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Abstract. In this article, we characterize a spacetime endowed with Q-curvature tensor. We acquire that
a Q-flat perfect fluid spacetime is either, vacuum or, a de-Sitter spacetime. Moreover, it is established
that a Q-flat perfect fluid spacetime becomes a Robertson-Walker spacetime. Besides, it is proved that a
Q-recurrent spacetime is a generalized Ricci recurrent spacetime. Finally, we examine the impact of Q-flat
perfect fluid spacetime solutions in f

(
R,T ,Ri jT

i j
)
-gravity.

1. Introduction

A spacetime can be defined as a 4-dimensional Lorentzian manifold M4 bearing the signature (−,+,+,+)
for the Lorentzian metric 1, allowing for a globally time-oriented vector.

A generalized Robertson-Walker (GRW) spacetime ([2], [9], [10]) is a Lorentzian manifold Mn (n ≥ 4),
the metric of which is

ds2 = − (dζ)2 + ψ2 (ζ) 1∗v1v2
dxv1 dxv2 , (1)

where the function ψ is dependent on ζ and 1∗v1v2
= 1∗v1v2

(xv3 ) are only functions of xv3 (v1, v2, v3 = 2, 3, . . . ,n).
Another way to structure equation (1) is by the warped product −I × ψ2M̃, where I is included in R
and M̃n−1 is a Riemannian manifold. The GRW spacetime becomes a Robertson-Walker (RW) spacetime if
dimension of the Riemannian manifold M̃ is 3 with constant sectional curvature.

A Lorentzian manifold M4 is defined as a perfect fluid spacetime (PFS) if the non-zero Ricci tensor Rkl
obeys

Rkl = c11kl + d1ukul, (2)
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in which c1, d1 are scalars and the velocity vector ul is a unit time-like vector. The energy-momentum tensor
(EMT) in general relativity (GR) for a PFS is given by [32]

Tkl = p1kl +
(
p + µ

)
ukul (3)

where µ and p are the energy density and isotropic pressure, respectively. Additionally, p and µ are linked
by a state equation of the type p = p(µ), and the PFS is called isentropic. Also, if p = µ, it is named by stiff
matter fluid [8]. In PFS, if p = 0, p + µ = 0, and p = µ

3 , then it is called the dust matter fluid, dark matter era
(DME), and radiation era, respectively [8].

Einstein’s field equations (EFEs) without a cosmological constant is written by

Rkl −
1
2
1klR = κTkl, (4)

where κ indicates gravitational constant, R = 1klRkl stands for the Ricci scalar.
In a 4-dimensional Riemannian or semi-Riemannian manifold, Mantica and Suh [31] presented a novel
curvature tensor, indicated by Q and defined as

Q
h
ijk = R

h
ijk −

ϕ

3

{
δh

k1i j − δ
h
j1ik

}
(5)

whereRh
ijk indicates the curvature tensor andϕ is an arbitrary scalar function. Several researchers, including

([27], [40]) and numerous others, examined Qh
ijk in Riemannian and semi Riemannian manifolds.

Multiplying (5) with 1lh, we get

Qli jk = Rli jk −
ϕ

3

{
1i j1lk − 1ik1l j

}
. (6)

In GR theory, when studying wormholes and black holes in different modified gravity systems, like f (R),
f (T ), f (G), f (R,G), f (R,Lm) and f (R,T ) gravity ([3], [4], [6], [11], [12], [13], [15], [16], [17], [22], [38]), the
energy conditions (ECs) are main resources. The ECs are systematically structured using the Raychaudhuri
equations [33], which express the intriguing nature of gravity through the requirementRklvkvl

≥ 0 (positivity
condition), where vk is a null vector. The geometric condition Tklvkvl

≥ 0 is identical to the null EC (NEC)
on matter in GR theory. In particular, the weak EC (WEC) requires a positive local energy density and states
that Tklukul

≥ 0, for any timelike vector uk. Several modifications and in-depth research have been done
on EFE in [7]. The generalization of f (R,T )-gravity [23] that consists of the Ricci scalar R and the trace of
the EMT T = 1kl

Tkl, an explicit first order coupling between the Ricci tensor Rkl and the matter EMT Tkl,
is called f

(
R,T ,RlkT

lk
)

gravity. The creators of this modified gravity theory are Harko et al. [21]. In this

paper, we investigate “ f
(
R,T ,RlkT

lk
)

gravity theory”and choose a model f
(
R,T ,RlkT

lk
)
= R + α

(
RlkT

lk
)

(α is constant) [21], which is constructed to explain different ECs.
We set up our paper as:
Following some preliminary work in Section 3, we examine the characteristics of PFS admitting the

Q-curvature tensor. In Section 4, Q-recurrent spacetimes are analysed. In conclusion, we give Q-flat PFS
solutions for f

(
R,T ,RlkT

lk
)

gravity.

2. Preliminaries

The spacetime is called Q-flat if the Q-curvature tensor vanishes at every point in the spacetime. Hence
equation (6) yields

Rli jk =
ϕ

3

{
1i j1lk − 1ik1l j

}
, Rli jk = 1hlRh

ijk (7)
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which becomes a space of constant sectional curvature.
Multiplying (7) with 1i j, we obtain

Rlk = ϕ1lk. (8)

Again, multiplying (8) with 1lk, we have

R = 4ϕ. (9)

Using (9) in (7) infers

Rli jk =
R

12

{
1i j1lk − 1ik1l j

}
, (10)

which implies that the spacetime is of constant curvature.

Proposition 2.1. A Q-flat spacetime represents a spacetime of constant curvature.

Remark 2.2. Though this result occurs in [31], we include this proof for the sake of completeness.

Equations (8) and (9) together imply

Rlk =
R

4
1lk. (11)

Thus we write:

Proposition 2.3. A Q-flat spacetime represents an Einstein spacetime.

It is well-known that

∇kC
k
li j =

1
2

[{
∇ jRli − ∇iRl j

}
−

1
2 (n − 1)

{
1li∇ jR − 1l j∇iR

}]
(12)

in whichCk
li j is the Weyl tensor. Considering that theQ-flat spacetime transforms into an Einstein spacetime,

the Ricci scalar R remains constant and therefore, from equation (12),

∇kC
k
li j = 0 and ∇kR = 0. (13)

If the metric of a Lorentzian manifold Mn satisfies the following Yang’s equation,

∇lRi j = ∇ jRil, (14)

it is called a Yang pure space [20].
Obviously, equation (14) is obeyed by the Einstein spacetime, hence we conclude:

Theorem 2.4. A Q-flat spacetime represents a Yang pure space.

Definition 2.5. [19] For a scalar β, a vector field ξ is named a conformal collineation (in short,CC), conformal Ricci
collineation (in short,CRC) and Ricci inheritance vector (in short,RIV) if it fulfills

£ξ1lk = 2β1lk, (15)
£ξRlk = 2βRlk, (16)
£ξRlk = 2β1lk, (17)

respectively. Particularly, for β = 0, the equation (17) reduces to Ricci collineation and equation (15) turns into
Killing equation.
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After taking into account the Lie derivative on each side of equation (11), we arrive at

£ξRlk =
R

4
£ξ1lk. (18)

If ξ is CRC, hence the equations (17) and (18) together imply

£ξ1lk = 2ψ11lk, where ψ1 =
4β
R
. (19)

Also, taking ξ as a CC, the equations (15) and (18) give us

£ξRlk = 2ψ21lk, where ψ2 =
βR

4
. (20)

From the above we provide:

Theorem 2.6. For the vector field ξ, a Q-flat spacetime admits CC if and only if it admits CRC.

Taking ξ as RIV, from equations (11) and (16), we have

£ξRlk = 2ψ31lk, in which ψ3 =
Rβ

4
. (21)

Therefore, we write:

Theorem 2.7. For a Q-flat spacetime, RIV turns into CRC.

If a symmetric vector ξ of a spacetime leaves the matter tensor invariant, that is,

£ξTlk = 0, (22)

then we declare that there is a symmetry in the spacetime known as matter collineation (in short, MC).
Using (11) in (4), we find

−
R

4
1lk = κTlk. (23)

Taking Lie derivative on equation (23) and using R = constant, we obtain

£ξTlk = −
R

4κ
£ξ1lk, since R = constant. (24)

If £ξTlk = 0, then from (24) we get

£ξ1lk = 0, (25)

that is, ξ is Killing. If a M4 admits a Killing time-like vector, it is named a stationary spacetime ([34], [37],
p. 283).

Thus, we provide:

Theorem 2.8. If a Q-flat spacetime fulfilling EFE with non-zero Ricci scalar, admits MC with respect to a time-like
vector ξ, then the spacetime becomes a stationary spacetime.
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3. Q-flat perfect fluid spacetimes

Here, we consider a Q-flat PFS obeying EFE.
Equations (3), (4) and (11) together provide

κ
(
p + µ

)
uluk +

(
κp +

R

4

)
1lk = 0. (26)

Multiplying equation (26) with 1lk gives

R + 3κp − κµ = 0. (27)

Also, multiplying the equation (26) with ul, we acquire

R = 4κµ. (28)

The equations (27) and (28) are jointly reveal

p + µ = 0, (29)

which implies a DME [8] and hence we state:

Theorem 3.1. A Q-flat PFS satisfying EFE becomes a DME.

From equations (3) and (4), we find

Rkl =
(
κp +

R

2

)
1kl + κ

(
p + µ

)
ukul. (30)

Multiplying (30) with ukul, we acquire

Rklukul = κµ −
R

2
. (31)

Therefore, equations (28) and (31) together imply

Rklukul = −κµ. (32)

The strong energy condition (SEC) of a spacetime is satisfied if Rhjvhv j
≥ 0 holds for any timelike vector v

[19]. In this case, we assume that the spacetime under study satisfies SEC. Hence,

κµ ≤ 0. (33)

Given that µ ≥ 0 and κ > 0, then the equations (28) and (33) give

R = 0. (34)

Thus equation (10) provides Rli jk = 0, that is, Rlk = 0 which implies vacuum spacetime.
We provide:

Theorem 3.2. A Q-flat PFS obeying the SEC, is vacuum spacetime.

Since µ ≥ 0, equation (28) infers that

R ≥ 0, (35)

which entails R > 0 or, R = 0.

Case 1. For R > 0, equation (10) implies that the spacetime is of positive constant curvature. Thus, it
represents a de-Sitter spacetime [19].

Case 2. For R = 0, (10) infers Rli jk = 0 and hence, the spacetime is vacuum. Therefore, we conclude:
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Theorem 3.3. A Q-flat PFS is either, vacuum or, a de-Sitter spacetime.

Mantica et al. prove the subsequent in [28]:

Theorem A. A PFS with ∇kC
k
li j = 0 and ∇kR = 0 is a GRW spacetime.

In light of the foregoing Theorem and equation (13), we can draw the conclusion as:

Corollary 3.4. The Q-flat PFS represents a GRW spacetime.

Theorem B. [29] For a GRW spacetime, the Weyl tensor Ch
li j is purely electric [24], that is, uk

Cli jk = 0.
Thus, from equation (13), Corollary 1 and Theorem B, we say:

Corollary 3.5. For a Q-flat PFS, Ch
li j is purely electric.

We know that in a spacetime if Ch
li j is purely electric admitting a unit time-like vector, then it belongs to

Petrov classification I, D or O ([37], p. 73). Therefore, we get:

Corollary 3.6. A Q-flat PFS belongs to Petrov classification I, D or O.

In 4 dimensions, ui
C jkli = 0 is similar to uhCli jk + ulCihjk + uiChljk = 0 ([26], p. 128), where Cli jk = 1hlCh

ijk.

Multiplying with uh we have Cli jk = 0. The authors of [5] proved that a GRW spacetime is conformally flat
if and only if it is a RW spacetime.

Hence, by Corollary 1, we state:

Corollary 3.7. A Q-flat PFS becomes a RW spacetime.

Theorem C. [36] A PFS with harmonic Weyl tensor and the EoS p = p
(
µ
)

is conformally flat, the metric is
RW, the flow is geodesic, irrotational and shear-free.

In view of Theorem C and equation (13), we conclude the subsequent:

Corollary 3.8. A Q-flat PFS with the EoS p = p
(
µ
)

is conformally flat, the metric is RW, the flow is geodesic,
irrotational and shear-free.

Theorem D. [35] A PFS admitting a proper conformal Killing vector with harmonic Weyl tensor is confor-
mally flat.
In light of equation (13) and Theorem D, we can state:

Corollary 3.9. A Q-flat PFS admitting a proper conformal Killing vector is conformally flat.

4. Q-recurrent spacetimes

Definition 4.1. [14] A generalized Ricci recurrent (inshort, (GR)n) spacetime is defined by

∇hRlk = ωhRlk + τh1lk, (36)

in which ωh and τh are non-zero vectors.

Definition 4.2. [39] For a non-zero vector θl, Mn is named a recurrent spacetime if Rh
ijk obeys

∇lR
h
ijk = θlR

h
ijk. (37)

Definition 4.3. For a unit time-like vector λl, a M4 is named a Q-recurrent spacetime if

∇lQ
h
ijk = λlQ

h
ijk. (38)
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By putting equation (5) to (38), we may infer

∇lR
h
ijk −

∇lϕ

3

{
δh

k1i j − δ
h
j1ik

}
= λl

[
R

h
ijk −

ϕ

3

{
δh

k1i j − δ
h
j1ik

}]
. (39)

Contracting h and k in equation (39), we deduce

∇lRi j − 1i j∇lϕ = λl

{
Ri j − ϕ1i j

}
. (40)

Therefore,

∇lRi j = λlRi j + µl1i j, where µl = ∇lϕ − λlϕ. (41)

In other words, the spacetime is a generalized Ricci recurrent spacetime.
Therefore, we state:

Theorem 4.4. A Q-recurrent spacetime represents a (GR)n spacetime.

A generalized Ricci recurrent GRW spacetime is known to be an Einstein spacetime [18]. Thus, we can
determine that ∇kC

k
li j = 0 using equation (12). The authors of [30] also showed that a GRW spacetime with

∇kC
k
li j = 0 turns into a PFS.
Hence, we arrive:

Corollary 4.5. A Q-recurrent GRW spacetime represents a PFS.

5. Q-flat PFS solutions obeying f
(
R,T ,RlkT

lk
)
-gravity

Here, we concentrate on a certain class of f
(
R,T ,RlkT

lk
)

modified gravity model. The associated field

equations have been studied for a variety of special cases (different metric form ) of f
(
R,T ,RlkT

lk
)
-gravity.

Throughout this case, we choose

f
(
R,T ,RlkT

lk
)
= R + α

(
RlkT

lk
)
. (42)

The gravitational action term is

S =

∫  f
(
R,T ,RlkT

lk
)

16πG
+ Lm

 √−1d4x, (43)

in which Lm indicates the matter Lagrangian density depends on the metric 1lk. Equation (43), yields the
commonly used gravitational field equations of f

(
R,T ,RlkT

lk
)
-gravity as{

fR − Lm fRT
}

Glk +
{
Lm fT + □ fR +

1
2
∇i∇ j

(
fRTT i j

)
+
R

2
fR −

1
2

f
}
1lk + 2 fRTRi(lT

i
k) − ∇i∇(l

[
T

i
k) fRT

]
− ∇l∇k fR +

1
2
□
(

fRTTlk
)
−

(
R

2
fRT + fT + 8πG

)
Tlk − 2

(
fRTRi j + fT 1i j

) ∂2Lm

∂1lk∂1i j = 0 (44)

in which Glk = Rlk −
R

2
1lk and □ represents the d’Alembert operator.

In the set up of f
(
R,T ,RlkT

lk
)

modified gravity, the ECs are derived using the modified gravitational
field equations and these are the outcomes

NEC⇔ p + µ ≥ 0, (45)
WEC⇔ p + µ ≥ 0 and µ ≥ 0, (46)
DEC⇔ µ ± p ≥ 0 and µ ≥ 0, (47)
SEC⇔ p + µ ≥ 0 and 3p + µ ≥ 0, (48)
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in which dominant energy condition is indicated by DEC.
Here, we investigate PFS solutions to the f

(
R,T ,RlkT

lk
)
-gravity in which the EMT has the shape (3).

Using (42) in (44), we acquire

Rlk −
f
2
1lk − 8πGTlk = 0. (49)

Equations (3), (11) and (49) yield that{
R

4
−

f
2
− 8πGp

}
1lk − 8πG

(
µ + p

)
uluk = 0. (50)

Multiplying (50) with ul, we have

8πGµ =
f
2
−
R

4
. (51)

Multiplying (50) with 1lk and using (51), we arrive

8πGp =
R

4
−

f
2
. (52)

From (3), it follows that

T
lk = p1lk +

(
p + µ

)
uluk (53)

and

T = 3p − µ. (54)

Equations (11), (53) and (54) together imply

RlkT
lk =
RT

4
. (55)

Adopting (42) and (55), we find

f
(
R,T ,RlkT

lk
)
=
(
1 +

αT
4

)
R. (56)

Equations (51), (52), (54) and (56) give us

µ =
R

32πG + 2αR
(57)

and

p = −
R

32πG + 2αR
. (58)

Equations (57) and (58) together produce µ + p = 0.
Hence we provide the result:

Theorem 5.1. A Q-flat PFS solutions obeying f
(
R,T ,RlkT

lk
)
= R + α

(
RlkT

lk
)

represents a DME.



U. C. De et al. / Filomat 39:6 (2025), 1961–1970 1969

We now look at the ECs for the model (42). It is now possible to discuss the ECs for this configuration using
equations (57) and (58).

Fig. 1: Evolution of µ Fig. 2: Development of DEC Fig. 3: Evolution of SEC

µ, DEC, and SEC’s profiles are displayed in Figs. 1, 2, and 3, respectively. Under these circumstances, µ+ p
equals zero. When R > 0 and α > 0 are used as parameter ranges, the energy density always positive. Fig.
1 illustrates that the energy density is greater for larger values of α and R. NEC and WEC are satisfied
because NEC is a part of WEC. The DEC profile with a positive range for its value, is depicted in Fig. 2.
SEC violates and this result demonstrates the late-time acceleration of Universe [25]. Moreover, the EoS for
this formulation is

p
µ
= −1. Moreover, each result is consistent with the ΛCDM model [1].

Remark 5.2. The EoS is p = −µ, that is, |µ| + |−p| = 0, which entails that µ = |p|, since µ ≥ 0. Therefore, in
a f
(
R,T ,RlkT

lk
)
-gravity obeying the model (42), a Q-flat PFS fulfills the DEC. Hence in a Q-flat PFS obeying

f
(
R,T ,RlkT

lk
)
= R + α

(
RlkT

lk
)
, the speed of light is faster than the speed of matter [19].

6. Discussion

The investigation ofQ-flat PFS solutions in connection with f
(
R,T ,RlkT

lk
)
-gravity has been the primary

emphasis of this paper. Our results have been evaluated using both analytical and graphical approaches in
this instance. To build our formulation and evaluate the stability of the cosmological model, we employed
the analytical technique, as in the following formula: f

(
R,T ,RlkT

lk
)
= R + α

(
RlkT

lk
)
. Regarding our

model, Figs. 1, 2, and 3 display the ECs’ profiles. For the parametersR > 0 and α > 0, it has been found that
the development of µ is positive. NEC, WEC, and DEC were satisfied, but SEC disobeyed the agreement.

The DME is indicated by the EoS, which is
p
µ
= −1. These results, however, agree with the ΛCDM model.
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