

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Nonlinear maps preserving the second mixed triple η - *- product between von Neumann algebras

Yongfeng Pang^{a,*}, Huihui Yue^a, Yawei Du^a

^a School of Science, Xi'an University of architecture and technology, Xi'an 710055, P. R. China

Abstract. Let $\eta \neq \pm 1$ be a non-zero scalar, and let Φ be a not necessarily linear bijection between two von Neumann algebras, one of which has no center abelian projections, satisfying $\Phi(I) = I$ and $\Phi(iI)^* = -\Phi(iI)$ and preserving the second mixed triple $\eta - *-$ product. It is showed that Φ is a linear *-isomorphism if $|\eta| = 1$ and Φ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism if $|\eta| \neq 1$.

1. Introduction

In recent years, an intense research activity has been addressed to study not necessarily linear mappings between von Neumann algebras preserving the η – *– product or some of its variants. The origins of the Jordan η – *– product go back to [8], where Šemrl introduced and studied the Jordan (–1) – *– product in relation to quadratic functionals. More recently, Bai and Du [1] established that any bijective map between von Neumann algebras without central abelian projections preserving the Jordan (–1) – *– product is a sum of a linear and a conjugate linear *–isomorphisms.

Let \mathcal{M} and \mathcal{N} be von Neumann algebras, and $\Phi: \mathcal{M} \to \mathcal{N}$ be a not necessarily linear bijection between two von Neumann algebras, one of which has no central abelian projections. In [2], Dai and Lu proved that if Φ satisfies $\Phi(AB + \eta BA^*) = \Phi(A)\Phi(B) + \eta\Phi(B)\Phi(A^*)$ for all $A, B \in \mathcal{M}$, then Φ is a linear *- isomorphism if η is not real and Φ is a sum of a linear *-isomorphism and a conjugate linear *- isomorphism if η is real. In [3], Huo et al. proved that if Φ preserves the Jordan triple η - *- product and $\Phi(I) = I$, then Φ is a linear *-isomorphism if η is not real and Φ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism if η is real. In [11], Zhang et al. established that if $\eta \neq -1$ and Φ satisfies

$$\Phi([A,B]^\eta_*\bullet_\eta C)=[\Phi(A),\Phi(B)]^\eta_*\bullet_\eta\Phi(C),$$

for all $A, B, C \in \mathcal{M}$ and $\Phi(I) = I, \Phi(iI)^* = -\Phi(iI)$, then one of the following statements holds: when $|\eta| = 1$, then Φ is a linear *-isomorphism; when $|\eta| \neq 1$, then Φ is a sum of a linear *-isomorphism and a conjugate linear *- isomorphism. More research on the Jordan and Lie derivable mappings can be found in [4-7,9-12].

²⁰²⁰ Mathematics Subject Classification. Primary 47B48; Secondary 46L10.

Keywords. keywords, von Neumann algebras, The second mixed triple $\eta - *-$ product, Isomorphism.

Received: 14 September 2024; Accepted: 14 October 2024

Communicated by Dragan S. Djordjević

Research supported by National Natural Science Foundation of China (12061031) and Natural Science Foundation of Shaanxi Province (No.2023-JC-YB-627).

^{*} Corresponding author: Yongfeng Pang

Email addresses: pangyongfengyw@xauat.edu.cn (Yongfeng Pang), 1916902937@qq.com (Huihui Yue), 2432469910@qq.com (Yawei Du)

ORCID iDs: https://orcid.org/0000-0002-4764-6699 (Yongfeng Pang), https://orcid.org/0009-0006-0960-1840 (Huihui Yue), https://orcid.org/0009-0007-5576-949X (Yawei Du)

Let \mathcal{M} be a *-algebra and η be a non-zero scalar. For $A,B,C\in\mathcal{M}$, define the Jordan $\eta-*-$ product of A and B by $A\bullet_{\eta}B=AB+\eta BA^*$, the Lie $\eta-*-$ product of B and C by $[B,C]_*^{\eta}=BC-\eta CB^*$, respectively. The mixed triple $\eta-*-$ products have two cases which are related with the triple $\eta-*-$ products $[A,B]_*^{\eta}\bullet_{\eta}C$ and $[A\bullet_{\eta}B,C]_*^{\eta}$ for all A,B and C in M. In order to distinguish the mixed triple $\eta-*-$ products, the mixed triple $\eta-*-$ product $[A\bullet_{\eta}B,C]_*^{\eta}$ is called the second mixed triple $\eta-*-$ product. Motivated by these studies, this paper will discuss nonlinear mappings preserving the second mixed triple $\eta-*-$ product between von Neumann algebras.

Let us fix some notations and terminologies. Let $\mathbb R$ and $\mathbb C$ denote the real number field and the complex number field, respectively. Let i denote the imaginary unit. Throughout, all algebras and spaces are over the complex number field $\mathbb C$. A von Neumann algebra $\mathcal M$ is a weakly closed, self adjoint algebra of operators on a complex Hilbert $\mathcal H$ containing the identity operator I. The set $\mathcal L(\mathcal M) = \{S \in \mathcal M: ST = TS \text{ for all } T \in \mathcal M\}$ is called the center of $\mathcal M$. A projection P is called a center abelian projection if $P \in \mathcal L(\mathcal M)$ and PMP is abelian. The center carrier of A, denoted by \overline{A} , is the smallest center projection P satisfying PA = A. If P is a projection, it is clear that P is the largest central projection P satisfying P is a projection, it is clear that P is the largest central projection P satisfying P is a projection P is said to be core-free if P is easy to see that P if and only if P if P if P if and only if P is a projection P is positive if and only if there exists P in P is P if and only if there exists P in P is P if and only if there exists P in P is P if and only if there exists P in P is P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if and only if there exists P in P is an P if an P in P in P in P in P in P is an P in P

Lemma 1.1([3], Lemma 1.1) Let \mathcal{M} be a von Neumann algebra without central abelian projections. Then there exists a projection P with P = 0 and $\overline{P} = I$.

Lemma 1.2([2], Lemma 1.2) Let \mathcal{M} be a von Neumann algebra on a Hilbert space \mathcal{H} . Let \mathcal{A} be an operator in \mathcal{M} and \mathcal{P} a projection with $\overline{\mathcal{P}} = \mathcal{I}$.

- (1) If ABP = 0 for all $B \in \mathcal{M}$, then A = 0;
- (2) If η is a non-zero scalar and $(PT(I-P)) \bullet_{\eta} A = 0$ for all $T \in \mathcal{M}$, then A(I-P) = 0.

2. Additivity

The main result in this section reads as follows.

Theorem 2.1 Let \mathcal{M} and \mathcal{N} be two von Neumann algebras, one of which has no center abelian projections. Let $\eta \neq \pm 1$ be a non-zero scalar, and let $\Phi : \mathcal{M} \to \mathcal{N}$ be a not necessarily linear bijection. Suppose that Φ preserves the second mixed triple $\eta - *-$ product. Then Φ is additive.

In the following, let $\mathcal{M}^a = \{A \in \mathcal{M} : A^* = A\}$, $\mathcal{N}^a = \{B \in \mathcal{N} : B^* = B\}$. Without loss of generality, we assume that \mathcal{M} has no central abelian projections. It follows from Lemma 1.1 that there exists a projection $P_1 \in \mathcal{M}$ such that $P_1 = 0$ and $\overline{P_1} = I$. Set $P_2 = I - P_1$. Then P_2 is a projection in \mathcal{M} and $\underline{P_2} = 0$ and $\overline{P_2} = I$. Denote $\mathcal{M}_{kl} = P_k \overline{\mathcal{MP}_l}$, k, l = 1, 2.

The proof will be organized in some lemmas.

Lemma 2.1 $\Phi(0) = 0$.

Proof. By the surjectivity of Φ , there exists $A \in \mathcal{M}$ such that $\Phi(A) = 0$. Since Φ preserves the second mixed triple $\eta - *-$ product, we have

$$\Phi(0) = \Phi([0 \bullet_{\eta} A, A]_{*}^{\eta}) = [\Phi(0) \bullet_{\eta} \Phi(A), \Phi(A)]_{*}^{\eta} = 0.$$

Lemma 2.2 For every $A_{12} \in \mathcal{M}_{12}$, $A_{21} \in \mathcal{M}_{21}$, we have

$$\Phi(A_{12}+A_{21})=\Phi(A_{12})+\Phi(A_{21}).$$

Proof. Since Φ is surjection, there exists an operator $X = \sum_{k,l=1}^{2} X_{kl} \in \mathcal{M}$ such that $\Phi(X) = \Phi(A_{12}) + \Phi(A_{21})$. For every $\lambda \in \mathbb{C}$, by $[I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\bar{\lambda}}{\bar{\eta}} P_{2}}{1 + \eta}, A_{12}]_{*}^{\eta} = 0$, then $[I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\bar{\lambda}}{\bar{\eta}} P_{2}}{1 + \eta}, A_{12}]_{*}^{\eta} = [I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\bar{\lambda}}{\bar{\eta}} P_{2}}{1 + \eta}, A_{21}]_{*}^{\eta}$, and $\Phi([I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\bar{\lambda}}{\bar{\eta}} P_{2}}{1 + \eta}, A_{12}]_{*}^{\eta}) = 0$.

It follows from Lemma 2.1 that

$$\Phi([I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\lambda}{\overline{\eta}} P_{2}}{1 + \eta}, A_{21}]_{*}^{\eta})
= \Phi([I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}, A_{21}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}, A_{12}]_{*}^{\eta})
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}), \Phi(A_{21})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}), \Phi(A_{12})]_{*}^{\eta}
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}), \Phi(A_{21}) + \Phi(A_{12})]_{*}^{\eta}
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}), \Phi(X)]_{*}^{\eta}
= \Phi([I \bullet_{\eta} \frac{\lambda P_{1} + \frac{\overline{\lambda}}{\overline{\eta}} P_{2}}{1 + \eta}, X])_{*}^{\eta}.$$

Since Φ is injection, we have $[I \bullet_{\eta} \frac{\lambda P_1 + \frac{\overline{\lambda}}{\overline{\eta}} P_2}{1 + \eta}, X]_*^{\eta} = [I \bullet_{\eta} \frac{\lambda P_1 + \frac{\overline{\lambda}}{\overline{\eta}} P_2}{1 + \eta}, A_{21}]_*^{\eta}$, that is, $(\lambda - \eta \overline{\lambda}) X_{11} + (\frac{\overline{\lambda}}{\overline{\eta}} - \eta \overline{\lambda}) X_{21} + (\frac{\overline{\lambda}}{\overline{\eta}} - \lambda) X_{22} = (\frac{\overline{\lambda}}{\overline{\eta}} - \eta \overline{\lambda}) A_{21}$.

If $|\eta| \neq 1$, multiplying the above equation by P_2 from left side and P_1 from right side, we obtain $\overline{\lambda}(\frac{1}{\overline{\eta}} - \eta)X_{21} = \overline{\lambda}(\frac{1}{\overline{\eta}} - \eta)A_{21}$. It follows from $|\eta| \neq 1$ that $\frac{1}{\overline{\eta}} - \eta \neq 0$ and $\overline{\lambda}X_{21} = \overline{\lambda}A_{21}$. Hence by the arbitrariness of λ , $X_{21} = A_{21}$. So $(\frac{\overline{\lambda}}{\overline{\eta}} - \eta\overline{\lambda})X_{11} + (\frac{\overline{\lambda}}{\overline{\eta}} - \eta\overline{\lambda})X_{22} = 0$ and $\overline{\lambda}X_{11} + \overline{\lambda}X_{22} = 0$. It follows from the arbitrariness of λ that $X_{11} = 0$ and $X_{22} = 0$.

If
$$|\eta| = 1$$
, then $\frac{1}{\overline{n}} - \eta = 0$ and $(\lambda - \eta \overline{\lambda})X_{11} + (\frac{\overline{\lambda}}{\overline{n}} - \lambda)X_{22} = 0$.

Multiplying the above equation by P_1 from left side, we get $(\lambda - \eta \overline{\lambda})X_{11} = 0$. So by the arbitrariness of λ , $X_{11} = 0$.

Multiplying the above equation by P_2 from right side, we get $(\frac{\overline{\lambda}}{\overline{\eta}} - \lambda)X_{22} = 0$. So by the arbitrariness of λ , $X_{22} = 0$.

It follows from $[A_{12} \bullet_{\eta} (\lambda P_1), I]_*^{\eta} = 0$ and Lemma 2.1 that

$$\Phi([A_{21} \bullet_{\eta} (\lambda P_{1}), I]_{*}^{\eta})
= \Phi([A_{21} \bullet_{\eta} (\lambda P_{1}), I]_{*}^{\eta}) + \Phi([A_{12} \bullet_{\eta} (\lambda P_{1}), I]_{*}^{\eta})
= [\Phi(A_{21}) \bullet_{\eta} \Phi(\lambda P_{1}), \Phi(I)]_{*}^{\eta} + [\Phi(A_{12}) \bullet_{\eta} \Phi(\lambda P_{1}), \Phi(I)]_{*}^{\eta}
= [(\Phi(A_{21}) + \Phi(A_{12})) \bullet_{\eta} \Phi(\lambda P_{1}), \Phi(I)]_{*}^{\eta}
= [\Phi(X) \bullet_{\eta} \Phi(\lambda P_{1}), \Phi(I)]_{*}^{\eta}
= \Phi([X \bullet_{\eta} (\lambda P_{1}), I]_{*}^{\eta}).$$

Since Φ is injection, this implies that $[X \bullet_{\eta} (\lambda P_1), I]_*^{\eta} = [A_{21} \bullet_{\eta} (\lambda P_1), I]_*^{\eta}$. Then $(\lambda - \eta^2 \lambda) X_{21} + \eta(\lambda - \overline{\lambda}) X_{21}^* = (\lambda - \eta^2 \lambda) A_{21} + \eta(\lambda - \overline{\lambda}) A_{21}^*$. Thus we get $X_{21} = A_{21}$. Similarly, we can prove $X_{12} = A_{12}$.

Therefore, $\Phi(A_{12} + A_{21}) = \Phi(X) = \Phi(A_{12}) + \Phi(A_{21})$.

Lemma 2.3 For every $A_{kk} \in \mathcal{M}_{kk}$, $A_{kl} \in \mathcal{M}_{kl}$, $1 \le k \ne l \le 2$, we have

$$\Phi(A_{kk} + A_{kl}) = \Phi(A_{kk}) + \Phi(A_{kl}).$$

Proof By the surjectivity of Φ , we can find an operator $X = \sum_{k,l=1}^{2} X_{kl} \in \mathcal{M}$ such that $\Phi(X) = \Phi(A_{kk}) + \Phi(A_{kl})$. For every $\lambda \in \mathbb{C}$, by $[I \bullet_{\eta} \frac{\lambda P_l}{1+\eta}, A_{kk}]_*^{\eta} = 0$ and Lemma 2.1, we have

$$\Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, A_{kl}]_{*}^{\eta})
= \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, A_{kl}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, A_{kk}]_{*}^{\eta})
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{kl})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{kk})]_{*}^{\eta}
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{kl}) + \Phi(A_{kk})]_{*}^{\eta}
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(X)]_{*}^{\eta}
= \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, X]_{*}^{\eta}).$$

Since Φ is injection, we have $[I \bullet_{\eta} \frac{\lambda P_{l}}{1+\eta}, X]_{*}^{\eta} = [I \bullet_{\eta} \frac{\lambda P_{l}}{1+\eta}, A_{kl}]_{*}^{\eta}$ and $\lambda X_{lk} + (\lambda - \eta \overline{\lambda})X_{ll} - \eta \overline{\lambda}X_{kl} = -\eta \overline{\lambda}A_{kl}$.

Multiplying the above equation by P_k from left side, then $-\eta \overline{\lambda} X_{kl} = -\eta \overline{\lambda} A_{kl}$. By the arbitrariness of λ , $X_{kl} = A_{kl}$. Consequently, $\lambda X_{lk} + (\lambda - \eta \overline{\lambda}) X_{ll} = 0$. Thus we get $X_{lk} = 0$ and $X_{ll} = 0$.

It follows from $[I \bullet_{\eta} \frac{\lambda P_k + \frac{\overline{\lambda}}{\overline{\eta}} P_l}{1 + \eta}, A_{kl}]_*^{\eta} = 0$ and Lemma 2.1 that

$$\Phi([I \bullet_{\eta} \frac{\lambda P_{k} + \frac{\lambda}{\overline{\eta}} P_{l}}{1 + \eta}, A_{kk}]_{*}^{\eta})
= \Phi([I \bullet_{\eta} \frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}, A_{kk}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}, A_{kl}]_{*}^{\eta})
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}), \Phi(A_{kk})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}), \Phi(A_{kl})]_{*}^{\eta}
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}), \Phi(A_{kk}) + \Phi(A_{kl})]_{*}^{\eta}
= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}), \Phi(X)]_{*}^{\eta}
= \Phi([I \bullet_{\eta} \frac{\lambda P_{k} + \frac{\overline{\lambda}}{\overline{\eta}} P_{l}}{1 + \eta}, X]_{*}^{\eta}).$$

Since Φ is injection, we get $[I \bullet_{\eta} \frac{\lambda P_k + \frac{\overline{\lambda}}{\overline{\eta}} P_l}{1+\eta}, X]_*^{\eta} = [I \bullet_{\eta} \frac{\lambda P_k + \frac{\overline{\lambda}}{\overline{\eta}} P_l}{1+\eta}, A_{kk}]_*^{\eta}$. Substituting $X_{lk} = 0$ and $X_{ll} = 0$ into the above equation, we get $(\lambda - \eta \overline{\lambda})X_{kk} = (\lambda - \eta \overline{\lambda})A_{kk}$. So $X_{kk} = A_{kk}$. Therefore, $\Phi(A_{kk} + A_{kl}) = \Phi(X) = \Phi(A_{kk}) + \Phi(A_{kl})$.

Similarly, $\Phi(A_{ll} + A_{kl}) = \Phi(A_{ll}) + \Phi(A_{kl})$.

Lemma 2.4 For every $A_{kk} \in \mathcal{M}_{kk}$, $A_{lk} \in \mathcal{M}_{lk}$ and $A_{kl} \in \mathcal{M}_{kl}$, $1 \le k \ne l \le 2$, we have

$$\Phi(A_{kk} + A_{kl} + A_{lk}) = \Phi(A_{kk}) + \Phi(A_{kl}) + \Phi(A_{lk}).$$

Proof Since Φ is surjective, there exists an operator $X = \sum_{k,l=1}^{2} X_{kl} \in \mathcal{M}$ such that $\Phi(X) = \Phi(A_{kk}) + \Phi(A_{kl}) + \Phi(A_{kl})$

 $\Phi(A_{lk})$. For every $\lambda \in \mathbb{C}$, it follows from Lemmas 2.1 and 2.2 that

$$\begin{split} &\Phi(\lambda X_{lk} - \eta \overline{\lambda} X_{kl} + (\lambda - \eta \overline{\lambda}) X_{ll}) \\ &= \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, X]_{*}^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(X)]_{*}^{\eta} \\ &= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{kk}) + \Phi(A_{kl}) + \Phi(A_{lk})]_{*}^{\eta} \\ &= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{kk})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{kl})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{l}}{1 + \eta}), \Phi(A_{lk})]_{*}^{\eta} \\ &= \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, A_{kk}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, A_{kl}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{l}}{1 + \eta}, A_{lk}]_{*}^{\eta}) \\ &= \Phi(-\eta \overline{\lambda} A_{kl}) + \Phi(\lambda A_{lk}) \\ &= \Phi(\lambda A_{lk} - \eta \overline{\lambda} A_{kl}). \end{split}$$

Since Φ is injection, we get $\lambda X_{lk} - \eta \overline{\lambda} X_{kl} + (\lambda - \eta \overline{\lambda}) X_{ll} = \lambda A_{lk} - \eta \overline{\lambda} A_{kl}$. Thus $X_{kl} = A_{lk}$, $X_{lk} = A_{lk}$ and $X_{ll} = 0$. It follows from Lemma 2.3 and $[I \bullet_{\eta} \frac{\overline{\lambda}}{\eta} P_{k} + \lambda P_{l} \over 1 + \eta}, A_{lk}]_{*}^{\eta} = 0$ that

$$\begin{split} &\Phi((\frac{\overline{\lambda}}{\overline{\eta}}-\lambda)X_{kk}+(\frac{\overline{\lambda}}{\overline{\eta}}-\eta\overline{\lambda})X_{kl})\\ &=\Phi([I\bullet_{\eta}\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta},X]_{*}^{\eta})=[\Phi(I)\bullet_{\eta}\Phi(\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta}),\Phi(X)]_{*}^{\eta}\\ &=[\Phi(I)\bullet_{\eta}\Phi(\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta}),\Phi(A_{kk})+\Phi(A_{kl})+\Phi(A_{lk})]_{*}^{\eta}\\ &=[\Phi(I)\bullet_{\eta}\Phi(\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta}),\Phi(A_{kk})]_{*}^{\eta}+[\Phi(I)\bullet_{\eta}\Phi(\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta}),\Phi(A_{kl})]_{*}^{\eta}+[\Phi(I)\bullet_{\eta}\Phi(\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta}),\Phi(A_{kk})]_{*}^{\eta}\\ &=\Phi([I\bullet_{\eta}\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta},A_{kk}]_{*}^{\eta})+\Phi([I\bullet_{\eta}\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta},A_{lk}]_{*}^{\eta})+\Phi([I\bullet_{\eta}\frac{\overline{\lambda}}{\overline{\eta}}P_{k}+\lambda P_{l}}{1+\eta},A_{lk}]_{*}^{\eta})\\ &=\Phi((\frac{\overline{\lambda}}{\overline{\eta}}-\lambda)A_{kk})+\Phi((\frac{\overline{\lambda}}{\overline{\eta}}-\eta\overline{\lambda})A_{kl})\\ &=\Phi((\frac{\overline{\lambda}}{\overline{\eta}}-\lambda)A_{kk}+(\frac{\overline{\lambda}}{\overline{\eta}}-\eta\overline{\lambda})A_{kl}). \end{split}$$

This implies that $(\frac{\overline{\lambda}}{\overline{\eta}} - \lambda)X_{kk} + (\frac{\overline{\lambda}}{\overline{\eta}} - \eta\overline{\lambda})X_{kl} = (\frac{\overline{\lambda}}{\overline{\eta}} - \lambda)A_{kk} + (\frac{\overline{\lambda}}{\overline{\eta}} - \eta\overline{\lambda})A_{kl}$. Thus, we have $X_{kk} = A_{kk}$. Therefore, $\Phi(A_{kk} + A_{kl} + A_{lk}) = \Phi(X) = \Phi(A_{kk}) + \Phi(A_{kl}) + \Phi(A_{lk})$. **Lemma 2.5** For every $A_{kl} \in \mathcal{M}_{kl}$, k, l = 1, 2, we have

$$\Phi(A_{11} + A_{12} + A_{21} + A_{22}) = \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}).$$

Proof By the surjectivity of Φ , we can find $X = \sum_{k,l=1}^{2} X_{kl} \in \mathcal{M}$ such that $\Phi(X) = \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{21})$

 $\Phi(A_{22})$. For every $\lambda \in \mathbb{C}$, it follows from $[I \bullet_{\eta} \frac{\lambda P_1}{1+\eta}, A_{22}]_*^{\eta} = 0$ and Lemma 2.4 that

$$\begin{split} &\Phi((\lambda - \eta \overline{\lambda})X_{11} + \lambda X_{12} - \eta \overline{\lambda}X_{21}) \\ &= \Phi([I \bullet_{\eta} \frac{\lambda P_{1}}{1 + \eta}, X]_{*}^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1}}{1 + \eta}), \Phi(X)]_{*}^{\eta} \\ &= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1}}{1 + \eta}), \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22})]_{*}^{\eta} \\ &= [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1}}{1 + \eta}), \Phi(A_{11})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1}}{1 + \eta}), \Phi(A_{12})]_{*}^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1}}{1 + \eta}), \Phi(A_{21})]_{*}^{\eta} \\ &+ [\Phi(I) \bullet_{\eta} \Phi(\frac{\lambda P_{1}}{1 + \eta}), \Phi(A_{22})]_{*}^{\eta} \\ &= \Phi([I \bullet_{\eta} \frac{\lambda P_{1}}{1 + \eta}, A_{11}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{1}}{1 + \eta}, A_{12}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{1}}{1 + \eta}, A_{21}]_{*}^{\eta}) + \Phi([I \bullet_{\eta} \frac{\lambda P_{1}}{1 + \eta}, A_{21}]_{*}^{\eta}) \\ &= \Phi((\lambda - \eta \overline{\lambda})A_{11}) + \Phi(\lambda A_{12}) + \Phi(-\eta \overline{\lambda}A_{21}) \\ &= \Phi((\lambda - \eta \overline{\lambda})A_{11} + \lambda A_{12} - \eta \overline{\lambda}A_{21}). \end{split}$$

This implies that $(\lambda - \eta \overline{\lambda})X_{11} + \lambda X_{12} - \eta \overline{\lambda}X_{21} = (\lambda - \eta \overline{\lambda})A_{11} + \lambda A_{12} - \eta \overline{\lambda}A_{21}$.

Multiplying the above equation by P_1 from left side and P_1 from right side, we have $(\lambda - \eta \overline{\lambda})X_{11} = (\lambda - \eta \overline{\lambda})A_{11}$. By the arbitrariness of λ , $X_{11} = A_{11}$. So $\lambda X_{12} - \eta \overline{\lambda} X_{21} = \lambda A_{12} - \eta \overline{\lambda} A_{21}$.

Multiplying the above equation by P_1 from left side, we have $\lambda X_{12} = \lambda A_{12}$. By the arbitrariness of λ , $X_{12} = A_{12}$. So $-\eta \overline{\lambda} X_{21} = -\eta \overline{\lambda} A_{21}$. Note that η is a non-zero scalar. Then we get $X_{21} = A_{21}$. Similarly, we can prove $X_{22} = A_{22}$.

Therefore, $\Phi(A_{11} + A_{12} + A_{21} + A_{22}) = \Phi(X) = \Phi(A_{11}) + \Phi(A_{12}) + \Phi(A_{21}) + \Phi(A_{22}).$

Lemma 2.6 For every A_{kl} , $B_{kl} \in \mathcal{M}_{kl}$, $1 \le k \ne l \le 2$, we have

$$\Phi(A_{kl} + B_{kl}) = \Phi(A_{kl}) + \Phi(B_{kl}).$$

Proof By $B_{kl} + A_{kl} + (-\eta A_{kl}^*) + (-\eta B_{kl} A_{kl}^*) = [I \bullet_{\eta} \frac{P_{k} + A_{kl}}{1 + \eta}, P_l + B_{kl}]_*^{\eta}$ and Lemmas 2.4, 2.3 and 2.2, we get

$$\begin{split} &\Phi(A_{kl} + B_{kl}) + \Phi(-\eta A_{kl}^*) + \Phi(-\eta B_{kl} A_{kl}^*) \\ &= \Phi(A_{kl} + B_{kl} + (-\eta A_{kl}^*) + (-\eta B_{kl} A_{kl}^*)) \\ &= \Phi([I \bullet_{\eta} \frac{P_k + A_{kl}}{1 + \eta}, P_l + B_{kl}]_*^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(\frac{P_k + A_{kl}}{1 + \eta}), \Phi(P_l + B_{kl})]_*^{\eta} \\ &= [\Phi(I) \bullet_{\eta} \Phi(\frac{P_k}{1 + \eta}) + \Phi(\frac{A_{kl}}{1 + \eta}), \Phi(P_l) + \Phi(B_{kl})]_*^{\eta} \\ &= [\Phi(I) \bullet_{\eta} \Phi(\frac{P_k}{1 + \eta}), \Phi(P_l)]_*^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{A_{kl}}{1 + \eta}), \Phi(P_l)]_*^{\eta} + [\Phi(I) \bullet_{\eta} \Phi(\frac{P_k}{1 + \eta}), \Phi(B_{kl})]_*^{\eta} \\ &+ [\Phi(I) \bullet_{\eta} \Phi(\frac{A_{kl}}{1 + \eta}), \Phi(B_{kl})]_*^{\eta} \\ &= \Phi([I \bullet_{\eta} \frac{P_k}{1 + \eta}, P_l]_*^{\eta}) + \Phi([I \bullet_{\eta} \frac{A_{kl}}{1 + \eta}, P_l]_*^{\eta}) + \Phi([I \bullet_{\eta} \frac{P_k}{1 + \eta}, B_{kl}]_*^{\eta}) + \Phi([I \bullet_{\eta} \frac{A_{kl}}{1 + \eta}, B_{kl}]_*^{\eta}) \\ &= \Phi(A_{kl}) + \Phi(-\eta A_{kl}^*) + \Phi(B_{kl}) + \Phi(-\eta B_{kl} A_{kl}^*). \end{split}$$

That is, $\Phi(A_{kl} + B_{kl}) = \Phi(A_{kl}) + \Phi(B_{kl})$.

Lemma 2.7 For every A_{kk} , $B_{kk} \in \mathcal{M}_{kk}$, k = 1, 2, we have

$$\Phi(A_{kk} + B_{kk}) = \Phi(A_{kk}) + \Phi(B_{kk}).$$

Proof Since Φ is surjective, there exists an operator $X = \sum_{k,l=1}^{2} X_{kl} \in \mathcal{M}$ such that $\Phi(\frac{X}{1+\eta}) = \Phi(\frac{A_{kk}}{1+\eta}) + \Phi(\frac{B_{kk}}{1+\eta})$. For every $\lambda \in \mathbb{C}$ and $k \neq l$, it follows from Lemma 2.1 that

$$\begin{split} &\Phi(\frac{(\lambda - \eta \overline{\lambda})X_{ll} + \lambda X_{lk} - \eta \overline{\lambda}X_{kl}}{1 + \eta}) \\ &= \Phi([P_l \bullet_{\eta} \frac{\lambda P_l}{1 + \eta}, \frac{X}{1 + \eta}]_*^{\eta}) = [\Phi(P_l) \bullet_{\eta} \Phi(\frac{\lambda P_l}{1 + \eta}), \Phi(\frac{X}{1 + \eta})]_*^{\eta} \\ &= [\Phi(P_l) \bullet_{\eta} \Phi(\frac{\lambda P_l}{1 + \eta}), \Phi(\frac{A_{kk}}{1 + \eta}) + \Phi(\frac{B_{kk}}{1 + \eta})]_*^{\eta} \\ &= [\Phi(P_l) \bullet_{\eta} \Phi(\frac{\lambda P_l}{1 + \eta}), \Phi(\frac{A_{kk}}{1 + \eta})]_*^{\eta} + [\Phi(P_l) \bullet_{\eta} \Phi(\frac{\lambda P_l}{1 + \eta}), \Phi(\frac{B_{kk}}{1 + \eta})]_*^{\eta} \\ &= \Phi([P_l \bullet_{\eta} \frac{\lambda P_l}{1 + \eta}, \frac{A_{kk}}{1 + \eta}]_*^{\eta}) + \Phi([P_l \bullet_{\eta} \frac{\lambda P_l}{1 + \eta}, \frac{B_{kk}}{1 + \eta}]_*^{\eta}) \\ &= 0. \end{split}$$

Since Φ is injective, we have $\frac{(\lambda - \eta \overline{\lambda})X_{ll} + \lambda X_{lk} - \eta \overline{\lambda}X_{kl}}{1 + \eta} = 0$ and $(\lambda - \eta \overline{\lambda})X_{ll} + \lambda X_{lk} - \eta \overline{\lambda}X_{kl} = 0$. Thus, $X_{ll} = 0$, $X_{lk} = 0$ and $X_{kl} = 0$. For every $C_{kl} \in \mathcal{M}_{kl}$, $k \neq l$, it follows from Lemma 2.6 that

$$\begin{split} &\Phi(X_{kk}C_{kl})\\ &=\Phi([I\bullet_{\eta}\frac{X}{1+\eta},C_{kl}]_{*}^{\eta})=[\Phi(I)\bullet_{\eta}\Phi(\frac{X}{1+\eta}),\Phi(C_{kl})]_{*}^{\eta}\\ &=[\Phi(I)\bullet_{\eta}\Phi(\frac{A_{kk}}{1+\eta})+\Phi(\frac{B_{kk}}{1+\eta}),\Phi(C_{kl})]_{*}^{\eta}\\ &=[\Phi(I)\bullet_{\eta}\Phi(\frac{A_{kk}}{1+\eta}),\Phi(C_{kl})]_{*}^{\eta}+[\Phi(I)\bullet_{\eta}\Phi(\frac{B_{kk}}{1+\eta}),\Phi(C_{kl})]_{*}^{\eta}\\ &=\Phi([I\bullet_{\eta}\frac{A_{kk}}{1+\eta},C_{kl}]_{*}^{\eta})+\Phi([I\bullet_{\eta}\frac{B_{kk}}{1+\eta},C_{kl}]_{*}^{\eta})\\ &=\Phi(A_{kk}C_{kl})+\Phi(B_{kk}C_{kl})\\ &=\Phi(A_{kk}C_{kl}+B_{kk}C_{kl}). \end{split}$$

This implies that $(X_{kk} - A_{kk} - B_{kk})C_{kl} = 0$. For every $C \in \mathcal{M}$, then $(X_{kk} - A_{kk} - B_{kk})CP_l = 0$. It follows from Lemma 1.2 that $X_{kk} = A_{kk} + B_{kk}$. Thus, $\Phi(\frac{A_{kk} + B_{kk}}{1 + \eta}) = \Phi(\frac{X}{1 + \eta}) + \Phi(\frac{B_{kk}}{1 + \eta}) + \Phi(\frac{B_{kk}}{1 + \eta})$ and $\Phi(A_{kk} + B_{kk}) = \Phi(A_{kk}) + \Phi(B_{kk})$. Now we come to the position to show Theorem 2.1.

Proof of Theorem 2.1 Let A and B be in \mathcal{M} . Write $A = \sum_{k,l=1}^{2} A_{kl}$ and $B = \sum_{k,l=1}^{2} B_{kl}$, where $A_{kl}, B_{kl} \in \mathcal{M}_{kl}, k, l = 1, 2$. It follows from Lemmas 2.5, 2.6 and 2.7 that

$$\Phi(A+B) = \Phi(\sum_{k,l=1}^{2} (A_{kl} + B_{kl})) = \sum_{k,l=1}^{2} \Phi(A_{kl} + B_{kl})$$

$$= \sum_{k,l=1}^{2} (\Phi(A_{kl}) + \Phi(B_{kl})) = \sum_{k,l=1}^{2} \Phi(A_{kl}) + \sum_{k,l=1}^{2} \Phi(B_{kl})$$

$$= \Phi(\sum_{k,l=1}^{2} A_{kl}) + \Phi(\sum_{k,l=1}^{2} B_{kl})$$

$$= \Phi(A) + \Phi(B).$$

Thus Φ is additive.

3. Linearity

Our main result in this section reads as follows.

Theorem 3.1 Let \mathcal{M} and \mathcal{N} be two von Neumann algebras, one of which has no center abelian projections. Let $\eta \neq \pm 1$ be a non-zero scalar, and let $\Phi : \mathcal{M} \to \mathcal{N}$ be a not necessarily linear bijection. Suppose that Φ preserves the second mixed triple $\eta - *-$ product. Then the following statements hold:

- (1) When $|\eta| = 1$, then Φ is a linear *- isomorphism;
- (2) When $|\eta| \neq 1$, then Φ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism. In what follows, without loss of generality, we assume that \mathcal{M} has no central abelian projections.

Proof We distinguish two cases.

Case 1 $|\eta| = 1$.

Claim 1.1 For every $A \in \mathcal{M}$, $\Phi(A)^* = \Phi(A)$ if and only if $A^* = A$.

Proof Let $A \in \mathcal{M}$ and $A^* = A$. Since $|\eta| = 1$ and Φ preserves the second mixed triple $\eta - *-$ product, we have

$$0 = \Phi((1 + \eta)(A - A^*)) = \Phi([I \bullet_{\eta} A, I]_*^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(A), \Phi(I)]_*^{\eta}) = (1 + \eta)(\Phi(A) - \Phi(A)^*).$$

It follows from $\eta \neq -1$ that $\Phi(A)^* = \Phi(A)$.

Let $A \in \mathcal{M}$ and $\Phi(A)^* = \Phi(A)$. Since Φ^{-1} preserves the second mixed triple $\eta - *-$ product, we have

$$0 = \Phi^{-1}([I \bullet_{\eta} \Phi(A), I]_{*}^{\eta}) = \Phi^{-1}([\Phi(I) \bullet_{\eta} \Phi(A), \Phi(I)]_{*}^{\eta}) = [I \bullet_{\eta} A, I]_{*}^{\eta} = (1 + \eta)(A - A^{*}).$$

By $\eta \neq -1$, we get $A^* = A$.

Claim 1.2 $\Phi(\mathcal{Z}(\mathcal{M})) = \mathcal{Z}(\mathcal{N})$.

Proof For every $B \in \mathcal{N}^a$, since Φ is surjective, there exists $A \in \mathcal{M}$ such that $\Phi(A) = B$. It follows from $\Phi(A)^* = B^* = B = \Phi(A)$ and Claim 1.1 that $A^* = A$.

For every $C \in \mathcal{Z}(\mathcal{M})$, we have AC = CA and

$$0 = \Phi([I \bullet_{\eta} A, C]_{*}^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(A), \Phi(C)]_{*}^{\eta} = [I \bullet_{\eta} B, \Phi(C)]_{*}^{\eta} = (1 + \eta)(B\Phi(C) - \Phi(C)B).$$

It follows from $\eta \neq -1$ that $B\Phi(C) = \Phi(C)B$. For every $B \in \mathcal{N}$, by the Cartesian decomposition, it can be concluded that $B\Phi(C) = \Phi(C)B$. By the arbitrariness of B, we have $\Phi(C) \in \mathcal{Z}(\mathcal{N})$. By the arbitrariness of C, then we have $\Phi(\mathcal{Z}(\mathcal{M})) \subseteq \mathcal{Z}(\mathcal{N})$.

Similarly, we have $\Phi^{-1}(\mathcal{Z}(\mathcal{N})) \subseteq \mathcal{Z}(\mathcal{M})$, that is, $\mathcal{Z}(\mathcal{N}) \subseteq \Phi(\mathcal{Z}(\mathcal{M}))$. Thus, $\Phi(\mathcal{Z}(\mathcal{M})) = \mathcal{Z}(\mathcal{N})$.

Claim 1.3 $\Phi(iI)^2 = -I$.

Proof On the one hand, it follows from $\Phi(iI)^* = -\Phi(iI)$ and $|\eta| = 1$ that

$$-2\Phi((1+\eta)I) = \Phi([I \bullet_n iI, iI]_*^{\eta}) = [\Phi(I) \bullet_n \Phi(iI), \Phi(iI)]_*^{\eta} = [I \bullet_n \Phi(iI), \Phi(iI)]_*^{\eta} = 2(1+\eta)\Phi(iI)^2. \tag{1}$$

On the other hand,

$$-2\Phi((1-\eta)I) = \Phi([iI \bullet_n iI, I]_*^{\eta}) = [\Phi(iI) \bullet_n \Phi(iI), I]_*^{\eta} = [(1-\eta)\Phi(iI)^2, I]_*^{\eta} = 2(1-\eta)\Phi(iI)^2.$$
 (2)

By comparing equations (1) and (2), we get $\Phi(iI)^2 = -I$.

Claim 1.4 For every $A_1, A_2 \in \mathcal{M}^a$, we have

$$\Phi(A_1+iA_2)=\Phi(A_1)+\Phi(iI)\Phi(A_2).$$

Proof Since Φ is surjective, there exist operators $B_1, B_2 \in \mathcal{M}^a$ such that $\Phi(A_1 + iA_2) = \Phi(B_1) + i\Phi(B_2)$. Let $A \in \mathcal{M}$. It follows from $[iI \bullet_{\eta} iI, A]^{\eta}_* = 2(\eta - 1)A$ and Theorem 2.1 that

$$2\Phi((\eta - 1)A) = \Phi(2(\eta - 1)A) = \Phi([iI \bullet_{\eta} iI, A]_{*}^{\eta}) = [\Phi(iI) \bullet_{\eta} \Phi(iI), \Phi(A)]_{*}^{\eta} = 2(\eta - 1)\Phi(A).$$

Thus, $\Phi((\eta - 1)A) = (\eta - 1)\Phi(A)$. By Theorem 2.1, $\Phi(\eta A) = \eta\Phi(A)$.

Let $A \in \mathcal{M}^a$. It follows from $[I \bullet_{\eta} A, iI]_*^{\eta} = 0$ that

$$0 = \Phi([I \bullet_{\eta} A, iI]_{*}^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(A), \Phi(iI)]_{*}^{\eta} = [I \bullet_{\eta} \Phi(A), \Phi(iI)]_{*}^{\eta} = (1 + \eta)(\Phi(A)\Phi(iI) - \Phi(iI)\Phi(A)).$$

Thus $\Phi(A)\Phi(iI) = \Phi(iI)\Phi(A)$. So $\Phi(B_1)\Phi(iI) = \Phi(iI)\Phi(B_1)$ and $\Phi(B_2)\Phi(iI) = \Phi(iI)\Phi(B_2)$. It follows from $[iI \bullet_{\eta} (A_1 + iA_2), iI]_*^{\eta} = 2(\eta - 1)iA_2$ that

$$\Phi(2(\eta - 1)iA_2)
= \Phi([iI \bullet_{\eta} (A_1 + iA_2), iI]_*^{\eta}) = [\Phi(iI) \bullet_{\eta} \Phi(A_1 + iA_2), \Phi(iI)]_*^{\eta}
= [\Phi(iI) \bullet_{\eta} (\Phi(B_1) + i\Phi(B_2)), \Phi(iI)]_*^{\eta}
= 2(\eta - 1)i\Phi(B_2).$$

By $\Phi((\eta - 1)A) = (\eta - 1)\Phi(A)$ and $\eta \neq 1$, we have $\Phi(iA_2) = i\Phi(B_2)$.

By $\Phi(A_1) + \Phi(iA_2) = \Phi(A_1 + iA_2) = \Phi(B_1) + i\Phi(B_2)$, we have $\Phi(A_1) = \Phi(B_1)$. It follows from Theorem 2.1 and $[iI \bullet_{\eta} (A_1 + iA_2), I]_*^{\eta} = 2(\eta - 1)A_2$ that

$$\begin{split} &2\Phi((\eta-1)A_2) = \Phi(2(\eta-1)A_2) \\ &= \Phi([iI\bullet_{\eta}(A_1+iA_2),I]_*^{\eta}) = [\Phi(iI)\bullet_{\eta}\Phi(A_1+iA_2),\Phi(I)]_*^{\eta} \\ &= [(1-\eta)\Phi(iI)(\Phi(B_1)+i\Phi(B_2)),I]_*^{\eta} \\ &= -2i(\eta-1)\Phi(iI)\Phi(B_2). \end{split}$$

It follows from $\Phi((\eta-1)A) = (\eta-1)\Phi(A)$ that $\Phi(A_2) = -i\Phi(iI)\Phi(B_2)$. By $\Phi(iI)^2 = -I$, so $i\Phi(B_2) = \Phi(iI)\Phi(A_2)$. Therefore,

$$\Phi(A_1 + iA_2) = \Phi(A_1) + \Phi(iA_2) = \Phi(A_1) + i\Phi(B_2) = \Phi(A_1) + \Phi(iI)\Phi(A_2).$$

Claim 1.5 For every $A, B \in \mathcal{M}$, we obtain $\Phi(A)^* = \Phi(A)^*$ and $\Phi(AB) = \Phi(A)\Phi(B)$.

Proof There exist operators $A_1, A_2 \in \mathcal{M}^a$ such that $A = A_1 + iA_2$. By Claims 1.1 and 1.4, we have $\Phi(A^*) = \Phi(A_1 - iA_2) = \Phi(A_1) - \Phi(iA_2) = \Phi(A_1) - \Phi(iI)\Phi(A_2) = (\Phi(A_1) + \Phi(iI)\Phi(A_2))^* = \Phi(A)^*$.

It follows from Theorem 2.1, Claims 1.4 and 1.3 that

$$\Phi(iA) = \Phi(iA_1 - A_2) = \Phi(iI)\Phi(A_1) - \Phi(A_2) = \Phi(iI)(\Phi(A_1) + \Phi(iI)\Phi(A_2)) = \Phi(iI)\Phi(A).$$
 It follows from $[I \bullet_n A, B]_*^{\eta} = (1 + \eta)(AB - BA^*)$ that

$$\Phi((1+\eta)(AB-BA^*)) = \Phi([I \bullet_{\eta} A, B]_*^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(A), \Phi(B)]_*^{\eta} = (1+\eta)(\Phi(A)\Phi(B) - \Phi(B)\Phi(A)^*).$$

By the proceeding results, we get

$$\Phi(AB - BA^*) = \Phi(A)\Phi(B) - \Phi(B)\Phi(A)^* = \Phi(A)\Phi(B) - \Phi(B)\Phi(A^*). \tag{3}$$

Replacing *A* with *iA* in equation (3), we have $\Phi((iA)B - B(iA)^*) = \Phi(iA)\Phi(B) - \Phi(B)\Phi(iA)^*$. It follows from $\Phi(iA) = \Phi(iI)\Phi(A)$ that

$$\begin{split} &\Phi(iI)\Phi(AB+BA^*) \\ &= \Phi(i(AB+BA^*)) = \Phi((iA)B-B(iA)^*) = \Phi(iA)\Phi(B) - \Phi(B)\Phi(iA)^* \\ &= \Phi(iI)\Phi(A)\Phi(B) - \Phi(B)(\Phi(iI)\Phi(A))^* = \Phi(iI)\Phi(A)\Phi(B) + \Phi(iI)\Phi(B)\Phi(A)^* \\ &= \Phi(iI)(\Phi(A)\Phi(B) + \Phi(B)\Phi(A^*)). \end{split}$$

By Claim 1.3, we get

$$\Phi(AB + BA^*) = \Phi(A)\Phi(B) + \Phi(B)\Phi(A^*). \tag{4}$$

By combining equations (3) and (4), we obtain $\Phi(AB) = \Phi(A)\Phi(B)$.

Claim 1.6 For every $\lambda \in \mathbb{R}$ and $A \in \mathcal{M}$, we have $\Phi(\lambda A) = \lambda \Phi(A)$ and $\Phi(iA) = i\Phi(A)$.

Proof For every rational number q, by Theorem 2.1, we have $\Phi(qI) = qI$. Let E be a positive element in M. Then there exists an operator $B \in \mathcal{M}^a$ such that $E = B^2$. By Claim 1.5, $\Phi(B)$ is self adjoint and $\Phi(E) = \Phi(B)^2$. It follows that $\Phi(E)$ is a positive element. So Φ preserves positive elements.

There exist two sequences $\{a_n\}$ and $\{b_n\}$ of rational numbers with $a_n \le \lambda \le b_n$ for all n and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lambda$. By $a_n \le \lambda \le b_n$, we get $a_n I \le \lambda I \le b_n I$. Taking the limit of the above equation, we have $\Phi(\lambda I) = \lambda I$ and $\Phi(\lambda A) = \Phi((\lambda I)A) = \Phi(\lambda I)\Phi(A) = \lambda \Phi(A)$. So Φ is real linear.

Suppose that $\eta = a + bi$ with $a, b \in \mathbb{R}$. It follows from Theorem 2.1 and the above result that

$$a\Phi(A) + b\Phi(iA) = \Phi((a+bi)A) = \Phi(\eta A) = \eta\Phi(A) = (a+bi)\Phi(A) = a\Phi(A) + bi\Phi(A).$$

If $|\eta| = 1$ and $\eta \neq \pm 1$ are used, we have $b \neq 0$ and $\Phi(iA) = i\Phi(A)$. By Theorem 2.1, Claims 1.4, 1.5 and 1.6, we obtain Φ is linear *-isomorphism.

Case 2 $|\eta| \neq 1$.

Claim 2.1 Φ preserves projections.

Proof For $A \in \mathcal{M}$, by $\Phi(I) = I$, we have

$$\Phi((1-|\eta|^2)A) = \Phi([I \bullet_{\eta} I, A]_*^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(I), \Phi(A)]_*^{\eta}) = [I \bullet_{\eta} I, \Phi(A)]_*^{\eta}) = (1-|\eta|^2)\Phi(A)$$

and

$$\Phi(|\eta|^2 A) = |\eta|^2 \Phi(A). \tag{5}$$

For $A \in \mathcal{M}^a$, we get $\Phi((1 - |\eta|^2)A^2) = \Phi([I \bullet_{\eta} A, A]_*^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(A), \Phi(A)]_*^{\eta} = (1 - |\eta|^2)\Phi(A)^2$. By Theorem 2.1, $\Phi(A^2) - \Phi(|\eta|^2 A^2) = \Phi(A)^2 - |\eta|^2 \Phi(A)^2$. By equation (5), we have $\Phi(|\eta|^2 A^2) = |\eta|^2 \Phi(A)^2$ and $\Phi(A^2) = \Phi(A)^2$. For $A \in \mathcal{M}^a$, by $[I \bullet_{\eta} A, I]_*^{\eta} = (1 - |\eta|^2)A$, we have

$$\Phi((1 - |\eta|^2)A) = \Phi([I \bullet_{\eta} A, I]_*^{\eta}) = [I \bullet_{\eta} \Phi(A), I]_*^{\eta} = \Phi(A) + \eta \Phi(A) - \eta \Phi(A)^* - |\eta|^2 \Phi(A)^*.$$

So $(\eta + |\eta|^2)(\Phi(A) - \Phi(A)^*) = 0$. By $\eta \neq 0$ and $\eta \neq -1$, we have $\eta + |\eta|^2 \neq 0$ and $\Phi(A)^* = \Phi(A)$.

For every projection $P \in \mathcal{M}$, we have $P^2 = P = P^*$. From the proceeding results, $\Phi(P)^2 = \Phi(P) = \Phi(P)^*$. Thus $\Phi(P)$ is a projection in \mathcal{N} . Therefore, Φ preserves projections.

Let $Q_k = \Phi(P_k)$, k = 1, 2. Then Q_k is a projection in \mathcal{N} . Let $\mathcal{N}_{kl} = Q_k \mathcal{N} Q_l$, k, l = 1, 2. So $\mathcal{N} = \sum_{k,l=1}^2 \mathcal{N}_{kl}$. For every $A \in \mathcal{N}$, we can write $A = \sum_{k,l=1}^2 A_{kl}$ with $A_{kl} \in \mathcal{N}_{kl}$. It follows from $\underline{P_1} = 0$ and $\overline{P_1} = I$ that $\underline{Q_1} = 0$ and $\overline{Q_2} = I$. Furthermore, $Q_2 = 0$ and $\overline{Q_2} = I$.

Claim 2.2 $\Phi(\mathcal{M}_{kl}) = \mathcal{N}_{kl}, k, l = 1, 2 \text{ and } k \neq l.$

Proof For every $A_{kl} \in \mathcal{M}_{kl}$, it follows from $[I \bullet_{\eta} P_k, \frac{1}{1+\eta} A_{kl}]^{\eta}_* = A_{kl}$ that

$$\Phi(A_{kl}) = \Phi([I \bullet_{\eta} P_k, \frac{1}{1+\eta} A_{kl}]_{*}^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(P_k), \Phi(\frac{1}{1+\eta} A_{kl})]_{*}^{\eta} = [I \bullet_{\eta} Q_k, \Phi(\frac{1}{1+\eta} A_{kl})]_{*}^{\eta}$$

$$= (1+\eta)Q_k \Phi(\frac{1}{1+\eta} A_{kl}) - \eta(1+\overline{\eta})\Phi(\frac{1}{1+\eta} A_{kl})Q_k.$$

Multiplying the above equation by Q_l from left side and Q_l from right side yields, $Q_l\Phi(A_{kl})Q_l=0$. Similarly, we can prove $Q_k\Phi(A_{kl})Q_k=0$.

Let $\Phi(A_{kl}) = B_{kl} + B_{lk}$ with $B_{kl} \in \mathcal{N}_{kl}$, $B_{lk} \in \mathcal{N}_{lk}$. It follows from $[I \bullet_{\eta} A_{kl}, P_k]^{\eta}_* = 0$ that

$$0 = \Phi([I \bullet_{\eta} A_{kl}, P_k]_*^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(A_{kl}), \Phi(P_k)]_*^{\eta}$$

$$= [I \bullet_{\eta} \Phi(A_{kl}), Q_k]_*^{\eta} = (1 + \eta)\Phi(A_{kl})Q_k - \eta(1 + \overline{\eta})Q_k\Phi(A_{kl})^*$$

$$= (1 + \eta)(B_{kl} + B_{lk})Q_k - \eta((1 + \overline{\eta})Q_k(B_{kl} + B_{lk})^* = (1 + \eta)B_{lk} - \eta(1 + \overline{\eta})B_{lk}^*.$$

This implies that $(1 + \eta)B_{lk} = \eta(1 + \overline{\eta})B_{lk}^*$ and $B_{lk} = 0$. Thus $\Phi(A_{kl}) = B_{kl} \in \mathcal{N}_{kl}$. Due to the arbitrariness of A_{kl} , we have $\Phi(\mathcal{M}_{kl}) \subseteq \mathcal{N}_{kl}$.

By considering Φ^{-1} , we can get $\Phi^{-1}(\mathcal{N}_{kl}) \subseteq \mathcal{M}_{kl}$. Hence $\Phi(\mathcal{M}_{kl}) = \mathcal{N}_{kl}$.

Claim 2.3 $\Phi(\mathcal{M}_{kk}) = \mathcal{N}_{kk}, k = 1, 2.$

Proof For every $A_{kk} \in \mathcal{M}_{kk}$, suppose l = 1, 2 and $l \neq k$. Then

$$0 = \Phi([I \bullet_{\eta} P_{l}, A_{kk}]_{*}^{\eta}) = [\Phi(I) \bullet_{\eta} \Phi(P_{l}), \Phi(A_{kk})]_{*}^{\eta} = [I \bullet_{\eta} Q_{l}, \Phi(A_{kk})]_{*}^{\eta} = (1 + \eta)Q_{l}\Phi(A_{kk}) - \eta(1 + \overline{\eta})\Phi(A_{kk})Q_{l}.$$

So $Q_l\Phi(A_{kk})Q_k = Q_k\Phi(A_{kk})Q_l = Q_l\Phi(A_{kk})Q_l = 0$ and $\Phi(A_{kk}) = Q_k\Phi(A_{kk})Q_k \in \mathcal{N}_{kk}$. By the arbitrariness of A_{kk} , we have $\Phi(\mathcal{M}_{kk}) \subseteq \mathcal{N}_{kk}$.

By considering Φ^{-1} , we can get $\Phi^{-1}(\mathcal{N}_{kk}) \subseteq \mathcal{M}_{kk}$. Hence $\Phi(\mathcal{M}_{kk}) = \mathcal{N}_{kk}$.

Claim 2.4 For every $A, B \in \mathcal{M}$, we have $\Phi(AB) = \Phi(A)\Phi(B)$.

Proof By Theorem 2.1, just need to prove

$$\Phi(A_{kl}B_{gh}) = \Phi(A_{kl})\Phi(B_{gh}), k, l, q, h = 1, 2.$$

If $l \neq q$ is used, it follows from Lemma 2.1, Claims 2.2 and 2.3 that $\Phi(A_{kl}B_{qh}) = 0 = \Phi(A_{kl})\Phi(B_{qh})$. By $\Phi(B_{kl})\Phi(A_{kk})^* = 0$, we have

$$\Phi(A_{kk}B_{kl}) - \Phi(\eta B_{kl}^*A_{kk}^*) = \Phi([A_{kk} \bullet_{\eta} B_{kl}, I]_*^{\eta}) = \Phi(A_{kk})\Phi(B_{kl}) - \eta\Phi(B_{kl})^*\Phi(A_{kk})^*.$$

Thus $\Phi(A_{kk}B_{kl}) - \Phi(A_{kk})\Phi(B_{kl}) = \Phi(\eta B_{kl}^* A_{kk}^*) - \eta \Phi(B_{kl})^* \Phi(A_{kk})^*.$ By $\Phi(A_{kk}B_{kl}) - \Phi(A_{kk})\Phi(B_{kl}) \in \mathcal{N}_{kl}$ and $\Phi(\eta B_{kl}^* A_{kk}^*) - \eta \Phi(B_{kl})^* \Phi(A_{kk})^* \in \mathcal{N}_{lk}$, so $\Phi(A_{kk}B_{kl}) - \Phi(A_{kk})\Phi(B_{kl}) = 0.$ That is, $\Phi(A_{kk}B_{kl}) = \Phi(A_{kk})\Phi(B_{kl})$.

For every $T_{kl} \in \mathcal{N}_{kl}$, $k \neq l$, there exists an operator $C_{kl} \in \mathcal{M}_{kl}$ such that $T_{kl} = \Phi(C_{kl})$. Thus $\Phi(A_{kk}B_{kk})T_{kl} = \Phi(C_{kl})$ $\Phi(A_{kk}B_{kk})\Phi(C_{kl}) = \Phi(A_{kk}B_{kk}C_{kl}) = \Phi(A_{kk})\Phi(B_{kk}C_{kl}) = \Phi(A_{kk})\Phi(B_{kk})\Phi(C_{kl}) = \Phi(A_{kk})\Phi(B_{kk})T_{kl}. \text{ For every } T \in \mathcal{N},$ then $(\Phi(A_{kk}B_{kk}) - \Phi(A_{kk})\Phi(B_{kk}))TQ_l = 0$. It follows from Lemma 1.2 that $\Phi(A_{kk}B_{kk}) = \Phi(A_{kk})\Phi(B_{kk})$.

By $\Phi(B_{lk})\Phi(A_{ll}^*) = 0$ and $\Phi(A_{ll}^*)\Phi(B_{lk}) = 0$, we have

$$\Phi(A_{kl}B_{lk}) - \Phi(|\eta|^2 B_{lk}A_{kl}) = \Phi([A_{kl} \bullet_{\eta} I, B_{lk}]_{*}^{\eta}) = [\Phi(A_{kl}) \bullet_{\eta} \Phi(I), \Phi(B_{lk})]_{*}^{\eta}
= [\Phi(A_{kl}) \bullet_{\eta} I, \Phi(B_{lk})]_{*}^{\eta} = \Phi(A_{kl})\Phi(B_{lk}) - |\eta|^2 \Phi(B_{lk})\Phi(A_{kl}).$$

That is, $\Phi(A_{kl}B_{lk}) - \Phi(|\eta|^2 B_{lk}A_{kl}) = \Phi(A_{kl})\Phi(B_{lk}) - |\eta|^2 \Phi(B_{lk})\Phi(A_{kl}).$ Combining equation (5), it can be concluded that

$$\Phi(A_{kl}B_{lk}) - \Phi(A_{kl})\Phi(B_{kl}) = \Phi(|\eta|^2 B_{lk}A_{kl}) - |\eta|^2 \Phi(B_{lk})\Phi(A_{kl})$$

$$= |\eta|^2 \Phi(B_{lk}A_{kl}) - |\eta|^2 \Phi(B_{lk})\Phi(A_{kl}) = |\eta|^2 (\Phi(B_{lk}A_{kl}) - \Phi(B_{lk})\Phi(A_{kl})).$$

It follows from Claims 2.2 and 2.4 that $\Phi(A_{kl}B_{lk}) - \Phi(A_{kl})\Phi(B_{kl}) \in \mathcal{N}_{kk}$ and $\Phi(B_{lk}A_{kl}) - \Phi(B_{lk})\Phi(A_{kl}) \in \mathcal{N}_{ll}$. Thus $\Phi(A_{kl}B_{lk}) - \Phi(A_{kl})\Phi(B_{lk}) = 0$. That is, $\Phi(A_{kl}B_{lk}) = \Phi(A_{kl})\Phi(B_{lk})$.

For every $T_{lk} \in \mathcal{N}_{lk}$, $k \neq l$, there exists an operator $S_{lk} \in \mathcal{M}_{lk}$ such that $T_{lk} = \Phi(S_{lk})$. Hence

$$\Phi(A_{kl}B_{ll})T_{lk} = \Phi(A_{kl}B_{ll})\Phi(T_{lk}) = \Phi(A_{kl})\Phi(B_{ll})\Phi(S_{lk}) = \Phi(A_{kl}B_{ll}S_{lk}) = \Phi(A_{kl})\Phi(B_{ll})T_{lk}.$$

For every $T \in \mathcal{N}$, then $(\Phi(A_{kl}B_{ll}) - \Phi(A_{kl})\Phi(B_{ll}))TQ_k = 0$. It follows from Lemma 1.2 that $\Phi(A_{kl}B_{ll}) =$ $\Phi(A_{kl})\Phi(B_{ll}).$

Claim 2.5 Φ is a sum of a linear *-isomorphism and a conjugate linear *-isomorphism.

Proof For every $A \in \mathcal{M}$, we have $A = A_1 + iA_2$ with $A_1, A_2 \in \mathcal{M}^a$. It follows from Claim 2.1 that Φ preserves self adjoint elements. It follows from $\Phi(iI)^* = -\Phi(iI)$, Claims 2.2 and 2.4 that

$$\begin{split} \Phi(A^*) &= \Phi(A_1 - iA_2) = \Phi(A_1) - \Phi((iI)A_2) = \Phi(A_1) - \Phi(iI)\Phi(A_2) \\ &= \Phi(A_1)^* + \Phi(iI)^*\Phi(A_2)^* = \Phi(A_1)^* + (\Phi(A_2)\Phi(iI))^* \\ &= \Phi(A_1)^* + \Phi(iA_2)^* = \Phi(A_1 + iA_2)^* \\ &= \Phi(A)^*. \end{split}$$

By Claim 2.4 and Theorem 2.1, we have $\Phi(iI)^2 = \Phi((iI)^2) = \Phi(-I) = -\Phi(I) = -I$.

For any rational number q, by Theorem 2.1, we have $\Phi(qI) = qI$. For any positive element A in M, there exists an operator $B \in \mathcal{M}^a$ such that $A = B^2$. By Claim 2.4, $\Phi(A) = \Phi(B)^2$, where $\Phi(B)$ is a self adjoint element. Thus $\Phi(A)$ is a positive element in \mathcal{N} .

For any $\lambda \in \mathbb{R}$, there exist two rational sequences $\{a_n\}$ and $\{b_n\}$ such that $a_n \leq \lambda \leq b_n$ for all n and $\lim a_n = \lim b_n = \lambda$. By $a_n I \le \lambda I \le b_n I$, we have $a_n I \le \Phi(\lambda I) \le b_n I$. Taking the limit of the above equation, we get $\Phi(\lambda I) = \lambda I$. For every $A \in \mathcal{M}$, by Claim 2.4, we have

$$\Phi(\lambda A) = \Phi((\lambda I)A) = \Phi(\lambda I)\Phi(A) = \lambda \Phi(A).$$

It follows from Theorem 2.1 that Φ is real linear.

Let $F = \frac{I - i\Phi(iI)}{2}$. Then $F^2 = \frac{I - \Phi(iI)^2 - 2i\Phi(iI)}{4} = F$ and $F^* = \frac{I + i\Phi(iI)^*}{2} = F$. Thus F is a projection in \mathcal{N} . For every $B \in \mathcal{N}$, there exists an operator $C \in \mathcal{M}$ such that $B = \Phi(C)$. It follows from Claim 2.4 that

$$BF = \frac{BI - iB\Phi(iI)}{2} = \frac{B - i\Phi(C)\Phi(iI)}{2} = \frac{B - i\Phi(iC)}{2}$$
$$= \frac{B - i\Phi((iI)C)}{2} = \frac{B - i\Phi(iI)\Phi(C)}{2} = \frac{IB - i\Phi(iI)B}{2}$$
$$= FB.$$

Then F is a central projection in \mathcal{N} .

Let $E = \Phi^{-1}(F)$. It follows from Claim 2.1 that E is a central projection in M. For every $A \in \mathcal{M}$, by Claim 2.4, we get

$$\Phi(iAE) = \Phi(A)\Phi(E)\Phi(iI) = i\Phi(A)F(2F - I) = i\Phi(A)F = i\Phi(A)\Phi(E) = i\Phi(AE),$$

$$\Phi(iA(I - E)) = \Phi(A)\Phi(I - E)\Phi(iI) = -i\Phi(A)(I - F)(I - 2F) = -i\Phi(A)(I - F) = -i\Phi(A(I - E)).$$

It follows from Claim 2.4 that Φ is a linear *-isomorphism restricted to ME and Φ is a conjugate linear *-isomorphism restricted to $\mathcal{M}(I-E)$.

Thus the proof is completed.

Acknowledgements

The authors are grateful to the anonymous referees and editors for their work.

References

- [1] Z. Bai, S. Du, Maps preserving products XY YX* on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), 103-109.
- [2] L. Dai, F. Lu, Nonlinear maps preserving Jordan *- products, J. Math. Anal. Appl. 409 (2014), 180-188.
- [3] D. Huo, B. Zheng, H. Liu, Nonlinear maps preserving Jordan triple η *- products, J. Math. Anal. Appl. 430 (2015), 830-844.
- [4] D. Huo, H. Liu, Nonlinear maps preserving Jordan multiple η *– products, Adv. Math.(China). **50** (2021), 214-230.
 [5] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple 1 *– product on von Neumann algebras, Complex Anal. Oper. Theory. **11** (2017), 109-117.
- [6] C. Miers, Lie homomorphisms of operator algebras, Pacific J. Math. 38 (1971), 717-735.
- [7] Y. Pang, D. Zhang, D. Ma, Nonlinear maps preserving mixed Jordan triple η– products on von Neumann Algebras, Shandong Univ.(in Chinese) 56 (2021), 41-47+55.
- [8] P. Šemrl, Quadratic and quasi-quadratic functionals, Proc. Amer. Math. Soc. 119 (1993), 1105-1113.
- [9] F. Zhang, Nonlinear maps preserving the mixed triple *- product between factors, Filomat. 37 (2023),2397-2403.
- [10] F. Zhang, X. Zhu, Nonlinear Jordan triple differentiable mappings on factor von Neumann algebras, J. Math. Phy. 41 (2021),978-988.
- [11] F. Zhang, X. Zhu, Nonlinear mappings preserving mixed triple η *- products on von Neumann algebras, Journal of Central China Normal Univ.(Nat. Sci.), in Chinese. 56 (2022), 739-745.
- [12] Y. Zhao, C. Li, Q. Chen, Nonlinear maps preserving mixed product on factors, B. Iran Math. Soc. 47 (2021), 1325-1335.