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Abstract. In this paper, we demonstrate that any signal exhibiting a certain sparse pattern can be recovered
in a stable and resilient manner through the utilization of the fusion frame approach. The theoretical analysis
highlights that the deviation of the approximate solution is effectively controlled. Furthermore, the adoption
of different norms contributes to further reinforcing the guarantees of robustness and stability. Driven by
the ideas of compressed sensing and fusion frames, we extend the setting to relay fusion frames. With the
help of operator theory, we provide several recovery guarantee conditions based on the relay fusion frames.
Finally, the relationship between relay fusion frames and compressed sensing is elucidated.

1. Introduction

Compressed sensing is an emerging field in signal processing that enables signal acquisition using
very few measurements compared to the signal dimension, as long as the signal is sparse in some basis.
This is based on the structural assumption such signals are satisfying—having a sparse and redundant
representation over a specific dictionary. The field of compressed sensing was initiated with the papers [5]
by Candès, Romberg and Tao and [14] by Donoho who coined the term compressed sensing.

The compressed sensing problem [15] consists in reconstructing an s-sparse vector x ∈ KN from

y = Ax,

where A ∈ Km×N is the so-called measurement matrix. Here K denotes the field R or C. With m < N, this
system of linear equations is underdetermined, but the sparsity assumption hopefully helps in identifying
the original vector x. In a traditional sampling system, reconstructing a vector x ∈ KN from its measurement
vector y ∈ Km amounts to solving the ℓ0-minimization problem

minimize
z∈KN

∥z∥0 subject to ∥Az − y∥2 ≤ η, η ≥ 0.

Unfortunately, ℓ0-minimization, the ideal recovery scheme, is NP-hard in general [22], hence is infeasible.
A very popular and by now well-understood method is basis pursuit denoising or ℓ1-minimization, which
consists in finding the minimizer of the problem

minimize
z∈KN

∥z∥1 subject to ∥Az − y∥2 ≤ η, η ≥ 0. (BPDN)
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It is well known that for a given sparsity s of the signal x, the number of random subgaussian linear mea-
surements needs to grow as m ≳ s log(N/s) for the solution of (BPDN) to be a good enough approximation
to x. However, when the number of measurements m cannot be chosen based on the sparsity of the signals
to recover, there is a limit on the sparsity of the vectors that can be recovered by s ≲ m log(N/m). In other
words, the problems arise when the signals being sampled are too dense for the usual mathematical theories
while the quality of the sensors is constrained. The idea of splitting dense information into subchannels
and utilizing fusion frames to fuse local estimates overcomes this limitation. The local pieces of information
are computed as solutions to the problems

minimize
z∈KN

∥z∥1 subject to ∥AπWi z − y(i)
∥2 ≤ ηi, ηi ≥ 0. (P1,ηi )

where A ∈ Km×N is the measurement matrix and πWi ∈ K
N×N is the orthogonal projection onto subspace

Wi. In the perfect measurements (noiseless) case, the problem is solved by the basis pursuit

minimize
z∈KN

∥z∥1 subject to AπWi z = y(i). (P1,0)

Frames, fusion frames and compressed sensing are hot topics today because of their broad applications
to problems in signal processing and much more. We refer the reader to some recent tutorials on the subjects
and their references [1, 3, 4, 8, 11, 12, 16]. In the remainder of this introduction we state the main definitions
and notations. Some of what we describe in the following is known and is standard in the literature.

1.1. Frames and fusion frames
Letting I be a countable index set, a sequence of vectors { fi}i∈I lying in some Hilbert spaceH is said to

be a frame [18] forH if there exist frame bounds α, β > 0 such that

α∥ f ∥2 ≤
∑
i∈I

| ⟨ f , fi⟩ |2≤ β∥ f ∥2, ∀ f ∈ H . (1)

More generally, { fi}i∈I is called a Bessel sequence if at least the upper bound in (1) is satisfied. In particular,
the Bessel sequence {1i}i∈I is called a dual of the frame { fi}i∈I if the following formula holds, for all f ∈ H :

f =
∑
i∈I

⟨ f , 1i⟩ fi.

Fusion frames are generalizations of frames that provide a richer description of signal spaces, which
were introduced in [7] (under the name frames of subspaces) and further developed in [9], and have
quickly become a major tool in the implementation of distributed systems [10, 20, 21]. It can be regarded as
a frame-like collection of subspaces in a Hilbert space, which clearly generalizes classical vector frames.

Definition 1.1. Let I be a countable (or finite) index set and {Wi}i∈I be a family of closed subspaces of a Hilbert space
H . Let {wi}i∈I ∈ ℓ∞(I) such that wi > 0 for every i ∈ I. The family {(Wi,wi)}i∈I is said to be a fusion frame forH if
there exist numbers 0 < α ≤ β < ∞ which satisfy that

α∥ f ∥2 ≤
∑
i∈I

w2
i ∥πWi ( f )∥2 ≤ β∥ f ∥2, ∀ f ∈ H , (2)

where πWi is the orthogonal projection onto Wi. The constants α, β are called fusion frame bounds.

For the sake of brevity, we sometimes writeWw instead of {(Wi,wi)}i∈I. Let IH be the identity operator
on Hilbert space H . The decomposition of any signal f ∈ H according to a fusion frame Ww is given
by the fusion frame measurements

{
wiπWi f

}
i∈I

. These completely characterize the signal f , which can be
reconstructed from those by performing

f =
∑
i∈I

wiS−1
Ww

(wiπWi f ),
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where SWw ( f ) =
∑

i∈Iw2
i πWi ( f ) is the fusion frame operator known to be self-adjoint and positive with

αIH ≤ SR ≤ βIH . Therefore, a distributed fusion processing is feasible in an elegant way. As presented
above, given some local information x(i) := πWi (x), for i ∈ I, a vector can easily be reconstructed by applying
the inverse fusion frame operator

x := S−1
Ww

(∑
i∈I

w2
i x(i)

)
.

For simplicity, fusion frame {(Wi, 1)}ni=1 will be abbreviated asW throughout the paper.

1.2. Distributed sparse and partial properties

We first introduce the notations [N] for the set {1, ...,N} and | S | for the cardinality of a set S. Furthermore,
we write S for the complement [N]\S of a set S in [N]. For a matrix A ∈ Km×N and a subset S ⊂ [N], we use
the notation AS to indicate the column submatrix of A consisting of the columns indexed by S. Similarly,
for a vector x ∈ KN and a subset S ⊂ [N], we denote by xS the vector in KN which coincides with x on the
entries in S and is zero on the entries outside S.

The sparsity is used in the compressed sensing literature as a underlying hypothesis for solving the
resulting underdetermined systems of linear equations. A vector x ∈ KN is called s-sparse if it has at most
s nonzero entries, in other words, if

∥x∥0 :=| { j : x j , 0} |

is smaller than or equal to s.

Definition 1.2. A signal x ∈ KN is said to be s = (s1, · · · , sn)-distributed sparse with respect to a fusion frameW,
if ∥πWi (x)∥0 ≤ si, for every 1 ≤ i ≤ n. s is called the sparsity pattern of x with respect toW.

In practice, one encounters vectors that are not exactly s-sparse but compressible in the sense that they
are well approximated by sparse ones. This is quantified by the ℓp-error of best s-term approximation to x
given by

σs(x)p := inf
∥z∥0≤s

∥x − z∥p, p > 0.

It is well known that for q > p > 0 and any x ∈ KN,

σs(x)p ≤
1

s1/p−1/q ∥x∥p. (3)

As it will be useful later, we also need to introduce the local best approximations.

Definition 1.3. LetW be a fusion frame and let x ∈ KN. For p > 0 and a sparsity pattern s = (s1, · · · , sn) with
si ∈N for all 1 ≤ i ≤ n, the ℓp-error of best s-term approximations is defined as the vector

σWs (x)p :=
(
σs1 (P1x), σs2 (P2x), . . . , σsn (Pnx)

)T
.

In the compressed sensing literature, the null space property (NSP) has been used as a necessary and
sufficient condition for the sparse recovery problem through ℓ0-minimization. The definition below extends
this concept to the context of distributed sparsity of fusion frames. It requires the NSP property to be valid
for all local subspaces up to a certain local sparsity level with respect to sparsity pattern s. To this end, we
equip each subspace Wi ofKN with a sub-index set ∆i with ∆i ⊆ [N] such that πWi (x) = x∆i . Clearly, if {Wi}i
forms a fusion frame for KN, then

⋃n
i=1 ∆i = [N] and | ∆i |:= rank(πWi ) = dim Wi. In this case, we have that

the sparsity of each local signal is at most Ni :=| ∆i |.
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Definition 1.4. (Distributed partial null space property (DP-NSP)). LetW be a fusion frame forKN and let s be a
sparsity pattern (with entries si). A sensing matrix A ∈ Km×N is said to fulfill the DP-NSP with sparsity pattern s
with respect toW and constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0 if

∥(πWi v)Si∥1 ≤ ρi∥(πWi v)Si
∥1 + τi∥Av∥2

for all v ∈ KN, 1 ≤ i ≤ n,Si ⊂ ∆i with | Si |≤ si.

In compressed sensing, the analysis of recovery algorithms usually involves a quantity that measures
the suitability of the measurement matrix. The restricted isometry property (RIP) [2, 6] is a very simple
such measure of quality. The restricted isometry constant δs of a matrix A ∈ Km×N is defined as the smallest
δ ≥ 0 such that for all s-sparse x,

(1 − δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22. (4)

In this case, we call A ∈ Km×N satisfies RIP(s, δ). The following definition generalizes the concept of RIP to
the distributed sparse signal model.

Definition 1.5. (Partial-RIP (P-RIP)). LetW be a fusion frame forKN and let A ∈ Km×N. Assume that A satisfies
the RIP(si, δi) on Wi, with δi ∈ (0, 1), i ∈ {1, . . . ,n}. Then, we say that A ∈ Km×N satisfies the partial RIP with respect
toW, with bounds δ1, . . . , δn and sparsity pattern s = (s1, · · · , sn).

1.3. Outline

The subsequent sections of this paper are structured as follows. In Section 2, we establish that leveraging
the fusion frame methodology, any signal exhibiting a sparsity pattern s can be retrieved in a stable and
resilient fashion through the utilization of the aforementioned tools. Our theoretical analysis reveals that
the deviation in the approximation of the solution is effectively managed. Moreover, the robustness and
stability guarantees are further fortified by substituting the ℓ1-error bound with an ℓp-error bound, where
p ≥ 1. Motivated by the principles of compressed sensing and fusion frames, Section 3 reintroduces the
concept of relay fusion frames, which expands their applicability to encompass the recovery of arbitrary
signals within the ambient space, without the necessity of a sparsity assumption. By harnessing the
principles of operator theory, we formulate several recovery criteria that are firmly rooted within the relay
fusion frame setting. Finally, we elucidate the relationship between relay fusion frames and compressed
sensing.

2. Recovery based on fusion frames

Employing the aforementioned tools, our focus lies in the stable and robust recovery of any signal
exhibiting a sparsity pattern s, leveraging the fusion frame approach that was detailed in the preceding
section.

2.1. DP-NSP based recovery

Theorem 2.1. Let A ∈ Km×N andW a fusion frame forKN with lower fusion frame bound α > 0 and fusion frame
operator SW. Let (y(i))n

i=1 be the linear measurements y(i) = AπWi x + e(i) for some bounded noise vectors e(i) such

that ∥e(i)
∥2 ≤ ηi, i = 1, 2, · · · ,n. Denote by x̂(i) the solution to the local basis pursuit problem (P1,ηi ). If the matrix

A ∈ Km×N satisfies the DP-NSP with sparsity pattern s with constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0 with
respect toW, then x̂ = S−1

W

∑
i x̂(i) approximates x in the following sense:

∥̂x − x∥2 ≤
2
α

( n∑
i=1

1 + ρi

1 − ρi
σsi (πWi x)1 +

n∑
i=1

2τiηi

1 − ρi

)
. (5)
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Before turning to the proof of Theorem 2.1, we isolate the following observation, as it will also be needed
later, which gives a characterization of a matrix A ∈ Km×N satisfying the DP-NSP with sparsity pattern s.

Theorem 2.2. The matrix A ∈ Km×N satisfies the DP-NSP with sparsity pattern s with constants ρ1, · · · , ρn ∈ (0, 1)
and τ1, · · · , τn > 0 with respect toW if and only if

∥πWi (z − x)∥1 ≤
1 + ρi

1 − ρi

(
∥πWi z∥1 − ∥πWi x∥1 + 2∥(πWi x)Si

∥1

)
+

2τi

1 − ρi
∥A(z − x)∥2 (6)

for all x, z ∈ KN, 1 ≤ i ≤ n,Si ⊂ ∆i with |Si| ≤ si.

Proof. First, we assume that the matrix A ∈ Km×N satisfies inequality (6) for all vectors x, z ∈ KN. Fix
arbitrary i ∈ {1, · · · ,n}. Then for any v ∈ KN, taking x = −vSi and z = vSi

yields

∥πWi v∥1 = ∥πWi v∆i∥1

≤
1+ρi

1−ρi

(
∥πWi vSi

∥1 − ∥πWi vSi∥1 + 2∥(πWi vSi )Si
∥1

)
+ 2τi

1−ρi
∥Av∆i∥2

≤
1+ρi

1−ρi

(
∥(πWi v)Si

∥1 − ∥(πWi v)Si∥1

)
+ 2τi

1−ρi
∥Av∥2.

Rearranging the terms gives

(1 − ρi)
(
∥(πWi v)Si

∥1 + ∥(πWi v)Si∥1

)
≤ (1 + ρi)

(
∥(πWi v)Si

∥1 − ∥(πWi v)Si∥1

)
+ 2τi∥Av∥2,

that is to say

∥(πWi v)Si∥1 ≤ ρi∥(πWi v)Si
∥1 + τi∥Av∥2.

This is the DP-NSP with sparsity pattern s with constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0 with respect
toW.

Conversely, we assume that the matrix A ∈ Km×N satisfies the DP-NSP with sparsity pattern s with
constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0 with respect to W. For x, z ∈ KN, setting v := z − x, the
DP-NSP yields for any i ∈ {1, · · · ,n}

∥(πWi v)Si∥1 ≤ ρi∥(πWi v)Si
∥1 + τi∥Av∥2. (7)

Observe that

∥πWi x∥1 = ∥(πWi x)Si
∥1 + ∥(πWi x)Si∥1 ≤ ∥(πWi x)Si

∥1 + ∥(πWi x − πWi z)Si∥1 + ∥(πWi z)Si∥1,

∥(πWi x − πWi z)Si
∥1 ≤ ∥(πWi x)Si

∥1 + ∥(πWi z)Si
∥1.

Adding these two inequalities together gives

∥(πWi x − πWi z)Si
∥1 ≤ ∥πWi z∥1 − ∥πWi x∥1 + ∥(πWi x − πWi z)Si∥1 + 2∥(πWi x)Si

∥1. (8)

Combining inequalities (7) and (8) gives

(1 − ρi)∥(πWi v)Si
∥1 ≤ ∥πWi z∥1 − ∥πWi x∥1 + 2∥(πWi x)Si

∥1 + τi∥Av∥2.

Now using the DP-NSP once again, we derive

∥πWi v∥1 = ∥(πWi v)Si∥1 + ∥(πWi v)Si
∥1

≤ (1 + ρi)∥(πWi v)Si
∥1 + τi∥Av∥2

≤
1+ρi

1−ρi

(
∥πWi z∥1 − ∥πWi x∥1 + 2∥(πWi x)Si

∥1

)
+ 2τi

1−ρi
∥A(z − x)∥2,

which is the desired inequality.
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Proof of Theorem 2.1. Let x̂(i), i ∈ {1, · · · ,n} be solutions to the noisy (P1,ηi ) basis pursuit problems. By

applying the inverse fusion frame operator and fusion processing, it follows that x̂ = S−1
W

∑
i x̂(i). This yields

∥̂x − x∥2 ≤
1
α

n∑
i=1

∥∥∥πWi x − x̂(i)
∥∥∥

2
≤

1
α

n∑
i=1

∥∥∥πWi x − x̂(i)
∥∥∥

1
. (9)

For each i ∈ {1, · · · ,n}, we estimate the error on subspace Wi in the ℓ1 sense. It is easy to see that πWi x̂(i) = x̂(i).
Put vi := πWi (x − x̂(i)) = πWi x − x̂(i) = πWi (πWi x) − x̂(i). Now employing the inequality (6), we have

∥vi∥1 ≤
1 + ρi

1 − ρi

(
∥x̂(i)∥1 − ∥πWi x∥1 + 2∥(πWi x)Si

∥1

)
+

2τi

1 − ρi
∥Avi∥2. (10)

Take Si to be the set of best si components of x supported on Wi so that ∥(πWi x)Si
∥1 = σsi (πWi x)1. Since x̂(i) is

a minimizer solution of (P1,ηi ), ∥x̂(i)∥1 ≤ ∥πWi x∥1. This implies that

∥vi∥1 ≤
2(1 + ρi)

1 − ρi
σsi (πWi x)1 +

2τi

1 − ρi
∥Avi∥2. (11)

Summing up the contributions for all i ∈ {1, · · · ,n}we obtain

n∑
i=1

∥vi∥1 =

n∑
i=1

∥∥∥πWi x − x̂(i)
∥∥∥

1
≤

n∑
i=1

2(1 + ρi)
1 − ρi

σs(πWi x)1 +

n∑
i=1

4τiηi

1 − ρi
. (12)

The last step involved the inequality ∥Avi∥2 ≤ 2ηi, which follows from the optimization constraint as

∥Avi∥2 ≤ ∥AπWi x̂(i) − y(i)
∥2 + ∥y(i)

−AπWi x∥2 ≤ 2ηi.

Finally, combining inequalities (9) and (12), we arrive at the desired result. ⊔⊓

Remark 2.3. Note that if we let ρ⃗ =
( 1+ρi

1−ρi

)n

i=1
, τ⃗ =

(
2τi

1−ρi

)n

i=1
, η⃗ = (ηi)n

i=1, then error estimate (5) can be simply
represented as follows

∥̂x − x∥2 ≤
2
α

(
⟨ρ⃗, σWs (x)1⟩ + ⟨τ⃗, η⃗⟩

)
. (13)

Assuming perfect measurements (that is, ηi = 0), the error bound (13) yields

∥̂x − x∥2 ≤
2
α
⟨ρ⃗, σWs (x)1⟩. (14)

2.2. RP-NSP based recovery
We now turn to another main result of this section. It enhances the previous stability and robustness

result by replacing the ℓ1-error estimate by an ℓp-error estimate for p ≥ 1. A strengthening of the DP-NSP
is required.

Definition 2.4. (Robust and stable partial null space property (RP-NSP)). Let n be an integer andW a fusion frame
for KN. Let s = (s1, · · · , sn) be a sequence of non negative numbers representing the sparsity pattern with respect to
W. For a number q ≥ 1, a sensing matrix A ∈ Km×N is said to satisfy the ℓq-RP-NSP with pattern s with respect to
W and with constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0 if

∥(πWi v)Si∥q ≤
ρi

s1−1/q
i

∥(πWi v)Si
∥1 + τi∥Av∥2.

for all v ∈ KN, 1 ≤ i ≤ n,Si ⊂ ∆i with |Si| ≤ si.
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Armed with this notion, we can now give the following recovery guarantee result.

Theorem 2.5. Let A ∈ Km×N andW a fusion frame forKN with lower fusion frame bound α > 0 and fusion frame
operator SW. Let (y(i))n

i=1 be the linear measurements y(i) = AπWi x + e(i) for some bounded noise vectors e(i) such

that ∥e(i)
∥2 ≤ ηi, i = 1, 2, · · · ,n. Denote by x̂(i) the solution to the local basis pursuit problems (P1,ηi ). If the matrix

A ∈ Km×N satisfies the ℓq-RP-NSP with sparsity pattern s with constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0
with respect toW, then x̂ = S−1

W

∑
i x̂(i) approximates x in the following sense:

∥̂x − x∥p ≤
2
α

(
⟨ρ⃗s, σ

W

s (x)1⟩ + ⟨τ⃗s, η⃗⟩
)
, 1 ≤ p ≤ q, (15)

where ρ⃗s =
( (1+ρi)2

s1−1/p
i (1−ρi)

)n

i=1
, τ⃗s =

( s1/p−1/q
i τi(3+ρi)

1−ρi

)n

i=1
, η⃗ = (ηi)n

i=1.

For the proof of Theorem 2.5, we establish the auxiliary result Lemma 2.6 below.

Lemma 2.6. Given 1 ≤ p ≤ q, suppose that the sensing matrix A ∈ Km×N satisfies the ℓq-RP-NSP with pattern s
with respect toW and with constants ρ1, · · · , ρn ∈ (0, 1) and τ1, · · · , τn > 0. Then

∥πWi (z − x)∥p ≤
(1+ρi)2

s1−1/p
i (1−ρi)

(
∥πWi z∥1 − ∥πWi x∥1 + 2σsi (πWi x)1

)
+

s1/p−1/q
i τi(3+ρi)

1−ρi
∥A(z − x)∥2

(16)

for all x, z ∈ KN, 1 ≤ i ≤ n,Si ⊂ ∆i with |Si| ≤ si.

Proof. In view of inequality ∥vSi∥p ≤ s1/p−1/q
i ∥vSi∥q for all v ∈ KN, 1 ≤ p ≤ q, we observe that the ℓq-RP-NSP

implies that, for any 1 ≤ i ≤ n, Si ⊂ ∆i with |Si| ≤ si,

∥(πWi v)Si∥p ≤
ρi

s1−1/p
i

∥(πWi v)Si
∥1 + τis

1/p−1/q
i ∥Av∥2 for all v ∈ KN. (17)

In particular, it holds

∥(πWi v)Si∥1 ≤ ρi∥(πWi v)Si
∥1 + τis

1−1/q
i ∥Av∥2

for all v ∈ KN, 1 ≤ i ≤ n,Si ⊂ ∆i with |Si| ≤ si. Thus, for all x, z ∈ KN and each i ∈ {1, · · · ,n}, applying
Theorem 2.2 leads to

∥πWi (z − x)∥1 ≤
1 + ρi

1 − ρi

(
∥πWi z∥1 − ∥πWi x∥1 + 2σsi (πWi x)1

)
+

2τis
1−1/q
i

1 − ρi
∥A(z − x)∥2. (18)

Then, choosing Si as an index set of si largest entries of z − x, we use inequality (3) to notice that

∥πWi (z − x)∥p ≤ ∥
(
πWi (z − x)

)
Si
∥p +

1

s1−1/p
i

∥πWi (z − x)∥1.

In terms of (17), we derive

∥πWi (z − x)∥p
≤

1
s1−1/p

i

∥πWi (z − x)∥1 +
ρi

s1−1/p
i

∥

(
πWi (z − x)

)
Si
∥1 + τis

1/p−1/q
i ∥A(z − x)∥2

≤
1+ρi

s1−1/p
i

∥πWi (z − x)∥1 + τis
1/p−1/q
i ∥A(z − x)∥2

≤
(1+ρi)2

s1−1/p
i (1−ρi)

(
∥πWi z∥1 − ∥πWi x∥1 + 2σsi (πWi x)1

)
+

s1/p−1/q
i τi(3+ρi)

1−ρi
∥A(z − x)∥2,

which proves our claim.
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We now give a sketch of the proof of Theorem 2.5.
Proof of Theorem 2.5. Let us follow the strategy used in the proof of Theorem 2.1. It is readily to

observe that

∥̂x − x∥p ≤
1
α

n∑
i=1

∥∥∥πWi x − x̂(i)
∥∥∥

p. (19)

Put vi := πWi (x − x̂(i)) and employing the inequality (16), we obtain

∥vi∥p ≤
(1 + ρi)2

s1−1/p
i (1 − ρi)

(
∥πWi z∥1 − ∥πWi x∥1 + 2σsi (πWi x)1

)
+

s1/p−1/q
i τi(3 + ρi)

1 − ρi
∥Avi∥2 (20)

Summing up the contributions for all i ∈ {1, · · · ,n} and applying inequality (19) finishes the proof. ⊔⊓

2.3. P-RIP based recovery
Before proceeding we recall an important fact from the standard compressed sensing literature. That is,

if the restricted isometry constant of A ∈ Km×N obeys δ2s ≤ 4/
√

41, then the matrix A satisfies the ℓ2-robust
null space property with constants 0 < ρ < 1 and τ > 0 depending only on δ2s, where ρ and τ can be
respectively taken as

ρ :=
δ2s√

1 − δ2
2s − δ2s/4

< 1, τ :=
√

1 + δ2s√
1 − δ2

2s − δ2s/4
.

Note that the matrix A satisfies P-RIP conditions, if it satisfies RIP-like conditions on every subset of vectors
in range of πWi . Therefore, if A ∈ Km×N satisfies the P-RIP(2s, δ) with δ = (δ1, . . . , δn) with sparsity pattern
s = (s1, · · · , sn) and δ = (δ1, . . . , δn) with δi ≤ 4/

√
41, for all 1 ≤ i ≤ n, then, the matrix A satisfies the

ℓ2-RP-NSP with constants (ρi, τi)n
i=1, where

ρi :=
δi√

1 − δ2
i − δi/4

< 1, τi :=
√

1 + δi√
1 − δ2

i − δi/4
.

This obsevation shows the existence of random matrices satisfying the RP-NSP. Hence, by combining
Theorem 2.5, we can show that the P-RIP is sufficient for stable and robust recovery.

Theorem 2.7. Let A ∈ Km×N andW a fusion frame forKN with lower fusion frame bound α > 0 and fusion frame
operator SW. Let (y(i))n

i=1 be the linear measurements y(i) = AπWi x + e(i) for some bounded noise vectors e(i) such

that ∥e(i)
∥2 ≤ ηi, i = 1, 2, · · · ,n. Denote by x̂(i) the solution to the local basis pursuit problems (P1,ηi ). If the matrix

A ∈ Km×N satisfies the P-RIP(2s, δ) with sparsity pattern s = (s1, · · · , sn) and δ = (δ1, . . . , δn) with δi ≤ 4/
√

41, for
all 1 ≤ i ≤ n. Then x̂ = S−1

W

∑
i x̂(i) approximates x in the following sense:

∥̂x − x∥2 ≤
1
α

n∑
i=1

(ξiσWs (x)1,i
√

si
+ ζiηi

)
, (21)

where ξi and ζi depend only on the RIP constants δi.

Proof. Since the matrix A ∈ Km×N satisfies the P-RIP(2s, δ) with sparsity pattern s = (s1, · · · , sn) and
δ = (δ1, . . . , δn) with δi ≤ 4/

√
41, for all 1 ≤ i ≤ n, the matrix A satisfies the ℓ2-RP-NSP with constants

ρi :=
δi√

1 − δ2
i − δi/4

< 1, τi :=
√

1 + δi√
1 − δ2

i − δi/4
, 1 ≤ i ≤ n.

Now the conclusions follow from Theorem 2.5.
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2.4. Tangent cone based recovery
We end up this section with the following characterization of exact distributed sparse recovery via

ℓ1-minimization, which involves tangent cones to the ℓ1-ball. Once again, we need to define the concept of
local tangent cone with respect to fusion frame for the distributed sparse signal model. In order to properly
state our result, we recall some basic concepts from convex analysis. A convex set C ⊂ KN is called a cone
if it is closed under positive linear combinations. In addition, if C is convex, then C is called a convex cone.
The conic hull cone(T) of a set T ⊂ KN is the smallest convex cone containing T [13]. Given some nonzero
x ∈ KN, we define the local tan1ent cone at x with respect to fusion frameW as

TπWi
(x) = cone{πWi (z − x) : z ∈ KN, ∥πWi z∥1 ≤ ∥πWi x∥1}, 1 ≤ i ≤ n,

where the notation cone represents the conic hull.
The following theorem characterizes when x can be well approximated using the convex programs

P1,ηi , 1 ≤ i ≤ n.

Theorem 2.8. Let A ∈ Km×N andW a fusion frame forKN with lower fusion frame bound α > 0 and fusion frame
operator SW. Let (y(i))n

i=1 be the linear measurements y(i) = AπWi x+ e(i) for some bounded noise vectors e(i) such that

∥e(i)
∥2 ≤ ηi, i = 1, 2, · · · ,n. Denote by x̂(i) the solution to the local basis pursuit problems (P1,ηi ). If

inf
vi∈TπWi

(x),∥vi∥2=1
∥Avi∥2 ≥ τi,

for some constants τ1, · · · , τn > 0 with respect toW, for all 1 ≤ i ≤ n, then x̂ = S−1
W

∑
i x̂(i) approximates x in the

following sense:

∥̂x − x∥2 ≤
2
α

n∑
i=1

ηi

τi
. (22)

Proof. For each i ∈ {1, · · · ,n}, since x̂(i) is a minimizer solution of (P1,ηi ), ∥x̂(i)∥1 ≤ ∥πWi x∥1. This yields

vi :=
x̂(i)−πWi x

∥x̂(i)−πWi x∥2
∈ TπWi

(x). (Note that x̂(i) − πWi x , 0 can be safely assumed.) Since ∥vi∥2 = 1, the assumption

implies ∥Avi∥2 ≥ τi, that is,

∥AπWi (x̂(i) − x)∥2 ≥ τi∥x̂(i) − πWi x∥2.

It follows by the triangle inequality that

∥AπWi (x̂(i) − x)∥2 ≤ ∥AπWi x̂(i) − y(i)
∥2 + ∥y(i)

−AπWi x∥2 ≤ 2ηi,

which allows us to conclude that

∥̂x − x∥2 ≤
1
α

n∑
i=1

∥∥∥πWi x − x̂(i)
∥∥∥

2
≤

2
α

n∑
i=1

ηi

τi
. (23)

3. Recovery based on relay fusion frames

Throughout this section, I will denote a generic countable (or finite) index set. Let H and K (resp.
Ki, i ∈ I) be separable complex Hilbert spaces and let B(H ,K ) (resp. B(H ,Ki), i ∈ I) be the space of all
the bounded linear operators from H to K (resp. Ki, i ∈ I). If H = K we write B(H). Usually, it will be
clear from the context which norm we use. If W ⊆ H is a closed subspace, we let πW ∈ B(H) denote the
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orthogonal projection onto the subspace W. In particular, we use the notation {Wi}i∈I ⊏ H to represent a
family of closed subspaces {Wi}i∈I of a Hilbert spaceH , for the sake of brevity.

The purpose of this section is to introduce a generalization of the distributed sparse recovery to the case
where the measurement model is replaced by a so-called relay fusion frame. This model takes the form

yi = AiπWi ( f ), f ∈ H

where Ai ∈ B(H ,Ki), i ∈ I. We examine the question of reconstructing vectors from these linear measure-
ments.

3.1. Relay fusion frames and their operators
Definition 3.1. Let {Wi}i∈I ⊏ H , {vi}i∈I be a family of weights, i.e. vi > 0 for every i ∈ I, and Ai ∈ B(H ,Ki) for
all i ∈ I. Then {(Wi,Ai, vi)}i∈I is said to be a relay fusion frame, or simply r-fusion frame, if there exist constants
0 < α ≤ β < ∞ such that

α∥ f ∥2 ≤
∑
i∈I

v2
i ∥AiπWi ( f )∥2 ≤ β∥ f ∥2, ∀ f ∈ H . (24)

Remark 3.2. This definition is consistent with the definition of the classical g-frame [23] in the sense that the case
where vi = 1 and Wi = H (that is, πWi = IH ) recovers the usual g-frame.

We point out in passing that this structure can be used as a special frame for research. In general, let

Rℓ2 =
{
{ fi}i∈I | fi ∈ Ki and

∑
i∈I

∥ fi∥2 < ∞
}
.

Define the analysis operator TR : H 7→ Rℓ2 by

TR( f ) =
{
viAiπWi ( f )

}
i∈I
, ∀ f ∈ H .

Then

T∗
R

( f ) =
∑
i∈I

viπWi A
∗

i fi, ∀ f = { fi}i∈I ∈ Rℓ2 .

The new r- f usion f rame operator becomes

SR( f ) = T∗
R

TR( f ) =
∑
i∈I

v2
i πWi A

∗

i AiπWi ( f ), ∀ f ∈ H . (25)

It is also true that the r-fusion frame condition (24) is equivalent to that αIH ≤ SR ≤ βIH . It shows that the
r-fusion frame operator SR is a positive, self-adjoint and invertible operator. This means that recovery of
any f ∈ H is possible, if SR( f ) is known.

3.2. Relay fusion frame systems based recovery
Another way to recover elements in H is through relay fusion frame systems. Let {Wi}i∈I ⊏ H , {vi}i∈I

be a family of weights, and Ai ∈ B(H ,Ki) for all i ∈ I. Assume further that { fi j} j∈Ji is a frame for Ki with
dual frame {1i j} j∈Ji , for all i ∈ I. Standard arguments show that {(Wi,Ai, vi)}i∈I is an r-fusion frame forH if
and only if {viπWi A

∗

i fi j}i∈I, j∈Ji is a frame for H . In this case, we call {(Wi,Ai, vi, { fi j} j∈Ji )}i∈I is an relay f usion
f rame system forH . In the following we will show that the sequence {viS−1

R
πWi A

∗

i1i j}i∈I, j∈Ji is a dual frame for
the frame {viπWi A

∗

i fi j}i∈I, j∈Ji . Before that, we are actually going to prove a stronger “if and only if” theorem
below.

Theorem 3.3. For each i ∈ I, let Ti,Si ∈ B(H ,Ki) and { fi j} j∈Ji be a frame for each Ki with dual frame {1i j} j∈Ji . If
{T∗i fi j} j∈Ji and {S∗i1i j} j∈Ji are Bessel sequences inH , then they are dual frames inH if and only if

∑
i∈I

S∗i Ti = IH .
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Proof. It is easy to see that for any f ∈ H ,

f =
∑
i∈I

∑
j∈Ji

⟨ f ,T∗i fi j⟩S∗i1i j =
∑
i∈I

S∗i Ti( f ),

which finishes the proof.

Bearing in mind that for each f ∈ H , we have the reconstruction f ormula

f =
∑
i∈I

v2
i S−1
R
πWi A

∗

i AiπWi ( f ) =
∑
i∈I

v2
i πWi A

∗

i AiπWi S
−1
R

( f ).

Therefore, a direct consequence of Theorem 3.3 is that {viS−1
R
πWi A

∗

i1i j}i∈I, j∈Ji is a dual frame for the frame
{viπWi A

∗

i fi j}i∈I, j∈Ji .

Corollary 3.4. Let {(Wi,Ai, vi, { fi j} j∈Ji )}i∈I be an r-fusion frame system forH with associated r-fusion frame operator
SR and let {1i j} j∈Ji be local dual frames with respect to { fi j} j∈Ji , i ∈ I. Then {viS−1

R
πWi A

∗

i1i j}i∈I, j∈Ji is a dual frame for
the frame {viπWi A

∗

i fi j}i∈I, j∈Ji .

It is interesting to observe that a “dual” relation also holds.

Corollary 3.5. Let {(Wi,Ai, vi, { fi j} j∈Ji )}i∈I be an r-fusion frame system forH with associated r-fusion frame operator
SR and let {1i j} j∈Ji be local dual frames with respect to { fi j} j∈Ji , i ∈ I. Then {viS−1

R
πWi A

∗

i fi j}i∈I, j∈Ji is a dual frame for
the frame {viπWi A

∗

i1i j}i∈I, j∈Ji .

The above findings justify that r-fusion frame is convenient in that it allows us to recover any signal,
whether it is sparse or not.

3.3. Relay fusion frame algorithm based recovery
In order for reconstruction formula to be useful, we need to invert the r-fusion frame operator, which

is often a challenging task. Another option is to use an algorithm to obtain approximations of f . As a
reminder, we recall from the literature that the algorithm starts with an initial vector f (0)

∈ H , typically
f (0) = 0, and produces a sequence ( f (k)) defined inductively by

f (k) = f (k−1) +
2
α + β

SR
(

f − f (k−1)
)
, k ≥ 1. (26)

Theorem 3.6. Let {(Wi,Ai, vi)}i∈I be an r-fusion frame for H with r-fusion frame operator SR and r-fusion frame
bounds α, β. Then for every f ∈ H , the sequence ( f (k)) defined by (26) converges to f with the error estimate

∥ f − f (k)
∥ ≤

(β − α
β + α

)k
∥ f ∥.

Proof. According to equation (25), we have

⟨SR f , f ⟩ =
〈∑

i∈I

v2
i πWi A

∗

i AiπWi f , f
〉
=

∑
i∈I

v2
i ∥AiπWi f ∥2.

Thus

⟨(IH −
2
α + β

SR) f , f ⟩ = ∥ f ∥2 −
2
α + β

∑
i∈I

v2
i ∥AiπWi f ∥2,∀ f ∈ H .

By the r-fusion frame condition, we obtain

⟨(IH −
2
α + β

SR) f , f ⟩ ≤ ∥ f ∥2 −
2α
α + β

∥ f ∥2 =
β − α

α + β
∥ f ∥2,∀ f ∈ H .
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Similarly,

−
β − α

α + β
∥ f ∥2 ≤ ⟨(IH −

2
α + β

SR) f , f ⟩,∀ f ∈ H .

From the two inequalities obtained above, it can be seen that∥∥∥∥IH −
2
α + β

SR
∥∥∥∥ ≤ β − αα + β

.

In the light of the definition of ( f (k)), we derive

f − f (k) = f − f (k−1)
−

2
α + β

SR
(

f − f (k−1)
)
=

(
IH −

2
α + β

SR
)
( f − f (k−1)).

By repeating this process yields that

f − f (k) =
(
IH −

2
α + β

SR
)k

( f − f (0)).

Therefore,

∥ f − f (k)
∥ =

∥∥∥∥(IH − 2
α + β

SR
)k

( f − f (0))
∥∥∥∥ ≤ (β − α

α + β

)k

∥ f ∥.

The vectors f (k) in (26) converge to f as k → ∞. In particular, every f ∈ H can be reconstructed from
the r-fusion frame coefficients TR( f ) =

{
viAiπWi ( f )

}
i∈I

, since SR( f ) only requires the knowledge of those
coefficients. However, the rate of convergence of the r-fusion frame algorithm depends crucially on good
estimates for the r-fusion frame bounds. For r-fusion frames with a large ratio β/α ≫ 1, the algorithm
might require too many iterations to be of good use. To save the algorithm, Gröchenig discussed in [17]
two representative acceleration methods: Chebyshev acceleration and Conjugate Gradient acceleration,
and showed that they lead to faster convergence. We refer to the original paper for the details.

3.4. Relay fusion frames and compressed sensing
We first indicate the link among r-fusion frame and fusion frame and g-frame.

Theorem 3.7. Let I be a finite index set and {(Wi,Ai, vi)}i∈I an r-fusion frame for H . Then {(Wi, vi)}i∈I is a fusion
frame forH and {Ai ∈ B(H ,Ki)}i∈I is a g-frame forH .

Proof. We only need to illustrate the lower fusion frame bound and lower g-frame bound for {(Wi, vi)}i∈I
and {Ai ∈ B(H ,Ki)}i∈I, respectively. Assume that {(Wi,Ai, vi)}i∈I is an r-fusion frame for H with r-fusion
frame bounds α, β. Then for arbitrary element f ofH , we have

α∥ f ∥2 ≤
∑
i∈I

v2
i ∥AiπWi ( f )∥2

≤
∑
i∈I

v2
i ∥Ai∥

2
∥πWi ( f )∥2

≤ max
i∈I
{∥Ai∥

2
}
∑
i∈I

v2
i ∥πWi ( f )∥2.

We conclude that {(Wi, vi)}i∈I is a fusion frame forH . Similarly, it is easy to observe that for each f ∈ H

α∥ f ∥2 ≤
∑
i∈I

v2
i ∥AiπWi ( f )∥2

≤
∑
i∈I

v2
i ∥Ai( f )∥2

≤ max
i∈I
{v2

i }
∑
i∈I
∥Ai( f )∥2.

This proves the claim.
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It is readily to see that the assertions of Theorem 3.7 are not true in general if we assume that I is a
countable infinite index set instead of assuming that I is a finite index set. In addition, one may wonder
whether the Theorem 3.7 holds in reverse? In fact, the answer is negative.

Example 3.8. Let W1,W2 be closed non-trivial subspaces ofH and letH =W1 ⊕W2 and v1 = v2 = 1. Assume that
Ai ∈ B(H), i = 1, 2 and A1 = 0 and A2 is any bounded invertible linear operator onH . Obviously, {(Wi, vi)}i=1,2 is
a Parseval fusion frame for H and {Ai ∈ B(H)}i=1,2 is a g-frame for H , respectively. However, {(Wi,Ai, vi)}i∈I can
never be an r-fusion frame forH .

Fortunately, if all relay operators Ai are restricted to be the same, a stronger “if and only if” theorem can
be obtained.

Theorem 3.9. Let I be a finite index set. Then {(Wi,A, vi)}i∈I is an r-fusion frame forH if and only if {(Wi, vi)}i∈I is
a fusion frame forH and A is bounded below fromH intoK .

Proof. Suppose that {(Wi, vi)}i∈I is a fusion frame for H with fusion frame bounds α, β and operator A is
bounded below fromH intoK so that ∥A f ∥ ⩾ C∥ f ∥with C > 0 for every f ∈ H . Then for all f ∈ H ,

αC∥ f ∥2 ≤ C
∑
i∈I

v2
i ∥πWi ( f )∥2

≤
∑
i∈I

v2
i ∥AπWi ( f )∥2

≤ ∥A∥2
∑
i∈I

v2
i ∥πWi ( f )∥2

≤ β∥A∥2∥ f ∥2.

This implies that {(Wi,A, vi)}i∈I is an r-fusion frame forH .
The converse proof strategy is similar to the proof of Theorem 3.7.

Armed with this fact, let us consider some implications of the result in Theorem 3.9 for a couple of
specific measurement matrix A ∈ Km×N. The special case of an s-sparse vector x ∈ KN is also worth a
separate look. By Ωs we denote the set of all s-sparse vectors x ∈ KN.

Theorem 3.10. LetW be a fusion frame forKN. Then there exists a measurement matrix A ∈ KN×N such that every
vector x ∈ KN can be recovered via an r-fusion frame procedure. In particular, if x ∈ Ωs, then A ∈ KN×N contains a
submatrix AS as a map from KS to KN such that x can be recovered via an r-fusion frame procedure (generated by
AS).

Proof. Let us fix tN > · · · > t2 > t1 > 0 and consider the matrix A ∈ KN×N defined by

A =


1 1 · · · 1
t1 t2 · · · tN
...

... · · ·
...

tN−1
1 tN−1

2 · · · tN−1
N

 .
The square matrix A is a Vandermonde matrix. The determinant of A equals

det A =
∏

1≤k<l≤N

(tl − tk) > 0.

This shows that A is invertible, in particular injective. Therefore, {(Wi,A, vi)}i∈I is an r-fusion frame forKN.
In particular, for an s-sparse vector x ∈ KN with

S = supp(x) := { j ∈ [N] : x j , 0},
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we have AπWi x = ASπWi xS for every i ∈ I. Note that S = supp(x) ranges through all possible subsets of [N]
of cardinality |S| = s when x ranges through all possible s-sparse vectors. Thus, for each x ∈ Ωs,

∥A−1
∥
−2
∥xS∥

2
≤

∑
i∈I

v2
i ∥AπWi x∥

2 =
∑
i∈I

v2
i ∥ASπWi xS∥

2
≤ ∥A∥2∥xS∥

2.

In view of the proof of the Theorem 3.10, many other matrices meet the requirement of the matrix A.
Instead of the N ×N Vandermonde matrix associated with tN > · · · > t2 > t1 > 0, we can choose any matrix
that is totally positive, i.e., that satisfies det AI,J > 0 for any sets I, J ⊂ [N] of the same cardinality, where AI,J
represents the submatrix of A with rows indexed by I and columns indexed by J. In addition, the partial
Fourier matrices can also be used as candidates. More information can be extracted from the Theorem 3.10,
that is, if x ∈ KN is an s-sparse vector, then we only need to construct an r-fusion frame for Ωs, rather than
for the whole ambient space. This simple observation might be useful in practical applications to reduce the
computational complexity and thus improve computational efficiency. Moreover, given any s-distributed
sparse vector x ∈ KN, a set S′ (at most [N]) can always be found such that x = xS′ . Therefore, according to
Theorem 3.10, there exists a measurement submatrix AS′ ∈ KS′×N so that every s-distributed sparse vector
x can be recovered via associated r-fusion frame procedure.

Let ΩWs be the set of all s-distributed sparse vectors with respect to the family of subspaces (Wi)i. The
following theorem states that the P-RIP is a sufficient condition for a setting to be an r-fusion frame. Thus,
any s-distributed sparse vector can be recovered by an r-fusion frame system under the assumption of the
P-RIP.

Theorem 3.11. Let W be a fusion frame for KN with frame bounds α, β. Let A ∈ Km×N satisfy the P-RIP with
respect toW, with bounds δ1, . . . , δn and sparsity pattern s = (s1, · · · , sn), and let

α0 = αmin
i
{1 − δi}, β0 = βmax

i
{1 + δi}.

Then {(Wi,A, vi)}i∈I is an r-fusion frame for ΩWs with r-fusion frame bounds α0, β0.

Proof. For any x ∈ ΩWs , according to the inequality (4), we know∑
i∈I

(1 − δi)v2
i ∥πWi x∥

2
≤

∑
i∈I

v2
i ∥AπWi x∥

2
≤

∑
i∈I

(1 + δi)v2
i ∥πWi x∥

2.

Further using the fusion frame inequality (2), we get

αmini{1 − δi}∥x∥2 ≤ mini{1 − δi}
∑
i∈I

v2
i ∥πWi x∥

2

≤
∑
i∈I

(1 − δi)v2
i ∥πWi x∥

2

≤
∑
i∈I

v2
i ∥AπWi x∥

2

≤
∑
i∈I

(1 + δi)v2
i ∥πWi x∥

2

≤ maxi{1 + δi}
∑
i∈I

v2
i ∥πWi x∥

2

≤ βmaxi{1 + δi}∥x∥2,

which concludes the proof.

Remark 3.12. We would like to add a few comments about r-fusion frames and compressed sensing. Note that
Theorem 3.11 can be used as special bridging results for fusion frame. Recall that the bridging problem investigate
conditions on relay operator to ensure that a given fusion frame can form an r-fusion frame, cf.[19]. In compressed
sensing terms, this is equivalent to investigate conditions on measurement matrix A which ensure exact or approximate
reconstruction of the original sparse or compressible vector x. In other words, the recovery guarantee conditions on A
provide solutions to the bridging problem for fusion frames.
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