ,
n − 2
n − 1

, 1}m|

= 1.

Example 3.6. Let A = (∼ p1∨∆p2)→ p2, B = (∼ p1 →∼ p2)→ p1, C = (∆p1 →∼ p2)→∼ p1, and D0 = {0.1, 0.2},
D 1

3
= {0.2, 0.1}, D 2

3
= {0.3, 0.4} and D1 = {0.4, 0.3} be a 4-valued randomized numbers sequence in (0, 1). Calculate

τD(∆A∧ ∼ B)→ ∆C.

Answer. A(x, y) : {0, 1
3 ,

2
3 , 1}

2
→ [0, 1], A(x, y) = (∼ x ∨ ∆y)→ y;

B(x, y) : {0, 1
3 ,

2
3 , 1}

2
→ [0, 1], B(x, y) = (∼ x→∼ y)→ x;

C(x, y) : {0, 1
3 ,

2
3 , 1}

2
→ [0, 1], C(x, y) = (∆x→∼ y)→∼ x.

In order to facilitate calculation and understanding, the following chart is made.

x y A(x, y) B(x, y) C(x, y) (∆A∧ ∼ B)→ ∆C

0 0 0 0 1 1
0 1

3
1
3 0 1 1

0 2
3

2
3 0 1 1

0 1 1 1 1 1
1
3 0 0 1

3
2
3 1

1
3

1
3

1
2

1
3

2
3 1
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1
3

2
3 1 2

3
2
3 0

1
3 1 1 1 2

3 1
2
3 0 0 2

3
1
3 1

2
3

1
3 1 2

3
1
3 0

2
3

2
3 1 2

3
1
3 0

2
3 1 1 1 1

3 1
1 0 1 1 0 1
1 1

3 1 1 0 1
1 2

3 1 1 0 1
1 1 1 1 1 1

Thus [(∆A∧ ∼ B)→ ∆C]1 = ((∆A∧ ∼ B)→ ∆C)
−1

(1) = {(0, 0), (0, 1
3 ), (0, 2

3 ), (0, 1), ( 1
3 , 0), ( 1

3 ,
1
3 ), ( 1

3 , 1), ( 2
3 , 0),

( 2
3 , 1), (1, 0), (1, 1

3 ), (1, 2
3 ), (1, 1)}. It follows from Definition 3.1 that τD((∆A∧ ∼ B) → ∆C) = |µ([(∆A∧ ∼ B) →

∆C]1)| = |0.1× (0.2+0.1+0.4+0.3)+0.2× (0.2+0.1+0.3)+0.3× (0.2+0.3)+0.4× (0.2+0.1+0.4+0.3)| = 0.77.

Lemma 3.7. Let ∀a, b ∈ Π∼,∆. Then qb ∨ pa = qb + pa − (qb ∧ pa).

Proof. Let λ1 = qb ∨ pa − qb − pa + (qb ∧ pa).
(1) Case 1: qb ≤ pa. Then λ1 = pa − qb − pa + qb = 0, that is, qb ∨ pa = qb + pa − (qb ∧ pa).
(2) Case 2: qb > pa. Then λ1 = qb − qb − pa + pa, that is, qb ∨ pa = qb + pa − (qb ∧ pa).
So to sum up qb ∨ pa = qb + pa − (qb ∧ pa).

Theorem 3.8. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). Then τD(qB ∨ pA) = τD(qB) + τD(pA) − τD(qB ∧ pA).

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm. Then for any ∀α ∈ {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m, by
Lemma 3.7, we have that qB ∨ pA(α) = qB(α)+pA(α)−qB ∧ pA(α). Thus [qB∨pA]1 = [qB]1+[pA]1−[qB∧pA]1.

Then qB ∨ pA
−1

(1) = qB
−1

(1) + pA
−1

(1) − qB ∧ pA
−1

(1). It follows from Definition 3.1 that

τD(qB ∨ pA) = |µ([qB ∨ pA]1)|

= |

∑
{φ(α) : α ∈ qB ∨ pA

−1
(1)}|

= |

∑
{φ(α) : α ∈ qB

−1
(1)}| + |

∑
{φ(α) : α ∈ pA

−1
(1)}|

− |

∑
{φ(α) : α ∈ qB ∧ pA

−1
(1)}|.

Thus τD(qB ∨ pA) = τD(qB) + τD(pA) − τD(qB ∧ pA).

Remark 3.9. Because p, q take ∼ and ∆, the conclusion of Theorem 3.8 has specifically the following four forms.

(i) τD(∆B ∨ ∆A) = τD(∆B) + τD(∆A) − τD(∆B ∧ ∆A).

(ii) τD(∆B∨ ∼ A) = τD(∆B) + τD(∼ A) − τD(∆B∧ ∼ A).

(iii) τD(∼ B ∨ ∆A) = τD(∼ B) + τD(∆A) − τD(∼ B ∧ ∆A).

(iv) τD(∼ B∨ ∼ A) = τD(∼ B) + τD(∼ A) − τD(∼ B∧ ∼ A).

Theorem 3.10. (t absolute randomized truth degree MP rule) Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be

an n-valued randomized numbers sequence in (0, 1). If τD(pA) ≥ α and τD(pA→ qB) ≥ β, then τD(qB) ≥ α+ β− 1.
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Proof. Suppose that A,B contain the same atomic formulas p1, p2, . . . , pm. ∀a, b ∈ Π∼,∆, we have qb ≥

pa + (pa→ qb) − 1. Hence |qB
−1

(1)| ≥ |pA
−1

(1)| + |pA→ qB
−1

(1)| − 1. It follows from Definition 3.1 that

τD(qB) = |µ([qB]1)|

= |

∑
{φ(α) : α ∈ qB

−1
(1)}|

≥ |

∑
{φ(α) : α ∈ pA

−1
(1)}| + |

∑
{φ(α) : α ∈ pA→ qB

−1
(1)}| − 1.

Thus τD(qB) ≥ α + β − 1.

Corollary 3.11. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . , D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If τD(pA) = 1 and τD(pA→ qB) = 1, then τD(qB) = 1.

Lemma 3.12. Let ∀a, b, c ∈ Π∼,∆. Then (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.

Proof. Let λ2 = (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) − 1.
(1) Caes 1: pa ≤ qb.

(1.1) Case 1.1: qb ≤ rc. Then λ2 = 1→ (1→ 1) − 1 = 1 − 1 = 0,
that is, (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.
(1.2) Case 1.2: qb > rc.

(1.2.1) Case 1.2.1: pa ≤ rc. Then λ2 = 1→ ( rc
qb → 1) − 1 = 1 − 1 = 0,

that is, (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.
(1.2.2) Case 1.2.2: pa > rc. Then λ2 = 1→ ( rc

qb →
rc
pa ) − 1 = 1 − 1 = 0,

that is, (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.
(2) Case 2: pa > qb.

(2.1) Case 2.1: qb > rc. Then λ2 =
qb
pa → ( rc

qb →
rc
pa ) − 1 = 1 − 1 = 0,

that is, (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.
(2.2) Case 2.2: qb ≤ rc.

(2.2.1) Case 2.2.1: pa ≤ rc. Then λ2 =
qb
pa → (1→ 1) − 1 = 1 − 1 = 0,

that is, (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.
(2.2.2) Case 2.2.2: pa > rc. Then λ2 =

qb
pa → (1→ rc

pa ) − 1 = 1 − 1 = 0,
that is, (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.

So to sum up (pa→ qb)→ ((qb→ rc)→ (pa→ rc)) = 1.

Theorem 3.13. (t absolute randomized truth degree HS rule) Let A,B,C ∈ F(S), and D0,D 1
n−1

, . . . ,D n−2
n−1
,D1(n ≥ 2)

be an n-valued randomized numbers sequence in (0, 1). If τD(pA → qB) ≥ α and τD(qB → rC) ≥ β, then
τD(pA→ rC) ≥ α + β − 1.

Proof. Let A,B,C contain the same atomic formulas p1, p2, . . . , pm. Then by Lemma 3.12, we have that
|= (pA → qB) → ((qB → rC) → (pA → rC)). It follows from Theorem 3.3(iv) that τD((qB → rC) → (pA →
rC)) ≥ τD(pA→ qB) ≥ α. Since τD(qB→ rC) ≥ β, by Theorem 3.10, we get that τD(pA→ rC) ≥ α + β − 1.

Corollary 3.14. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If τD(pA→ qB) = 1 and τD(qB→ rC) = 1, then τD(pA→ rC) = 1.

Lemma 3.15. Let ∀a, b, c ∈ Π∼,∆. Then pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).

Proof. Let λ3 = (pa→ (qb ∧ rc)) − ((pa→ qb) ∧ (pa→ rc)).
(1) Case 1: qb ≤ rc.

(1.1) Case 1.1: pa ≤ qb. Then λ3 = (pa→ qb) − (1 ∧ 1) = 1 − 1 = 0,
that is, pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).
(1.2) Case 1.2: pa > qb.
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(1.2.1) Case 1.2.1: pa ≥ rc. Then λ3 = (pa→ qb) − ( qb
pa ∧

rc
pa ) = qb

pa −
qb
pa = 0,

that is, pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).
(1.2.2) Case 1.2.2: pa < rc. Then λ3 = (pa→ qb) − ( qb

pa ∧ 1) = qb
pa −

qb
pa = 0,

that is, pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).
(2) Case 2: qb > rc.

(2.1) Case 2.1: rc > pa. Then λ3 = (pa→ rc) − (1 ∧ 1) = 1 − 1 = 0,
that is, pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).
(2.2) Case 2.2: rc ≤ pa.

(2.2.1) Case 2.2.1: qb ≤ pa. Then λ3 = (pa→ rc) − ( qb
pa ∧

rc
pa ) = rc

pa −
rc
pa = 0,

that is, pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).
(2.2.2) Case 2.2.2: qb > pa. Then λ3 = (pa→ rc) − (1 ∧ rc

pa ) = rc
pa −

rc
pa = 0,

that is, pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).
So to sum up pa→ (qb ∧ rc) = (pa→ qb) ∧ (pa→ rc).

Theorem 3.16. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then τD(pA→ (qB ∧ rC)) = τD(pA→ qB) + τD(pA→ rC) − τD((pA→ qB) ∨ (pA→ rC)).

Proof. Let A,B,C contain the same atomic formulas p1, p2, . . . , pm. Then by Lemma 3.15, we have that
pA → (qB ∧ rC) ≈ (pA → qB) ∧ (pA → rC). It follows from Theorem 3.3(iii) that τD(pA → (qB ∧ rC)) =
τD((pA → qB) ∧ (pA → rC)). By Theorem 3.8, we get that τD(pA → (qB ∧ rC)) = τD(pA → qB) + τD(pA →
rC) − τD((pA→ qB) ∨ (pA→ rC)).

Corollary 3.17. t absolute randomized truth degree intersection inference rule) Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,

D n−2
n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in (0, 1). If τD(pA→ qB) ≥ α and τD(pA→ rC) ≥ β,

then τD(pA→ (qB ∧ rC)) ≥ α + β − 1.

Corollary 3.18. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If τD(pA→ qB) = 1 and τD(pA→ rC) = 1, then τD(pA→ (qB ∧ rC)) = 1.

Lemma 3.19. Let ∀a, b, c ∈ Π∼,∆. Then (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).

Proof. Let λ4 = ((pa ∨ qb)→ rc) − ((pa→ rc) ∧ (qb→ rc)).
(1) Case 1: pa ≤ qb.

(1.1) Case 1.1: qb ≤ rc. Then λ4 = (qb→ rc) − (1 ∧ 1) = 1 − 1 = 0,
that is, (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).
(1.2) Case 1.2: qb > rc.

(1.2.1) Case 1.2.1: pa ≤ rc. Then λ4 = (qb→ rc) − (1 ∧ rc
qb ) = rc

qb −
rc
qb = 0,

that is, (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).
(1.2.2) Case 1.2.2: pa > rc. Then λ4 = (qb→ rc) − ( rc

pa ∧
rc
qb ) = rc

qb −
rc
qb = 0,

that is, (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).
(2) Case 2: pa > qb.

(2.1) Case 2.1: qb > rc. Then λ4 = (pa→ rc) − ( rc
pa ∧

rc
qb ) = rc

pa −
rc
pa = 0,

that is, (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).
(2.2) Case 2.2: qb ≤ rc.

(2.2.1) Case 2.2.1: pa ≤ rc. Then λ4 = (pa→ rc) − (1 ∧ 1) = 1 − 1 = 0,
that is, (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).
(2.2.2) Case 2.2.2: pa > rc. Then λ4 = (pa→ rc) − ( rc

pa ∧ 1) = rc
pa −

rc
pa = 0,

that is, (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).
So to sum up (pa ∨ qb)→ rc = (pa→ rc) ∧ (qb→ rc).

Theorem 3.20. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then τD((pA ∨ qB)→ rC) = τD(pA→ rC) + τD(qB→ rC) − τD((pA→ rC) ∨ (qB→ rC)).
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Proof. Let A,B,C contain the same atomic formulas p1, p2, . . . , pm. Then by Lemma 3.19, we get that
(pA ∨ qB) → rC ≈ (pA → rC) ∧ (qB → rC). It follows from Theorem 3.3(iii) that τD((pA ∨ qB) → rC) =
τD((pA → rC) ∧ (qB → rC)). By Theorem 3.8, we have that τD((pA ∨ qB) → rC) = τD(pA → rC) + τD(qB →
rC) − τD((pA→ rC) ∨ (qB→ rC)).

Corollary 3.21. (t absolute randomized truth degree union inference rule) Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,

D n−2
n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in (0, 1). If τD(pA→ rC) ≥ α and τD(qB→ rC) ≥ β,

then τD((pA ∨ qB)→ rC) ≥ α + β − 1.

Corollary 3.22. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If τD(pA→ rC) = 1 and τD(qB→ rC) = 1, then τD((pA ∨ qB)→ rC) = 1.

Lemma 3.23. Let ∀a, b ∈ Π∼,∆. then
(i) pa→ qb = pa→ (pa ∧ qb).
(ii) pa→ qb = (pa ∨ qb)→ qb.

Proof. (i): Let λ5 = (pa→ qb) − (pa→ (pa ∧ qb).
(1) Case 1: pa ≤ qb. Then λ5 = 1 − 1 = 0, that is, pa→ qb = pa→ (pa ∧ ∧qb).
(2) Case 2: pa > qb. Then λ5 =

qb
pa −

qb
pa = 0, that is, pa→ qb = pa→ (pa ∧ ∧qb).

So to sum up pa→ qb = pa→ (pa ∧ ∧qb).
(ii): Let λ6 = (pa→ qb) − ((pa ∨ qb)→ qb).
(1) Case 1: pa ≤ qb. Then λ6 = 1 − 1 = 0, that is, pa→ qb = (pa ∨ qb)→ qb.
(2) Case 2: pa > qb. Then λ6 =

qb
pa −

qb
pa = 0, that is, pa→ qb = (pa ∨ qb)→ qb.

So to sum up pa→ qb = (pa ∨ qb)→ qb.

Theorem 3.24. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then
(i) τD(pA→ qB) = τD(pA→ (pA ∧ qB)).
(ii) τD(pA→ qB) = τD((pA ∨ qB)→ qB).

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm.
(i): By Lemma 3.23(i), we get that pA → qB ≈ pA → (pA ∧ qB). It follows from Theorem 3.3(iii) that

τD(pA→ qB) = τD(pA→ (pA ∧ qB)).
(ii): By Lemma 3.23(ii), we have that pA → qB ≈ (pA ∨ qB) → qB. It follows from Theorem 3.3(iii) that

τD(pA→ qB) = τD((pA ∨ qB)→ qB).

4. t absolute randomized similarity degree and t absolute randomized pseudo-distance of propositional
formulas

Definition 4.1. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Define

ξD(pA, qB) = τD((pA→ qB) ∧ (qB→ pA)).

Then ξD(pA, qB) is called the t absolute randomized similarity degree between propositional formulas A and B.

Lemma 4.2. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). If |= pA and |= qB, then |= pA ∧ qB.

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm. Since |= (pA ⊗ qB) → (pA ∧ qB) and
|= ((pA ⊗ qB)→ (pA ∧ qB))→ (pA→ (qB→ (pA ∧ qB))), by MP rule, we get that |= pA→ (qB→ (pA ∧ qB)).
Also since |= pA and |= qB, it follows from double MP rule that |= pA ∧ qB.
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Theorem 4.3. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). Then
(i) If A ≈ B, then ξD(tA, tB) = 1.
(ii) ξD(pA, qB) = ξD(qB, pA).
(iii) ξD(pA ∨ qB, pA) = τD(qB→ pA).
(iv) ξD(pA ∧ qB, pA) = τD(pA→ qB).

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm.
(i): As A ≈ B, we have tA ≈ tB. Thus |= tA → tB and |= tB → tA. By Lemma 4.2, we have that

|= (tA→ tB)∧ (tB→ tA). Thus [(tA→ qB)∧ (tB→ tA)]1 = (tA→ qB) ∧ (tB→ tA)
−1

(1) = {0, 1
n−1 , . . . ,

n−2
n−1 , 1}

m.
It follows from Definition 4.1 and Proposition 2.11 that

ξD(tA, tB) = τD((tA→ tB) ∧ (tB→ tA))
= |µ([(tA→ tB) ∧ (tB→ tA)]1)|

= |

∑
{φ(α) : α ∈ (tA→ tB) ∧ (tB→ tA)−1(1)}|

= |

∑
{φ(α) : α ∈ {0,

1
n − 1

, . . . ,
n − 2
n − 1

, 1}m}|

= 1.

(ii): ∀a, b ∈ Π∼,∆, we have (pa→ qb)∧ (qb→ pa) = (qb→ pa)∧ (pa→ qb). Thus (pA→ qB)∧ (qB→ pA) ≈
(qB → pA) ∧ (pA → qB). Then by Theorem 3.3(iii), we get that τD((pA → qB) ∧ (qB → pA)) = τD((pA →
qB) ∧ (qB→ pA)). It follows from Definition 4.1 that ξD(pA, qB) = ξD(qB, pA).

(iii): By Lemma 3.19, we have that (pA ∨ qB) → pA ≈ (pA → pA) ∧ (qB → pA) = qB → pA. It follows
from Lemma 3.15 that pA → (pA ∨ qB) ≈ (pA → pA) ∨ (pA → qB) = pA → pA. Then by Definition 4.1, we
get that

ξD(pA ∨ qB, pA) = τD(((pA ∨ qB)→ pA) ∧ (pA→ (pA ∨ qB)))
= τD(((pA→ pA) ∧ (qB→ pA)) ∧ ((pA→ pA) ∨ (pA→ qB)))
= τD((qB→ pA) ∧ (pA→ pA))
= τD(qB→ pA).

(iv): By Lemma 3.19, we have that (pA ∧ qB) → pA ≈ (pA → pA) ∨ (qB → pA) = pA → pA. It follows
from Lemma 3.15 that pA → (pA ∧ qB) ≈ (pA → pA) ∧ (pA → qB) = pA → qB. Then by Definition 4.1, we
get that

ξD(pA ∧ qB, pA) = τD(((pA ∧ qB)→ pA) ∧ (pA→ (pA ∧ qB)))
= τD(((pA→ pA) ∨ (qB→ pA)) ∧ ((pA→ pA) ∧ (pA→ qB)))
= τD((pA→ pA) ∧ (pA→ qB))
= τD(pA→ qB).

Theorem 4.4. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). If |= pA, then
(i) ξD(pA, qB) = τD(qB).
(ii) ξD(pA ∨ qB, pA) = 1.
(iii)ξD(pA ∧ qB, pA) = τD(qB).

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm.
(i): By Definition 4.1, we get that ξD(pA, qB) = τD((pA→ qB) ∧ (qB→ pA)). It follows from Theorem 3.8

that ξD(pA, qB) = τD(pA → qB) + τD(qB → pA) − τD((pA → qB) ∨ (qB → pA)). Thus ξD(pA, qB) = τD(pA →
qB) + τD(qB→ pA) − 1. Since |= pA, by Theorem 3.5, we have that ξD(pA, qB) = τD(qB) + 1 − 1 = τD(qB).
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(ii): By Theorem 4.3(iii), we get that ξD(pA∨qB, pA) = τD(qB→ pA). Since |= pA, it follows from Theorem
3.5(ii) that ξD(pA ∨ qB, pA) = 1.

(iii): By Theorem 4.3(iv), we have that ξD(pA ∧ qB, pA) = τD(pA → qB). Since |= pA, it follows from
Theorem 3.5(i) that ξD(pA ∧ qB, pA) = τD(qB).

Corollary 4.5. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1). If |= qB, then
(i) ξD(pA, qB) = τD(pA).
(ii) ξD(pA ∨ qB, pA) = τD(pA).
(iii)ξD(pA ∧ qB, pA) = 1..

Lemma 4.6. Let A,B,C,D ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If |= pA→ qB and |= rC→ zD, then |= (pA ∧ rC)→ (qB ∧ zD).

Proof. Let A,B,C,D contain the same atomic formulas p1, p2, . . . , pm. Since |= (pA∧rC)→ pA and |= pA→ qB,
by HS rule, we get that |= (pA ∧ rC)→ qB. Also since |= (pA ∧ rC)→ rC and |= rC→ zD, it follows from HS
rule that |= (pA∧ rC)→ zD. By Lemma 4.2, we have that |= ((pA∧ rC)→ qB)∧ ((pA∧ rC)→ zD)). It follows
from Lemma 3.15 that |= (((pA ∧ rC) → qB) ∧ ((pA ∧ rC) → zD)) → ((pA ∧ rC) → (qB ∧ zD)). Then by MP
rule, we get that |= (pA ∧ rC)→ (qB ∧ zD).

Lemma 4.7. Let ∀a, b, c ∈ Π∼,∆. Then (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.

Proof. Let λ7 = (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) − 1.
(1) Case 1: pa ≤ qb.

(1.1) Case 1.1: qb ≤ rc. Then λ7 = 1→ (rc→ rc) − 1 = 1 − 1 = 0,
that is, (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.
(1.2) Case 1.2: qb > rc.

(1.2.1) Case 1.2.1: pa ≤ rc. Then λ7 = 1→ (rc→ qb) − 1 = 1 − 1 = 0,
that is, (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.
(1.2.2) Case 1.2.2: pa > rc. Then λ7 = 1→ (pa→ qb) − 1 = 1 − 1 = 0,
that is, (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.

(2) Case 2: pa > qb.
(2.1) Case 2.1: qb > rc. Then λ7 =

qb
pa → (pa→ qb) − 1 = ( qb

pa →
qb
pa ) − 1 = 0,

that is, (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.
(2.2) Case 2.2: qb ≤ rc.

(2.2.1) Case 2.2.1: pa ≤ rc. Then λ7 =
qb
pa → (rc→ rc) − 1 = ( qb

pa → 1) − 1 = 0,
that is, (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.
(2.2.2) Case 2.2.2: pa > rc. Then λ7 =

qb
pa → (pa→ rc) − 1 = ( qb

pa →
rc
pa ) − 1 = 0,

that is, (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.
So to sum up (pa→ qb)→ ((pa ∨ rc)→ (qb ∨ rc)) = 1.

Lemma 4.8. Let ∀a, b, c ∈ Π∼,∆. Then (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.

Proof. Let λ8 = (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) − 1.
(1) Case 1: pa ≤ qb.

(1.1) Case 1.1: qb ≤ rc. Then λ8 = 1→ (pa→ qb) − 1 = (1→ 1) − 1 = 0,
that is, (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.
(1.2) Case 1.2: qb > rc.

(1.2.1) Case 1.2.1: pa ≤ rc. Then λ8 = 1→ (pa→ rc) − 1 = (1→ 1) − 1 = 0,
that is, (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.
(1.2.2) Case 1.2.2: pa > rc. Then λ8 = 1→ (rc→ rc) − 1 = (1→ 1) − 1 = 0,
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that is, (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.
(2) Case 2: pa > qb.

(2.1) Case 2.1: qb > rc. Then λ8 =
qb
pa → (rc→ rc) − 1 = ( qb

pa → 1) − 1 = 0,
that is, (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.
(2.2) Case 2.2: qb ≤ rc.

(2.2.1) Case 2.2.1: pa ≤ rc. Then λ8 =
qb
pa → (pa→ qb) − 1 = ( qb

pa →
qb
pa ) − 1 = 0,

that is, (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.
(2.2.2) Case 2.2.2: pa > rc. Then λ8 =

qb
pa → (rc→ qb) − 1 = ( qb

pa →
qb
rc ) − 1 = 0,

that is, (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.
So to sum up (pa→ qb)→ ((pa ∧ rc)→ (qb ∧ rc)) = 1.

Theorem 4.9. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then
(i) ξD(pA ∨ rC, qB ∨ rC) ≥ ξD(pA, qB).
(ii) ξD(pA ∧ rC, qB ∧ rC) ≥ ξD(pA, qB).
(iii) ξD(pA→ rC, qB→ rC) ≥ ξD(pA, qB).

Proof. Let A,B,C contain the same atomic formulas p1, p2, . . . , pm.
(i): By Lemma 4.7, we get that |= (pA → qB) → ((pA ∨ rC) → (qB ∨ rC)) and |= (qB → pA) →

((qB ∨ rC) → (pA ∨ rC)). It follows from Lemma 4.6 that |= ((pA → qB) ∧ (qB → pA)) → (((pA ∨ rC) →
(qB ∨ rC)) ∧ ((qB ∨ rC)→ (pA ∨ rC))). Then by Theorem 3.3(iv), we have that τD((pA→ qB) ∧ (qB→ pA)) ≤
τD(((pA ∨ rC)→ (qB ∨ rC)) ∧ ((qB ∨ rC)→ (pA ∨ rC))). It follows from Definition 4.1 that

ξD(pA ∨ rC, qB ∨ rC) = τD(((pA ∨ rC)→ (qB ∨ rC)) ∧ ((qB ∨ rC)→ (pA ∨ rC)))
≥ τD((pA→ qB) ∧ (qB→ pA))
= ξD(pA, qB).

(ii): By Lemma 4.8, we get that |= (pA → qB) → ((pA ∧ rC) → (qB ∧ rC)) and |= (qB → pA) →
((qB ∧ rC) → (pA ∧ rC)). It follows from Lemma 4.6 that |= ((pA → qB) ∧ (qB → pA)) → (((pA ∧ rC) →
(qB ∧ rC)) ∧ ((qB ∧ rC)→ (pA ∧ rC))). Then by Theorem 3.3(iv), we have that τD((pA→ qB) ∧ (qB→ pA)) ≤
τD(((pA ∧ rC)→ (qB ∧ rC)) ∧ ((qB ∧ rC)→ (pA ∧ rC))). It follows from Definition 4.1 that

ξD(pA ∧ rC, qB ∧ rC) = τD(((pA ∧ rC)→ (qB ∧ rC)) ∧ ((qB ∧ rC)→ (pA ∧ rC)))
≥ τD((pA→ qB) ∧ (qB→ pA))
= ξD(pA, qB).

(iii): By Lemma 3.12, we get that |= (pA→ qB)→ ((qB→ rC)→ (pA→ rC)) and |= (qB→ pA)→ ((pA→
rC) → (qB → rC)). It follows from Lemma 4.6 that |= ((pA → qB) ∧ (qB → pA)) → (((qB → rC) → (pA →
rC)) ∧ ((pA → rC) → (qB → rC))). Then by Theorem 3.3(iv), we have that τD((pA → qB) ∧ (qB → pA)) ≤
τD(((qB→ rC)→ (pA→ rC)) ∧ ((pA→ rC)→ (qB→ rC))). It follows from Definition 4.1 that

ξD(qB→ rC, pA→ rC) = τD(((qB→ rC)→ (pA→ rC)) ∧ ((pA→ rC)→ (qB→ rC)))
≥ τD((pA→ qB) ∧ (qB→ pA))
= ξD(pA, qB).

Thus by Theorem 4.3(ii), we get that ξD(pA→ rC, qB→ rC) = ξD(qB→ rC, pA→ rC) ≥ ξD(pA, qB).

Corollary 4.10. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then
(i) ξD(pA ∨ qB, pA ∨ rC) ≥ ξD(qB, rC).
(ii) ξD(pA ∧ qB, pA ∧ rC) ≥ ξD(qB, rC).
(iii) ξD(pA→ qB, pA→ rC) ≥ ξD(qB, rC).
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Theorem 4.11. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then ξD(pA, qB) = τD(pA→ qB) + τD(qB→ pA) − 1 ≥ τD(pA) + τD(qB) − 1.

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm. Then by Definition 4.1 and Theorem 3.8, we
have that

ξD(pA, qB) = τD((pA→ qB) ∧ (qB→ pA))
= τD(pA→ qB) + τD(qB→ pA) − τD((pA→ qB) ∨ (qB→ pA))
= τD(pA→ qB) + τD(qB→ pA) − 1.

Since |= pA→ (qB→ pA) and |= qB→ (pA→ qB), it follows from Theorem 3.3(iv) that τD(pA) ≤ τD(qB→
pA) and τD(qB) ≤ τD(pA→ qB). Thus ξD(pA, qB) = τD(pA→ qB) + τD(qB→ pA) − 1 ≥ τD(pA) + τD(qB) − 1.

Theorem 4.12. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then ξD(pA, rC) ≥ ξD(pA, qB) + ξD(qB, rC) − 1.

Proof. Let A,B,C contain the same atomic formulas p1, p2, . . . , pm. Then by Theorem 4.11, we get that
ξD(pA, qB) + ξD(qB, rC) − 1 = [τD(pA → qB) + τD(qB → pA) − 1] + [τD(qB → rC) + τD(rC → qB) − 1] − 1 =
[τD(pA→ qB)+ τD(qB→ rC)− 1]+ [τD(rC→ qB)+ τD(qB→ pA)− 1]− 1. It follows from Theorem 3.13 that
ξD(pA, qB) + ξD(qB, rC) − 1 ≤ τD(pA→ rC) + τD(rC→ pA) − 1 = ξD(pA, rC).

Definition 4.13. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1), stipulate that ρD : F(S) × F(S)→ [0, 1]. Define

ρD(pA, qB) = 1 − ξD(pA, qB).

Then ρD is called the t absolute randomized pseudo-distance on F(S), and (F(S), ρD) is called the t absolute randomized
logical metric space.

Remark 4.14. Let A,B,C contain the same atomic formulas p1, p2, . . . , pm. Then
(i) By Definition 4.13 and Theorem 4.3(i), we have that ρD(pA, pA) = 1 − ξD(pA, pA) = 0.
(ii) It follows from Definition 4.13 and Theorem 4.3(ii) that ρD(pA, qB) = ρD(qB, pA).
(iii) By Definition 4.13 and Theorem 4.12, we get that ρD(pA, rC) = 1 − ξD(pA, rC) ≤ 1 − [ξD(pA, qB) +

ξD(qB, rC) − 1] = 1 − ξD(pA, qB) + 1 − ξD(qB, rC) = ρD(pA, qB) + ρD(qB, rC).
Thus ρD(pA, qB) is the t absolute randomized pseudo-distance between propositional formulas A and B, that is, t

absolute randomized truth degree can form three properties satisfying t absolute randomized pseudo-distance. Then
it can form t absolute randomized logical metric space. So Definition 4.13 is reasonable.

Theorem 4.15. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then
(i) ρD(pA ∨ qB, pA) = 1 − τD(qB→ pA).
(ii) ρD(pA ∧ qB, pA) = 1 − τD(pA→ qB).

Proof. It is easy to prove Theorem 4.15 by Definition 4.13 and Theorem 4.3(iii) (iv).

Theorem 4.16. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If |= pA, then
(i) ρD(pA, qB) = 1 − τD(qB).
(ii) ρD(pA ∨ qB, pA) = 0.
(iii) ρD(pA ∧ qB, pA) = 1 − τD(qB).

Proof. It is easy to prove Theorem 4.16 by Definition 4.13 and Theorem 4.4.
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Corollary 4.17. Let A,B ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). If |= qB, then
(i) ρD(pA, qB) = 1 − τD(pA).
(ii) ρD(pA ∨ qB, pA) = 1 − τD(pA).
(iii) ρD(pA ∧ qB, pA) = 0.

Theorem 4.18. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then
(i) ρD(pA, qB) ≥ ρD(pA ∨ rC, qB ∨ rC).
(ii) ρD(pA, qB) ≥ ρD(pA ∧ rC, qB ∧ rC).
(iii) ρD(pA, qB) ≥ ρD(pA→ rC, qB→ rC).

Proof. It is easy to prove Theorem 4.18 by Definition 4.13 and Theorem 4.9.

Corollary 4.19. Let A,B,C ∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then
(i) ρD(qB, rC) ≥ ρD(pA ∨ qB, pA ∨ rC).
(ii) ρD(qB, rC) ≥ ρD(pA ∧ qB, pA ∧ rC).
(iii) ρD(qB, rC) ≥ ρD(pA→ qB, pA→ rC).

Theorem 4.20. Let A,B,∈ F(S), and D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1). Then ρD(pA, qB) = 2 − τD(pA→ qB) − τD(qB→ pA) ≤ 2 − τD(pA) − τD(qB).

Proof. It is easy to prove Theorem 4.20 by Definition 4.13 and Theorem 4.11.

Corollary 4.21. If the t absolute randomized truth degree of each formula is 1, then the t absolute randomized
pseudo-distance between them is 0.

Theorem 4.22. Let (F(S), ρD) be the t absolute randomized logical metric space, and ρD be the t absolute randomized
pseudo-distance on F(S). Then

(i) The binary operator→ is continuous with respect to the t absolute randomized pseudo- distance ρD in the t
absolute randomized logical metric space (F(S), ρD).

(ii) The binary operator ∨ is continuous with respect to the t absolute randomized pseudo- distance ρD in the t
absolute randomized logical metric space (F(S), ρD).

(iii) The binary operator ∧ is continuous with respect to the t absolute randomized pseudo- distance ρD in the t
absolute randomized logical metric space (F(S), ρD).

(iv) The unitary operator ∆ is not continuous with respect to the t absolute randomized pseudo-distance ρD in the
t absolute randomized logical metric space (F(S), ρD).

(v) The unitary operator ∼ is not continuous with respect to the t absolute randomized pseudo-distance ρD in the
t absolute randomized logical metric space (F(S), ρD).

Proof. Let A,B,C,D,An,Bn contain the same atomic formulas p1, p2, . . . , pm.
(i): By Remark 4.14(iii), we have thatρD(pA→ rC, qB→ zD) ≤ ρD(pA→ rC, qB→ rC)+ρD(qB→ rC, qB→

zD). It follows from Theorem 4.18(iii) that ρD(pA → rC, qB → rC) ≤ ρD(pA, qB). By Corollary 4.19(iii), we
get that ρD(qB → rC, qB → zD) ≤ ρD(rC, zD). Thus ρD(pA → rC, qB → zD) ≤ ρD(pA, qB) + ρD(rC, zD). If
lim
n→∞
ρD(mAn, pA) = 0 and lim

n→∞
ρD(lBn, qB) = 0, then lim

n→∞
ρD(mAn → lBn, pA → qB) ≤ lim

n→∞
ρD(mAn, pA) +

lim
n→∞
ρD(lBn, qB) = 0.

Therefore, the binary operator → is continuous with respect to the t absolute randomized pseudo-
distance ρD in the t absolute randomized logical metric space (F(S), ρD).
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(ii): By Remark 4.14(iii), we get that ρD(pA ∨ rC, qB ∨ zD) ≤ ρD(pA ∨ rC, qB ∨ rC) + ρD(qB ∨ rC, qB ∨ zD).
It follows from Theorem 4.18(i) that ρD(pA ∨ rC, qB ∨ rC) ≤ ρD(pA, qB). By Corollary 4.19(i), we have that
ρD(qB∨rC, qB∨zD) ≤ ρD(rC, zD). Thus ρD(pA∨rC, qB∨zD) ≤ ρD(pA, qB)+ρD(rC, zD). If lim

n→∞
ρD(mAn, pA) = 0

and lim
n→∞
ρD(lBn, qB) = 0, then lim

n→∞
ρD(mAn ∨ lBn, pA ∨ qB) ≤ lim

n→∞
ρD(mAn, pA) + lim

n→∞
ρD(lBn, qB) = 0.

Therefore, the binary operator∨ is continuous with respect to the t absolute randomized pseudo-distance
ρD in the t absolute randomized logical metric space (F(S), ρD).

(iii): By Remark 4.14(iii), we get that ρD(pA∧ rC, qB∧ zD) ≤ ρD(pA∧ rC, qB∧ rC) + ρD(qB∧ rC, qB∧ zD).
It follows from Theorem 4.18(ii) that ρD(pA ∧ rC, qB ∧ rC) ≤ ρD(pA, qB). By Corollary 4.19(ii), we have that
ρD(qB∧rC, qB∧zD) ≤ ρD(rC, zD). Thus ρD(pA∧rC, qB∧zD) ≤ ρD(pA, qB)+ρD(rC, zD). If lim

n→∞
ρD(mAn, pA) = 0

and lim
n→∞
ρD(lBn, qB) = 0, then lim

n→∞
ρD(mAn ∧ lBn, pA ∧ qB) ≤ lim

n→∞
ρD(mAn, pA) + lim

n→∞
ρD(lBn, qB) = 0.

Therefore, the binary operator∧ is continuous with respect to the t absolute randomized pseudo-distance
ρD in the t absolute randomized logical metric space (F(S), ρD).

(iv): ∀a, b ∈ Π∼,∆, when pa , 1, we have pa→ qb ≤ ∆pa→ ∆qb, when qb , 1, we have qb→ pa ≤ ∆qb→
∆pa.

So when pa , 1 and qb , 1, we have |= (pA → qB) → (∆pA → ∆qB) and |= (qB → pA) → (∆qB → ∆pA).
Then by Theorem 3.3(iv), we get that τD(pA→ qB) ≤ τD(∆pA→ ∆qB) and τD(qB→ pA) ≤ τD(∆qB→ ∆pA).
It follows from Theorem 4.20 that ρD(∆pA,∆qB) = 2 − τD(∆pA → ∆qB) − τD(∆qB → ∆pA) ≤ 2 − τD(pA →
qB) − τD(qB→ pA) = ρD(pA, qB). If lim

n→∞
ρD(mAn, pA) = 0, then lim

n→∞
ρD(∆mAn,∆pA) ≤ lim

n→∞
ρD(mAn, pA) = 0.

Thus the unitary operator ∆ is continuous with respect to the t absolute randomized pseudo-distance
ρD in the t absolute randomized logical metric space (F(S), ρD) only when pa , 1 and qb , 1.

Therefore, the unitary operator ∆ is not continuous with respect to the t absolute randomized pseudo-
distance ρD in the t absolute randomized logical metric space (F(S), ρD).

(v): As (¬pA → ¬qB) ≈ (qB → pA) and (¬qB → ¬pA) ≈ (pA → qB), by Lemma 4.6, we get that
(¬pA → ¬qB) ∧ (¬qB → ¬pA) ≈ (qB → pA) ∧ (pA → qB). It follows from Theorem 3.3(iii) that τD((¬pA →
¬qB)∧(¬qB→ ¬pA)) = τD((qB→ pA)∧(pA→ qB)). Thus ρD(¬pA,¬qB) = 1−ξD(¬pA,¬qB) = 1−τD((¬pA→
¬qB) ∧ (¬qB → ¬pA)) = 1 − τD((qB → pA) ∧ (pA → qB)) = 1 − ξD(qB, pA) = ρD(qB, pA) = ρD(pA, qB). If
lim
n→∞
ρD(mAn, pA) = 0, then lim

n→∞
ρD(¬mAn,¬pA) = lim

n→∞
ρD(mAn, pA) = 0.

Therefore, the unitary operator ¬ is continuous with respect to the t absolute randomized pseudo-
distance ρD in the t absolute randomized logical metric space (F(S), ρD).

Since ∆ = ¬ ∼, it follows from Theorem 4.22(iv) that the unitary operator ∼ is not continuous with
respect to the t absolute randomized pseudo-distance ρD in the t absolute randomized logical metric space
(F(S), ρD).

Remark 4.23. The above 5 connectives are the most basic connectives in Π∼,∆, and other connectives can be trans-
formed through these 5 connectives. Therefore, the continuity problem of other connectives will not be discussed in
this paper.

5. t absolute randomized divergence degree and t absolute randomized consistency degree of proposi-
tional formulas theory Γ

Definition 5.1. Let A,B ∈ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1), and Γ be the theory in F(S). Define

divD(Γ) = sup{ρD(pA, qB)|A,B ∈ D(Γ)}.

Then divD(Γ) is called the t absolute randomized divergence degree of theory Γ.

Example 5.2. Calculate t absolute randomized divergence degree of theory Γ = {qB,∼ qB}.

Answer. As ⊢ qB→ (∼ qB→ tA) is true for every A ∈ F(S), we have D(Γ) = F(S). Then divD(Γ) = 1.
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Definition 5.3. Let A,B ∈ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1), and Γ be the theory in F(S). Define

iD(Γ) = 1 −min{⌈1 − ρD(pA, qB)⌉|A,B ∈ D(Γ)}.

Then iD(Γ) is called the t absolute randomized polar index of theory Γ.

Remark 5.4. (i) ⌈1 − ρD(pA, qB)⌉ = {1,0≤ρD(pA,qB)<1
0,ρD(pA,qB)=1 ; (ii) iD(Γ) can only take 0 and 1.

Definition 5.5. Let A,B ∈ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1), and Γ be the theory in F(S). Define

ηD(Γ) = 1 −
1
2

divD(Γ)(1 + iD(Γ)).

Then ηD(Γ) is called the t absolute randomized consistency degree of theory Γ.

Theorem 5.6. Let A,B ∈ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1), and Γ be the theory in F(S). Then
(i) Γ is consistent if and only if iD(Γ) = 0.
(ii) Γ is inconsistent if and only if iD(Γ) = 1.

Proof. Let A,B contain the same atomic formulas p1, p2, . . . , pm.
(i): Γ is consistent if and only if 0 ≤ ρD(pA, qB) < 1, and 0 ≤ ρD(pA, qB) < 1 if and only if iD(Γ) = 0.
(ii): Γ is inconsistent if and only if ρD(pA, qB) = 1, and ρD(pA, qB) = 1 if and only if iD(Γ) = 1.

Theorem 5.7. Let A,B ∈ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence in

(0, 1), and Γ be the theory in F(S). Then
(i) Γ is completely consistent if and only if ηD(Γ) = 1.
(ii) Γ is consistent if and only if 1

2 ≤ ηD(Γ) ≤ 1.

(iii) Γ is consistent and fully divergent if and only if ηD(Γ) = 1
2 .

(iv) Γ is inconsistent if and only if ηD(Γ) = 0.

Proof. It is easy to prove Theorem 5.7 by Definition 5.3, 5.5 and Theorem 5.6.

6. Approximate reasoning in (F(S), ρD)

Definition 6.1. Let A ∈ F(S), Γ ⊂ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1), and ε > 0.
(i) If ρD(pA,D(Γ)) = inf{ρD(pA, qB)|qB ∈ D(Γ)} < ε, then A is called the conclusion that I-type absolute

randomized errors less than ε of Γ, denote as A ∈ D1
εD(Γ).

(ii) If 1 − sup{τD(qB → pA))|qB ∈ D(Γ)} < ε, then A is called the conclusion that II-type absolute randomized
errors less than ε of Γ, denote as A ∈ D2

εD(Γ).
(iii) If inf{H(D(Γ),D(Σ))Σ ⊂ F(S),Σ ⊢ pA} < ε, then A is called the conclusion that III-type absolute randomized

errors less than ε of Γ, denote as A ∈ D3
εD(Γ). Here H is the Hausdorff distance.

Now we show the equivalences of these three approximate reasoning patterns.

Theorem 6.2. Let A ∈ F(S), Γ ⊂ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1), and ε > 0. If A ∈ D1
εD(Γ), then A ∈ D2

εD(Γ).
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Proof. Let A contain the same atomic formulas p1, p2, . . . , pm. Since

ρD(pA,D(Γ)) = inf{ρD(pA, qB)|qB ∈ D(Γ)}
= inf{ρD(qB, pA)|qB ∈ D(Γ)}
= inf{1 − ξD(qB, pA)|qB ∈ D(Γ)}
= 1 − sup{ξD(qB, pA)|qB ∈ D(Γ)}
= 1 − sup{τD((qB→ pA) ∧ (pA→ qB))|qB ∈ D(Γ)}
≥ 1 − sup{τD(qB→ pA)|qB ∈ D(Γ)}.

When A ∈ D1
εD(Γ), we get that ρD(pA,D(Γ)) < ε. Thus 1 − sup{τD(qB → pA)|qB ∈ D(Γ)} < ε, that is,

A ∈ D2
εD(Γ).

Theorem 6.3. Let A ∈ F(S), Γ ⊂ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1), and ε > 0. If A ∈ D2
εD(Γ), then A ∈ D3

εD(Γ).

Proof. Let A contain the same atomic formulas p1, p2, . . . , pm. When A ∈ D2
εD(Γ), we get 1 − sup{τD(qB →

pA)|qB ∈ D(Γ)} < ε. By ⊢ qB → (qB ∨ pA) and MP rule, we have that (qB ∨ pA) ∈ D(Γ). It follows from
Theorem 4.15(i) that ρD(pA,D(Γ)) ≤ ρD(pA, qB ∨ pA) = 1 − τD(qB→ pA) < ε.

Let Σ0 = Γ∪ {pA}. Then Σ0 ⊂ F(S), Σ0 ⊢ pA and D(Γ) ⊂ D(Σ0). The following is divided into two aspects
to prove H(D(Γ),D(Σ0)) < ε.

On the one hand,∀qB0 ∈ D(Γ), we haveρD(qB0,D(Σ0)) = 0. Thus H0(D(Γ),D(Σ0)) = sup{ρD(qB0,D(Σ0))|qB0 ∈

D(Γ)} = 0 < ε.
On the other hand, ∀pA0 ∈ D(Σ0) and qB0 ∈ D(Γ), ∃{qB1, qB2, . . . , qBl} and {qB1, qB2, . . . , qBy} ⊂ Γ such

that {qB1, qB2, . . . , qBl} ⊢ qB0 and {qB1, qB2, . . . , qBy, pA} ⊢ pA0. Thus ⊢ (qB1 ∧ qB2 ∧ . . . ∧ qBl) → qB0 and
⊢ (qB1 ∧ qB2 ∧ . . . ∧ qBy ∧ pA)→ pA0.

Let qB∗ = qB1 ∧ qB2 ∧ . . . ∧ qBy ∧ pA and qB = qB∗ ∨ pA0. Then ⊢ qB∗ → qB0 and ⊢ qB∗ → pA0. Thus
⊢ qB∗ → pA0 ∧ qB∗ and ⊢ (qB∗ → (qB∗ ∧ pA)) → (qB∗ → (pA0 ∧ qB∗)). Then it follows from Theorem 3.3(iii),
Theorem 4.15(i) and Theorem 3.24(i) that ρD(pA0, qB) ≤ 1 − τD(qB∗ → (qB∗ ∧ pA)) = 1 − τD(qB∗ → pA). Also
since ⊢ qB∗ → qB0, using a similar method to the above one can get that τD(qB0 → pA) ≤ τD(qB∗ → pA). So
ρD(pA0, qB) ≤ 1 − τD(qB0 → pA) ≤ 1 − τD((qB0 → pA) ∧ (pA→ qB0)) = ρD(pA, qB0).

Thus H0(D(Σ0),D(Γ)) = sup{ρD(pA0,D(Γ))|pA0 ∈ D(Σ0)} ≤ ρD(pA,D(Γ)) < ε, that is, H(D(Γ),D(Σ0)) < ε.
Therefore, inf{H(D(Γ),D(Σ))|Σ ∈ F(S),Σ ⊢ pA} ≤ H(D(Γ),D(Σ0)) < ε, that is, A ∈ D3

εD(Γ).

Theorem 6.4. Let A ∈ F(S), Γ ⊂ F(S), D0,D 1
n−1
, . . . ,D n−2

n−1
,D1(n ≥ 2) be an n-valued randomized numbers sequence

in (0, 1), and ε > 0. If A ∈ D3
εD(Γ), then A ∈ D1

εD(Γ).

Proof. Let A contain the same atomic formulas p1, p2, . . . , pm. When A ∈ D3
εD(Γ), we get that Σ ∈ F(S), Σ ⊢ pA

and H(D(Γ),D(Σ)) < ε. Thus pA ∈ D(Σ). Therefore, ρD(pA,D(Γ)) ≤ H(D(Γ),D(Σ)) < ε, that is, A ∈ D1
εD(Γ).

7. Conclusions and further work

In this paper, using the randomization method of valuation set, we first put forward the definition of
t absolute randomized truth degree of propositional formula in Goguen∼,∆ propositional logic system (t
takes ∼,∆), and prove that some inference rules such as MP, HS, intersection inference, union inference
of t absolute randomized truth degree. Then we give the concepts of t absolute randomized similarity
degree and t absolute randomized pseudo-distance of propositional formulas. We also give the concepts
of t absolute randomized divergence degree and absolute randomized consistency degree of propositional
formulas theory Γ, and introduce three different types of approximate reasoning patterns, which are proved
to be equivalent.

Based on the work in this paper, the following three problems deserve further research:
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(i) What are the properties of absolute randomized truth degree in other multivalued propositional logic
systems?

(ii) What are the properties of Γ − t absolute randomized truth degree in Goguen∼,∆ propositional logic
system?

(iii) What are the properties of Γ absolute randomized truth degree in other multivalued propositional
logic systems?

Acknowledgements. The authors would like to thank the referee for the numerous and very helpful
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