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Nonlinear maps preserving the second mixed triple 17 — *— product
between von Neumann algebras

Yongfeng Pang®*, Huihui Yue?, Yawei Du?

#School of Science, Xi’an University of architecture and technology, Xi'an 710055, P. R. China

Abstract. Let 1) # +1 be a non-zero scalar, and let ® be a not necessarily linear bijection between two von
Neumann algebras, one of which has no center abelian projections, satisfying ®(I) = I and (i) = —P(il)
and preserving the second mixed triple n — *—product. It is showed that @ is a linear *—isomorphism if
[n] =1 and @ is a sum of a linear *—isomorphism and a conjugate linear *—isomorphism if || # 1.

1. Introduction

In recent years, an intense research activity has been addressed to study not necessarily linear mappings
between von Neumann algebras preserving the n — *—product or some of its variants. The origins of the
Jordan 1 — *— product go back to [8], where Semrl introduced and studied the Jordan (=1) — *— product in
relation to quadratic functionals. More recently, Bai and Du [1] established that any bijective map between
von Neumann algebras without central abelian projections preserving the Jordan (-1) — *—product is a sum
of a linear and a conjugate linear *—isomorphisms.

Let M and N be von Neumann algebras, and ® : M — N be a not necessarily linear bijection between
two von Neumann algebras, one of which has no central abelian projections. In [2], Dai and Lu proved that
if ® satisfies P(AB + nBA*) = P(A)P(B) + nd(B)P(A*) for all A,B € M, then @ is a linear *— isomorphism
if 17 is not real and @ is a sum of a linear *—isomorphism and a conjugate linear *— isomorphism if 7 is
real. In [3], Huo et al. proved that if ® preserves the Jordan triple 7 — *— product and ®(I) = I, then @ is
a linear *—isomorphism if 7 is not real and @ is a sum of a linear *—isomorphism and a conjugate linear
+—isomorphism if 77 is real. In [11], Zhang et al. established that if  # —1 and @ satisfies

D([A, B]! 8, C) = [D(A), D(B)]! 8, D(O),

for all A,B,C € Mand ®(I) = [, D(i)* = —P(il), then one of the following statements holds: when || =1,
then @ is a linear *—isomorphism; when 17| # 1, then @ is a sum of a linear *—isomorphism and a conjugate
linear *— isomorphism. More research on the Jordan and Lie derivable mappings can be found in [4-7,9-12].
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Let M be a *—algebra and 1 be a non-zero scalar. For A, B, C € M, define the Jordan 1 — *— product of A
and Bby A e, B = AB + nBA", the Lie 1 — *—product of B and C by [B, C]! = BC — nCB", respectively. The
mixed triple 1 — *—products have two cases which are related with the triple 1 — *—products [A, B]! e, C
and [A e, B,C]! for all A, B and C in M. In order to distinguish the mixed triple 1) — *— products, the mixed
triple —*—product [A e, B, C]! is called the second mixed triple 17— *— product. Motivated by these studies,
this paper will discuss nonlinear mappings preserving the second mixed triple 1 — *— product between von
Neumann algebras.

Let us fix some notations and terminologies. Let IR and C denote the real number field and the complex
number field, respectively. Let i denote the imaginary unit. Throughout, all algebras and spaces are over the
complex number field C. A von Neumann algebra M is a weakly closed, self adjoint algebra of operators
on a complex Hilbert H containing the identity operator I. The set Z(M) = {S € M : ST = TS for all
T € M} is called the center of M. A projection P is called a center abelian projection if P € Z(M) and PMP
is abelian. The center carrier of A, denoted by A, is the smallest center projection P satisfying PA = A. If
A is self-adjoint, then the core of A, denoted by A4, is sup{S € Z(M) : S = 5,5 < A}. If P is a projection, it
is clear that P is the largest central projection Q satisfying Q < P. A projection P is said to be core-free if

P =0.1Itis easy to see that P = 0 if and only if I — P = I. A self-adjoint element A of M is called positive if its
spectrum o(A) consists of non-negative real numbers. Moreover, an element A of M is positive if and only
if there exists B in M with A = B*B.

Lemma 1.1([3], Lemma 1.1) Let M be a von Neumann algebra without central abelian projections. Then
there exists a projection P with P =0and P = I.

Lemma 1.2([2], Lemma 1.2) Let M be a von Neumann algebra on a Hilbert space H. Let A be an operator
in M and P a projection with P = I.

(1) If ABP =0 forall Be M, then A =0;

(2) If is a non-zero scalar and (PT(I — P)) e, A = 0 for all T € M, then A(I - P) =

2. Additivity

The main result in this section reads as follows.

Theorem 2.1 Let Mand N be two von Neumann algebras, one of which has no center abelian projections.
Let 7 # +1 be a non-zero scalar, and let @ : M — N be a not necessarily linear bijection. Suppose that ®
preserves the second mixed triple  — *— product. Then @ is additive.

In the following, let M* = {A € M : A* = A}, N* = (B € N : B* = B}. Without loss of generality, we
assume that M has no central abelian projections. It follows from Lemma 1.1 that there exists a projection
P; € Msuchthat Py =0and P; = I. Set P, = — P;. Then P, is a projection in M and P, =0 and P, = I.
Denote My, = PkMPl,k I=1,2.

The proof will be organized in some lemmas.

Lemma 2.1 ®(0) =

Proof. By the surjectivity of @, there exists A€ M such that ®(A) = 0. Since P preserves the second
mixed triple 1 — *— product, we have

D(0) = D([0 o, A,AlD = [@(0) o, D(A), DA)]'=0
Lemma 2.2 For every Ajpe M1z, Apne My, we have
D(A1 + Az) = D(A1z) + D(An).

Proof. Since @ is surjection, there exists an operator X = Zil 1 X € Msuch that ©(X) = (D(Au) +D(An).

AP1+ Pz AP1+ Pz /\P1+ Pz

For every A € C, by [l e, LApR]T = 0, then [I ., VA + Anl! = [I . ,An]!, and

1+1] 1+1] 1+r]

AP +4P
(D([I ®; i"”? - A12] )_
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It follows from Lemma 2.1 that

AP; + %Pz
1+n 7
AP, + AP, APy + %Pz

7
ﬁ/Aﬂ]?) +O([I e, ﬁ,fhz]?)

CD([I ® A21]g)

=O([I ®

APy + zPz APy + 1Pz

Ty P+ [0 & ), M)

/\Pl + 2
= (D) o A(— ), PlAz1) + P(Ar)]!

3

n

APy + %Pz
1+

= [(D(I) ®, (D(

ip

= [©(I) ®, D( ) QD(X)]?

) o APy+4Py APy +1P 0 ) - T =
Since @ is injection, we have [[ o, ———, X], = [l o, ——, An], that is, (A — nA4)X11 + (ﬁ —nA) X +

_ -~ 1+n 1+n
(% - Xpn = (% — nA)Ag1.

If |n| # 1, multiplying the above equation by P, from left side and P; from right side, we obtain
X(% -n)Xa1 = X(% —1)Az. It follows from |n] # 1 that % —n # 0and AXy; = AAy;. Hence by the arbitrariness
of A, X1 = A». So (% - nX)Xn + (% - T]I)Xzz = 0and AXy1 + A X2 = 0. It follows from the arbitrariness of A
that X;; = 0and X5 = 0.

If [ = 1, then £ — 7 = 0and (A - n1)Xu1 + (3 = )Xz = 0.

Multiplying the above equation by P; from left side, we get (A — nA)Xj; = 0. So by the arbitrariness of
A, X1 =0.

Multiplying the above equation by P, from right side, we get (% — A)X» = 0. So by the arbitrariness of
A, X =0.

It follows from [A1 e, (AP1), 117 = 0 and Lemma 2.1 that

O([Az1 o) (AP1),IT])
= O([Az o) (AP), nH + oA e, (APy), nh
= [D(Az1) o D(AP1), P(D)]! + [D(A1z) o) D(APy), D(I)]!
= [(P(A21) + D(A12)) @ P(APy), D(D)]!
= [D(X) o) D(AP), D(D)]!
= O([X o, (APy),11]).

Since @ is injection, this implies that [X e, (AP1), I]! = [Ay e, (AP;), I. Then (A — 12A)Xo1 + (A = 1)X3, =
A - nz)\)Azl + (A - X)A;l. Thus we get X1 = Ay;. Similarly, we can prove X1, = Ajp.

Therefore, CD(Alz + A21) = (D(X) = q)(Alz) + q)(A21)

Lemma 2.3 For every A€ My, A€My, 1 <k #1 < 2, we have

O(Ak + Ar) = P(Axk) + P(Ap).
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Proof By the surjectivity of @, we can find an operator X = 213,1:1 X € Msuchthat P(X) = O(Aw)+D(Aw).

Forevery A € C,by [l o, %,Akk]? = 0 and Lemma 2.1, we have

AP,
n l
i o Aull) + Ol
AP
1+n”
AP,
1+q

AP,

= [(D(I) ®, cD(m)r (D(X)]g
AP,

n
1+ r]'X]*)'

D([I e 1 ,Aul?)

AP
"1+

=l e e A

)\Pl

= [D(I) o, O( ), @A)l + [D(D) P )CD(Akk)]"

= [D(I) o, O( ), ©(Ai) + D(Aw)1

=O([I o,

Since @ is injection, we have [l o, 1PI X' =11 ., ?fl , Al and AXy + (A - nA)XU n)\Xkl = —nXAkl.

Multiplying the above equation by Py from left side, then 17/\Xk1 = —17/\Ak1. By the arbitrariness of A,
X = Ap. Consequently, /\Xlk + (A =nA)X; = 0. Thus we get Xj =0and X;; =0

/\Pk ,1 ip,

It follows from [I e, ,Aul! = 0 and Lemma 2.1 that

AP, + %Pl \
D([I o, T ,Acls)
APk + P APy + 4p,
= ([l o) ———— Aul!) + (L o, TI;,AH]?)
APy + P APy + P
= [D(]) o, (?) L O(AR)]! + [D(1) @) D( Ton D(Aw)]!
APy + P
= [D(]) o ‘D(T) , O(Akk) + D(Ap)]!
APy + 4P, )
=[D(]) o, qb(ﬁ),@(}()]*
AP+ 1P, \
=O([I e, ﬁ,xh)-
Since @ is injection, we get [[ o, —— +7 X]” [Te, PlT Al Substituting X = 0 and Xj; = 0 into

the above equation, we get (A — TM)ka =(A- n)\)Akk. So Xy = A Therefore, ®(Ax + An) = P(X) =
O(Akk) + D(Ag).-

Similarly, (D(A” + Akl) = CD(A”) + q)(Akl)-

Lemma 2.4 For every A€ My, Axe My and Aye My, 1 <k #1 < 2, we have

D(Agk + A + Ai) = D(Agx) + P(Agr) + D(Ag).

Proof Since @ is surjective, there exists an operator X = Zi,l:l Xy € Msuch that ®(X) = O(Ay) + D(Ay) +
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D(Ay). For every A € C, it follows from Lemmas 2.1 and 2.2 that
DAXy — nAXx + (A = nA)Xu)
AP 1
= (Lo {7 XD = [0 », oL ) X1

= (0D &) D), D) + Ok + @(A,kn’z

=[©(]) », CI)(ﬂ) DA+ [O(1) o, cI)( )/CD(AkI)]'] +[D(0) o CD( ) DA
AP

AP,
n1+nAkl]) O([1 r]1+nAlk])
= (D("V\Akl) + D(AAg)

= O(AAj — nAAg).

=P([Ie, T+n 2L Al + o(lI

Since @ is injection, we get A Xj — nXXkl +(A nX)XH

= AAlk - UXAkl- Thus Xkl =

= Ap, X = A and X;; = 0.
ip
It follows from Lemma 2.3 and [ e, bt

T Alk]q 0 that

@((% )Xt (i X

—P + AP, . —P + AP, ;
=O([I e, ﬁ , X1 = [©() o Q(T) ,O(X)]
—P + AP
= [©(I) ® q)(

), D(Ar) + P(Aw) + D(AR)]!
+ AP

% ip, + AP,
= [D(I) o ), QAN+ [@(0) o *T

-p + AP,
), (AT + [D() o, (! ), (A1
,—’Pk + AP, —P + AP, %Pk + AP,
= 001 oy A + O ey T —

T+ 1 JAlD) + (1 e,
- @((% M)A + @((% — i)Ag)
= qn((é - M)Ak + (é — M) A).

1 ]

This implies that (% - MNXie + (& —A) Xy = (% - AN)Ap + (% - T]X)Akl- Thus, we have Xj
Therefore, ®(Ax + Ay + Ajg)

= O(X) = D(Axi) + D(Aw) + P(Ag).

= Agk.
Lemma 2.5 For every Aye My, k,1 = 1,2, we have

D(A11 + Arp + An + Axn) = D(Aq1) + D(Arz) + D(A21) + P(A2)

Proof By the surjectivity of ®, we can find X = Z,%l 1 X € Msuch that (X) = ©(A11) + P(A1n) +DP(Az) +
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®(Ap). For every A € C, it follows from [I e, ffﬁl Ap]! = 0and Lemma 2.4 that

CD((/\ — HX)XH + /\X12 — T]XXQ])

= 011 oy T4 X1 = [0() o W), OGO

= [D(I) o, D( 1/\_1:177 ), D(A11) + P(A1p) + (A1) + D(A)]!

= (00 &) D), DAL + [0 &) D), DA + (9D &, ), Do)
/\Pl

+ (1) o O(—— ) D(Ap)]!

AP
n 1 + T]/All]*) + (D([I .T]

= O((A — nA)A1) + D(AArp) + CD(—rMAzl)
= (D((/\ — T]X)All + /\Alz — T]XAZl)

=d([Ie

D+l e, L T Al + (e, A L Al

This implies that (A — nA)X1; + AX12 — nAXo1 = (A — nA)A1; + AA1p — nAAg.

Multiplying the above equation by Py from left side and P; from right side, we have (A - Xy =
A= 17/\)A11 By the arbitrariness of A, X117 = A11. So AX1, — T)AX21 AA1p — 17/\A21

Multiplying the above equation by P; from left side, we have AX;, = AAj,. By the arbitrariness of A,
X1 = A1p. So —r]Xle = —nXAm. Note that 7 is a non-zero scalar. Then we get X»; = A;. Similarly, we can
prove Xzz = Azz.

Therefore, q)(AH + A12 + A21 + A22) = (I)(X) = (D(All) + (D(Alz) + (D(A21) + (D(Azz).

Lemma 2.6 For every Ay, Bue My, 1 <k #1<2, we have

O(Ay + Bu) = ©(Ax) + D(Bi).

Proof By By + Au + (-14}) + (—nBuA}) = [Ie, Pﬁ:‘?]“,Pl + By]! and Lemmas 2.4, 2.3 and 2.2, we get

O(Ap + Br) + D(-1Ay) + P(—nBuAy)
= O(Ay + By + (-1n4y) + (-1BuAy))

P+ Akl Pk + Akl

=D([Ie, , P+ Byl!) = [©(I) e, O( ), ®(P; + By)]!

Akz

=[<D(1)-n<1><1+k> (5 ),q><Pz>+<D<Bkz>1?

= [0+, D), (Pz>1”+[<1><1> o L) P + [0() o ), OByl

+lo() o @(ﬁmwkz)l?

I]l

Py . A
= ({1 oy 3 P+ O oy 3 P + (T )

Py Ay
,B ITe ,B
g wl!) + ([ 0 el !
= O(Ap) + D(—nA;) + D(By) + q’(—anzAkl)

That is, ®(Ay + By) = P(Ax) + P(By).
Lemma 2.7 For every Ay, Bie M, k = 1,2, we have

O(Agk + Bik) = P(Axk) + P(B)-
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Proof Since @ is surjective, there exists an operator X = Z,%le Xy € Msuch that CI)(%?) (% Aue ) +O( 1B Jff] ).

For every A € C and k # |, it follows from Lemma 2.1 that

(A = M) Xy + AXy — nAX
o( n il k—1N kl)

1+ r]
AP APZ 1
= O([P; o, Taq'1 _]n) [D(P) o (D(1+17) (m)]l
/\Pz Ak Bkk
= [D(P)) o, q’( ) q>(1 +Tl) ( )]n
= [D(P) o B( ! ) O+ 0(P) ) O o), O
B APz Akk AP Bkk ;
_q)([Pl'n 1+77 ]) ([Pl.l]mrl_i_n]f])

=0.

Since @ is injective, we have Q)X Ay Xu - _ ) and (/\—T]X)XU +)\X1k—1]XXkl =0.Thus, X; =0,X; =0

1+n
and Xy = 0. For every Cyy € My, k # I, it follows from Lemma 2.6 that

DX Cra)
= o(l s, Xn Cull) = [0(1) o B(—— )cD(ck,n

= [0+, o) + O, cD(Ckl)l”

- [0 &, o), <ckz>1"+ 90 o, 1), S(C!
= 011 oy 3 Cull) + Ol oy 2 Cul

= O(ACu) + (B Cra)

= O(ACu + BCi).

This implies that (X — A — Bi)Ci = 0. For every C € M, then (Xjx — A — Bi)CP; = 0. It follows from

Lemma 1.2 that X = Ag+By. Thus, D(24155) = O(£5) = B(£24) +D(££) and D(Ag+Bix) = P(Age) +P(By).

Now we come to the position to show Theorem 2.1.
Proof of Theorem 2.1 Let A and B be in M. Write A = Z,%/lzl Ay and B = Zi,l:l By, where Ay, By €
M, k,1 =1,2. It follows from Lemmas 2.5, 2.6 and 2.7 that

2 2
®(A+B) = () (Au + Bu)) = ), P(Ay + By)

k=1 k=1
2 2 2
= ) (@A) + D(Bu)) = ) ©(Au) + Y P(By)
k=1 k=1 k=1
2 2

= () Aw)+ () Bu)

k=1 k=1
= O(A) + D(B).

Thus @ is additive.
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3. Linearity

Our main result in this section reads as follows.

Theorem 3.1 Let M and N be two von Neumann algebras, one of which has no center abelian projections.
Let  # +1 be a non-zero scalar, and let @ : M — N be a not necessarily linear bijection. Suppose that ®
preserves the second mixed triple 7 — *— product. Then the following statements hold:

(1) When |5| = 1, then @ is a linear *— isomorphism;

(2) When |5 # 1, then @ is a sum of a linear *—isomorphism and a conjugate linear *—isomorphism.

In what follows, without loss of generality, we assume that M has no central abelian projections.

Proof We distinguish two cases.

Casel|n| =1.

Claim 1.1 For every A € M, ®(A)* = ®(A) if and only if A* = A.

Proof Let A € M and A" = A. Since || = 1 and @ preserves the second mixed triple 1 — *— product, we
have

0=d((1+n)(A=-AY) = (L e, A1) = [D(I) o D(A), D) = (1 + n)(P(A) = DA)).

It follows from 1 # —1 that ®(A)* = O(A).
Let A € Mand ®(A)* = ®(A). Since ! preserves the second mixed triple n — *—product, we have

0=07\([I o, ©(A), II)) = O ([Q(]) &, D(A), D)) = [I oy A, 1! = (1 + 1)(A - A).

By n# -1, we get A" = A.

Claim 1.2 D(Z(M)) = Z(N).

Proof For every B € N, since @ is surjective, there exists A € M such that ®(A) = B. It follows from
®(A)* = B* = B= ®(A) and Claim 1.1 that A* = A.

For every C € Z(M), we have AC = CA and

0= d([I o, A, CI)) = [®(]) o D(A), D(C)]! = [I 8, B, O(O)]! = (1 + )(BO(C) ~ D(C)B).

It follows from 1 # —1 that BO(C) = O(C)B. For every B € N, by the Cartesian decomposition, it can be
concluded that B®(C) = ®(C)B. By the arbitrariness of B, we have ®(C) € Z(N). By the arbitrariness of C,
then we have ®(Z(M)) € Z(N).

Similarly, we have ®Y(Z(N)) € Z(M), that is, Z(N) € ®(Z(M)). Thus, D(Z(M)) = Z(N).

Claim 1.3 ®(il)?> = -

Proof On the one hand, it follows from ®(il)* = —®(il) and || = 1 that

—20((1 + nI) = O(I o, il il]7) = [D(I) 8, DGI), P! = [I 8, DGI), P! = 2(1 + n)D(il)>. (1)
On the other hand,
—20((1 — n)I) = O([il o, L, I1]) = [©(il) o, D), I]] = [(1 = PN, 1] = 2(1 — DG, 2)

By comparing equations (1) and (2), we get ®(i)* = —I.
Claim 1.4 For every A;, A; € M?, we have

CD(Al + ZAQ) = (D(Al) + q)(lI)q)(Az)

Proof Since @ is surjective, there exist operators By, B, € M” such that P(A; + iA;) = O(By) + iD(B,).
Let A € M. It follows from [il e, il, Al = 2(n — 1)A and Theorem 2.1 that

20((n = 1)A) = D2(n — 1)A) = O([il o, il, A]!) = [D(il) o, D(il), D(A)]! = 2( = DD(A).

Thus, ®((n — 1)A) = (n — 1)@(A). By Theorem 2.1, ®(nA) = nd(A).
Let A € M". It follows from [[ e, A, il]! = 0 that

0=D([ e, A,illl) = [D(I) o, D(A), P! = [I o, D(A), DED]! = (1 + N)(P(A)D(I) — DEDD(A)).
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Thus ®(A)D(il) = PE)DP(A). So D(B1)D(I) = O(E)D(B1) and O(B)D(il) = OEID(B,).
It follows from [il e, (A1 +iA»), il = 2(n — 1)iA; that
D(2(n - 1)iAz)
= O([il o) (A1 + iAr),il]]) = [D(]) o, D(A; + iAp), D(D)]!
= [©(i) 8 (D(B1) + i®(By)), P(D)]!
= 2(n — 1)i®(By).
By @((n - 1)A) = (n — 1)®(A) and 1 # 1, we have ®(iA;) = iD(B,).
By ®(A1) + ©(iAr) = P(A; +iAy) = P(By) + iP(B,), we have ©(A;) = P(By). It follows from Theorem 2.1
and [il e, (A1 + iAz), 11! = 2(n — 1)A; that
20((n - 1 Az) = P(2(n — 1)Az2)
= ([l o, (A1 +iAy), I1)) = [D(i]) o) D(A; + iA2), D]
= [(1 = MOGI)(D(B1) + i®(By)), I1!
= =2i(n — 1)D@)D(B,).
It follows from @((—1)A) = (1—1)®(A) that ©(Ay) = —iD(I)D(B,). By ®(il)? = —I,50 i®(By) = O(i[)D(A,).
Therefore,
DA + lAz) = (D(Al) + cD(lAz) = (D(Al) + lq)(Bz) = CD(Al) + @(ll)@(Az)

Claim 1.5 For every A, B € M, we obtain ®(A)* = ®(A)* and P(AB) = D(A)D(B).

Proof There exist operators A;,A; € M? such that A = A; + iA,. By Claims 1.1 and 1.4, we have
O(A") = D(A1 —iA2) = D(A1) — D(iA2) = (A1) — DIND(A2) = (P(A1) + PED(Az))" = D(A)".

It follows from Theorem 2.1, Claims 1.4 and 1.3 that

DO(iA) = D(IA1 — Ay) = OENDP(A1) — D(Ay) = DU (DP(A1) + DEDP(AL)) = DED(A).

It follows from [I e, A, B]! = (1 + )(AB — BA") that

®((1+n)(AB — BA")) = O([I & A, BI) = [(I]) &, D(A), D(B)]! = (1 + n)(D(A)D(B) — D(B)D(A)").
By the proceeding results, we get
D(AB — BA™) = ®(A)D(B) — D(B)P(A)" = D(A)D(B) — D(B)D(AY). 3
Replacing A with iA in equation (3), we have ®((iA)B — B(iA)*) = P(IA)P(B) — ©(B)P(iA)". It follows from
D(iA) = DUED(A) that
OI)D(AB + BAY)
= O(i(AB + BA")) = O((iA)B — B(iA)") = P(iA)D(B) — O(B)D(iA)*
= O DP(A)D(B) — D(B)(DE)D(A))" = DEDP(A)D(B) + OED(B)D(A)
= OI)(D(A)D(B) + P(B)D(AY)).
By Claim 1.3, we get
®D(AB + BA") = ©(A)D(B) + O(B)D(A"). 4)

By combining equations (3) and (4), we obtain ®(AB) = ®(A)P(B).

Claim 1.6 For every A € Rand A € M, we have ®(1A) = AP(A) and D(iA) = iD(A).

Proof For every rational number g, by Theorem 2.1, we have @(gl) = gl. Let E be a positive element in M.
Then there exists an operator B € M” such that E = B?. By Claim 1.5, ®(B) is self adjoint and ®(E) = ®(B)*.
It follows that O(E) is a positive element. So @ preserves positive elements.

There exist two sequences {a,} and {b,} of rational numbers with a, < A < b, for all n and il_r& a, =

lim b, = A. Bya, < A <b,, wegeta,l <Al < b,l. Taking the limit of the above equation, we have ®(Al) = Al

and ©(AA) = O((ADA) = D(AD(A) = AD(A). So D is real linear.
Suppose that nn = a + bi with a,b € R. It follows from Theorem 2.1 and the above result that
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ad(A) + bO(IA) = D((a + bi)A) = D(nA) = nP(A) = (a + bi)D(A) = ad(A) + biD(A).

If [n| = 1 and n # +1 are used, we have b # 0 and ®(iA) = i®(A). By Theorem 2.1, Claims 1.4, 1.5 and 1.6,
we obtain P is linear *—isomorphism.

Case 2 5| # 1.

Claim 2.1 ® preserves projections.

Proof For A € M, by ®(I) = I, we have

O((1 = [nP)A) = O([I o, I, ATY) = [@(I) o, D(I), D(A)]]) = [T o, [, D(A)])) = (1 = [n)D(A)
and
D(InlPA) = InPd(A). ®)
For A € M?, we get O((1 — [n|*)A?) = O([I o, A, Al = [®(]) ., D(A), D(A)]! = (1 = [nP)D(A)>. By Theorem
2.1, D(A%) - D(|n?A?%) = D(A)? - [n*D(A)*. By equation (5), we have @(|n|*A?) = [n*P(A)? and P(A?) = D(A)>.
For A € M?, by [[ e, A II" = (1 - [n*)A, we have
D((1 = [nP)A) = O(I 8, A, 11Y) = [I o D(A), I]] = D(A) + n®(A) — nD(A)" — [n*D(A)".

So (17 + INP*)(®(A) — P(A)*) = 0. By 1 # 0 and 1 # —1, we have 11 + [n|* # 0 and D(A)* = D(A).

For every projection P € M, we have P? = P = P*. From the proceeding results, ®(P)> = ®(P) = O(P)".
Thus ®(P) is a projection in N. Therefore, ® preserves projections.

Let Qr = @(Px), k = 1,2. Then Qy is a projectionin N. Let Ny = QeNQy, k,1=1,2. So N = Zl%,l=1 Nyu. For
every A € N, we can write A = Z%,l:l Ap with Ay € Ny. It follows from P; = 0 and P; =1 that Q; = 0 and

@ = ]. Furthermore, % =0and @ =1
Claim 2.2 D(My) = N, k,1=1,2and k # 1.
Proof For every Ay € My, it follows from [I e, Py, STWAH]? = Ay that

D) = D1 o Py, - Aull) = 1900) o 9P, A AN = 10y Qo - A!

1
1+7

_ 1
= (1 +n)Qkd( Ap) —n(1 + U)Q(mAkl)Qk-
Multiplying the above equation by Q; from left side and Q; from right side yields, Q;®(Ax)Q; = 0.
Similarly, we can prove Qr®(Ax)Qx = 0.
Let ®(Ay) = By + By, with By € Ny, By € Ny. It follows from [I . Ap, Pk]:] = 0 that

0 = O([I o, A, Pi]!) = [D(]) o D(Ajr), D(Py)]!
= [ o D(Ap), Q! = (1 + MD(An)Qk — (1 + NQAUP(As)*
= (1 +n)(Bx + Bi)Qx — (1 + 1)Qx (B + Bi)* = (1 + By — n(1 + ) By
This implies that (1 + 17)By = n(1 + 1)B), and By = 0. Thus ®(Ay) = By € Ny. Due to the arbitrariness of
Akl/ we have (D(Mkl) c Nkl-
By considering ®~!, we can get ®~1(Ny) € My. Hence @(My) = Ni.

Claim 2.3 (M) = N, k=1,2.
Proof For every Ay € My, supposel =1,2 and [ # k. Then

0= D([I o, P, Al!) = [D(I) o D(P1), P(Ar)I! = [1 o Q1 P(Aw)]! = (1 + MQP(Awe) — (1 + P(Ar) Q-

So QiO(Aw)Qx = Q@A) Q1 = QP(Aw)Qr = 0 and P(Ay) = QkP(Axk)Qx € Nik. By the arbitrariness of
A, we have O(Myi) € Ni.

By considering ®~!, we can get @~} (Ni) € M. Hence (M) = Ni.

Claim 2.4 For every A, B € M, we have ®(AB) = ®(A)D(B).

Proof By Theorem 2.1, just need to prove
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D(AuBgh) = P(A)P(Bgn), k,1, 9,1 = 1,2.

If I # gis used, it follows from Lemma 2.1, Claims 2.2 and 2.3 that ®(AyB;) = 0 = ®(Ap)P(Bg).
By q)(Bkl)CD(Akk)* = 0, we have

O(AkBi) — @By, Ay) = D([Awk o Bia, 117) = O(A)P(Bir) — nP(Bi) P(Axi)*-

Thus ®(ABu) — P(Aw)P(Bu) = ©(1nB;,A},) — N1P(Br) P(Axk)".

By @(AxBii) — P(Aw)P(Bir) € Nig and (1B, Ar,) — 1P(Bi) P(Awk)” € Nk, s0 ©(AwcBrr) — P(Ai)@(Bu) = 0.
That is, ®(AwBy) = P(Aw)P(Bg).

For every Ty € Ny, k # 1, there exists an operator Cy; € My such that Ty = ©(Cy). Thus O(AuBi)Tu =
O(ABir)P(Crr) = P(ArBirCrr) = P(Are) (B Crar) = P(Apie) P(Bii)P(Cri) = P(Aii)P(Biw) Tia- For every T € N,
then (P(AxBik) — P(A)P(Bi))TQ; = 0. It follows from Lemma 1.2 that ®(AxBir) = (A )P (Bik)-

By ®(Bj)®(A;,) = 0 and ©(A;))P(By) = 0, we have

O(AuBi) — D(nI*BiA) = P([Au o, I, Bi]!) = [P(Ax) o, D), P(By)]!
= [D(Au) o, [, DBy)I! = P(A)D(By) — [P (By)P(As).

That is, ®(AuBi) — P(nPBiAk) = P(Au)P(By) — InPD(Br)P(Ag).
Combining equation (5), it can be concluded that

D(ABir) — P(Ax)P(Brr) = (nI*BiAu) — INPPP(Bu)P(Ax)
= [nPO(BiAn) — INFOBr)P(Au) = INF(P(BrAx) — P(Br)P(Ax)).

It follows from Claims 2.2 and 2.4 that ®(AyBj) — P(Ax)P(By) € Nk and D(ByAx) — P(By)DP(Ax) € Nj.
Thus ®(ABjx) — ©(Ax)P(Bj) = 0. That is, ®(AxBix) = ©(Ax)P(B)-
For every Ty € Ny, k # 1, there exists an operator Sj € My, such that Ty, = ®(S;). Hence

D(ABy) Ty = D(AuBi)P(Tik) = P(Aw)P(Bi)P(Sik) = P(AuBiuSi) = P(Ax)P(By) T

For every T € N, then (®(AuBjy) — P(Ax)P(By)TQx = 0. It follows from Lemma 1.2 that ®(AyBy) =
D(Aw)P(Bir).

Claim 2.5 ® is a sum of a linear *—isomorphism and a conjugate linear *—isomorphism.

Proof For every A € M, we have A = A; + iA; with A;, A, € M®. It follows from Claim 2.1 that ®
preserves self adjoint elements. It follows from ®(il)* = —®(il), Claims 2.2 and 2.4 that

O(A") = O(A; —iA2) = D(A1) — D((i)Az) = D(A1) — PEDD(A2)
= O(A1)" + OUI)'D(A2)" = D(A1)" + (P(A2)D())*
= O(A1)" + D(iAr)" = (A1 +iAs)*
= O(A)".

By Claim 2.4 and Theorem 2.1, we have ®(i)* = ®((il)?) = O(-I) = -D(I) = —I.

For any rational number g, by Theorem 2.1, we have ®(gl) = gI. For any positive element A in M, there
exists an operator B € M” such that A = B2. By Claim 2.4, ®(A) = ®(B)?, where ®(B) is a self adjoint element.
Thus ®(A) is a positive element in N.

For any A € R, there exist two rational sequences {a,} and {b,} such thata, < A < b, for all n and
lima, = }g{}o b, = A. By a,I < Al < b,l, we have a,I < ®(Al) < b,I. Taking the limit of the above equation,

n—oo

we get D(Al) = AL For every A € M, by Claim 2.4, we have
D(AA) = D((ADA) = D(ADD(A) = AD(A).

It follows from Theorem 2.1 that @ is real linear.
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LetF = 1_12& Then F? = w =Fand F* = % = F . Thus F is a projection in N. For every
B € N, there exists an operator C € M such that B = ®(C). It follows from Claim 2.4 that

_ BI — iBD(il) _ B —i®(C)D(il) _ B —i®(iC)

BF 2 2 2
_ B—i®((i)C) B —id@)P(C)  IB—id(il)B
h 2 h 2 B 2

=FB.

Then F is a central projection in N.
Let E = @~ !(F). It follows from Claim 2.1 that E is a central projection in M.
For every A € M, by Claim 2.4, we get

D(AE) = D(A)D(E)D(il) = iD(A)FQF — I) = i®(A)F = id(A)D(E) = i®(AE),
OA(I - E)) = O(A)D(I — EYD(I) = —i®(A)(I - F)(I — 2F) = —id(A)(I - F) = —i®(A(I - E)).

It follows from Claim 2.4 that @ is a linear *—isomorphism restricted to ME and @ is a conjugate linear
+—isomorphism restricted to M(I — E).
Thus the proof is completed.

Acknowledgements
The authors are grateful to the anonymous referees and editors for their work.

References

[1] Z.Bai, S. Du, Maps preserving products XY — YX* on von Neumann algebras, ]. Math. Anal. Appl. 386 (2012), 103-109.
[2] L. Dai, F. Lu, Nonlinear maps preserving Jordan +— products, ]. Math. Anal. Appl. 409 (2014), 180-188.
[3] D.Huo, B. Zheng, H. Liu, Nonlinear maps preserving Jordan triple 1 — +— products, ]. Math. Anal. Appl. 430 (2015), 830-844.
[4] D.Huo, H. Liu, Nonlinear maps preserving Jordan multiple 1 — +— products, Adv. Math.(China). 50 (2021), 214-230.
[5] C.Li, F Lu, Nonlinear maps preserving the Jordan triple 1 — +— product on von Neumann algebras, Complex Anal. Oper. Theory. 11
(2017), 109-117.
[6] C.Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735.
[7] Y. Pang, D. Zhang, D. Ma, Nonlinear maps preserving mixed Jordan triple n— products on von Neumann Algebras, Shandong Univ.(in
Chinese) 56 (2021), 41-47+55.
[8] P. Semrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), 1105-1113.
[9] F. Zhang, Nonlinear maps preserving the mixed triple +— product between factors, Filomat. 37 (2023),2397-2403.
[10] E. Zhang, X. Zhu, Nonlinear Jordan triple differentiable mappings on factor von Neumann algebras, ]. Math. Phy. 41 (2021),978-988.
[11] E. Zhang, X. Zhu, Nonlinear mappings preserving mixed triple 1 — +— products on von Neumann algebras, Journal of Central China
Normal Univ.(Nat. Sci. ), in Chinese. 56 (2022), 739-745.
[12] Y. Zhao, C. Li, Q. Chen, Nonlinear maps preserving mixed product on factors, B. Iran Math. Soc. 47 (2021), 1325-1335.



