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A note on the boundedness of Marcinkiewicz integral operator on
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Abstract. In this paper, the authors prove the boundedness of Marcinkiewicz integral operator under

some proper assumptions on continual Herz-Morrey spaces HM;;(:%(/;;’(‘)(R”) with variable exponents.

1. Introduction

The Marcinkiewicz integral is introduced as a tool analogous to the Littlewood-Paley f-function. In
1938, Marcinkiewicz [13] introduced an integral on one-dimensional Euclidean space IR, known today as
the Marcinkiewicz integral. The integral is defined without going into the interior of the unit disk, and
Marcinkiewicz conjectured that it is bounded on LF([0, 27t]) for any p in open interval (1, o0). In 1944, using
a complex variable method, Zygmund [29] proved the Marcinkiewicz conjecture. The higher-dimensional
Marcinkiewicz integral was introduced by mathematician Elias M. Stein [19] in 1958.

Let §"~! represents the unit sphere in R”, equipped with the normalized Lebesgue measure. Let
® € L’(§"!) is a homogeneous function of degree zero such that

jnmym¢wv=a

gn-1

1)

where ¥ = y/lyl and y is not zero. The Marcinkiewicz integral in the context of the Littlewood-Paley
f-function on IR" is given as

1
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where

(I) —
For(£)(x) = f QY oy,

e = yl*!
[x—y|<s

The Marcinkiewicz integral operator Mg is defined by,
2 2
_ P(x - y) ds
Mo(f)(x) = f f Wf(}/)dy 3

0 —yl<s

(e8]

Numerous research papers have been dedicated to investigating the boundedness of the higher-
dimensional Marcinkiewicz integral operator M on various function spaces. It then refers the reader to spe-
cific papers for further details on the developments and applications of this operator [3-5, 8,9, 12, 25, 26, 28].

The study of function spaces with variable exponents has gained significant attention and made sub-
stantial progress in various branches of mathematics, including real analysis, partial differential equations
(PDEs), and applied mathematics. Herz spaces were initially introduced by Herz [7] in his paper to inves-
tigate the absolute convergence of Fourier transforms. Subsequently, these spaces have found significant
applications in diverse branches of applied mathematics. Herz spaces play a role in characterizing multi-
pliers on Hardy spaces [2], in regularity theory for elliptic equations in divergence form [17] and involved
in the study of the summability properties of Fourier transforms [6].

Herz spaces where introduced with discrete type norm (homogeneous version)

1 fllpg, = {Z 2kap (f;kl o If(x)qux)q} .

keZ.

One of the important problems on Herz spaces is boundedness of sublinear operators. In [10], author
introduced the idea of Herz spaces with variable exponent Hy , and obtained the boundedeness of sublinear
operators in the setting of Herz spaces with variable exponent. The most general results were obtained
in [1], where the variability of a was allowed and authors discussed the boundednss of a wide class of
sublinear operators (maximal, potential and Calderén-Zugmund operators) on variable Herz spaces. We
also note that Herz-Morrey spaces with variable exponent is the generalizations of Herz spaces with variable

exponent. The class of Herz-Morrey spaces with variable exponent MK‘;';(‘)(]R”) was initially defined by the

author [11], and the boundedness of sublinear operators on MK;‘,’Z]A(.)(R”) was proved.

The idea of grand variable Herz-Morrey spaces further extended the framework of Herz-Morrey spaces
by incorporating the variable exponent setting. The boundedness of Marcinkiewicz integral operator of
variable order in grand variable Herz-Morrey spaces are obtained in [25]. Boundedness of commutators
of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces are proved in [23].
In [24], authors obtained the BMO estimate for the higher order commutators of Marcinkiewicz integral
operator in grand variable Herz-Morrey spaces. For more generalized versions of the Herz spaces with
variable exponents, please see the papers [20, 21]. The idea of continual Herz spaces was introduced by [18]
by replacing the discrete norm with continual Lebesgue norm and author obtained the boundeness results
for sublinear operator in these spaces, for more results on continual Herz spaces see [14, 16].

Motivated by the idea, in this paper we introduce the idea of continual Herz-Morrey spaces with variable
exponents. We obtain the boundedness results for the Marcinkiewicz integral operator in these spaces.

We define a measurable set H in IR” and a measurable function r(-) defined on H and taking values in

the interval [1, 00). Let us assume that r_ := ess Imlg r(h), and r,. := esssup r(h), then we have the following
e heH
inequality

1<r_(H)<r(h) <ry(H) < oo. (2)
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With respect to classes of variable exponents used in this paper, we adopt the following notation:

(i) P8 = P°8(H) represents a class of functions that meet certain conditions. The class $(H) consists of
those exponents which satisfy (2) and (5);

(ii) in the case H is unbounded, P (H) and Py (H) are subset of the class P(H) that consists of functions
satisfying a certain condition, as indicated by equation (6). The values of the functions in this subset
fall within the interval [1, 00), and satisfy both conditions (6) and (7) respectively;

(iii) LetRyy := (u, 00), where u > 0. Then M (R+) is the class consists of functions defined on the domain
Ru+ that have certain properties. Specifically, these functions are of the form g(t) = constant + go(¢),
where go(t) is a function belonging to the class $co(IR;;), where H = R4, u > 0.

(iv) Plo?,g (H) is the subset consists of exponents that satisfy the condition (5);

(v) in the case H = R, (the case y = 0), My (IR+) is the class comprises functions defined on the positive
real line R+ that are also in the class Moo(IR,) and satisfy a decay condition at the origin (y = 0). The
decay condition implies that these functions are bounded by a logarithmic term as y approaches zero.
Specifically, for |y| < 2, the function satisfies the inequality |f(y) — fol < for some real numbers fy
and C. We also write fy = f(0), fo = f(c0) in this case;

= ln Iyl

(Vi) Po,(R+) is a subclass of functions within the class M «(IR+) that have values in the interval [1, o0).
In other words, these are the functions from My . (IR+) that satisfy the given conditions and have their
values constrained within the specified range with values in [1, c0).

If R4, 1 > 0and # denotes the Haar measure, norm of Lebesgue spaces with Haar measure is defined
as,

(t
mekdg—mfA>O\fV) <1

Let 9 denote the Haar measure, then the Mellin convolution operator with homogeneous kernal of
order 0 is defined as

Mm:fW%W@%. 3)
0

In [18], Samko introduced the new class of function spaces known as continual Herz spaces with
variable exponent. Boundedness of some operators including sublinear operators, Riesz potential operator,
Marcinkiewicz integrals can be found in [14, 16].

Let xy is the characteristic function of a set H and Ry, := R(2"71,2™) with x.+(y) = X®..(y). We can define

q0)a()

continual Herz-Morrey spaces with variable exponent HMP )( .5)

(R"™) by its norm,

gy = 0o + S 2PN, sl ot < )
koe

2. Preliminaries

We denote by B(y,s), the all with center at y and radius s. We define the spherical layer R(z,t) as
R(t,t) :=B(0,t)\ B(0,7) = {y € R" : T < |[y| < t}. Let N denote the set of natural numbers with Ny = N U {0}.
Let Z denote the set of all integers. For two non-nagative functions f and g, f < g we mean f < Cg., where
C does not depend on variables involved.

Variable exponent Holder’s inequality are stated as

£ glly < M fllpollgllae),
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where we define r as % = !% + q%—l) foreveryi € H,and p,q,r € P(R").
Let us recall the well-known log-Holder continuity condition (or Dini-Lipschitz condition) for r : H

(0, 00): there is a positive constant C such that for all x, y € H with |x — y| < %,

[r(x) = r(y)l < (5)

—Inlx -yl

Further, we say that p(-) satisfies the decay condition if there exists 7o := r(c0) = lim r(x), and there is a

|x|—>00

positive constant Co, > 0 such that

Coo

[7(x) — 7o < —ln(e s

< (6)
We will need also the log Holder continuity condition at 0 for 7(:): there are constants Cy > 0 such that for
all x| < 1,
Co
— < —.
@) = ) < g @
The best possible constant C in 5 (resp. Co in 6) is called log-Holder continuity or log-Dini-Lipschitz
constant (resp. decay constant) for the exponent r(-).

Lemma 2.1. [18] Let D > 1 and r € Py o (R"). Then

1 n n_
t—srw) < xrop, iy < tos™, for 0 <s <1 (8)
0
and
1 n_ a
t—S’“’ < X, i) < teos?s, fors =1, )

respectively, where tg > 1 and t > 1. These are constants that depend on a certain parameter denoted as D.

Specifically, they might vary according to the value of D. It's noted that these constants ty and te, do not depend on
another parameter s.

Lemma 2.2. (see [18]) Let p € Py (R+) and p(0) = p(c0). The operator T is bounded on LPO(Ry; %) if

fll"(t)ls# <oo whens=1 & s = s, (10)
0

11141
for =1 oo

Lemma 2.3. (see [18]) For every measurable function Q, the following relations

1 ("do
IQ()ldx = — f = f 1Q()ldx, > 2a >0, (11)
£b<|x|<j In2 b 0 max(2b,0)<|x|<min(j,20) J
and
1 “do .
L 100 = [ % [ rowuiso (12)
max(0,2j)<|x|<26

hold if the integrals on the left-hand side of above relations exists.
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These Lemmas are already proved in [18].

Lemma 2.4. Let 1 < p_ < p(x) < p, < oo holds,
|IgIIHp(-;,q,a<-> x ||g||Lp(-)(B(o,w+9)) + ||ta°°||9XRW,M||p(<)||m(]1{+'y;%)/ u>0,
1
and

lllgonso = 1O + ™ Ollgxe, .l lloe. 4)

2021

(13)

(14)

then equivalences of norms given above are valids, if a € le,g(]RJr,y) for(13)and ¢ € Méoi (R+) in the case of (14).

Lemma25. Let4 <R <ocoand0<p<2
Ao < CIPFX2illpoll ooy
,00); 7

where B" = B(0,R) \ B(0,2 + 0) and C' = C(p, R).

Let §"~! represents the unit sphere in R”, equipped with the normalized Lebesgue measure. Let

® € L’(§"!) is a homogeneous function of degree zero such that

f Oy )iD(Y) = 0,

gn-1

(15)

where ¥’ = y/lyl and y is not zero. The Marcinkiewicz integral in the context of the Littlewood-Paley

f-function on IR” is given as

1

r ds ’
Mo(f)(x) = |F(I>,s(f)(x)|2_3 ,
/ :
where
B O(x — )
Fos(f)(x) —‘ f| =} f(y)dy.
x—y|<s

The Marcinkiewicz integral operator Mg is defined by,
. 2 2

D(x - d
Ma(f)) = f f %J‘(y)d}/ 3

0 k-ylss

By using extrapolation argument, cf. [27], we get
e fllo < Mfllpo-

3. Boundedness of the Marcinkiewicz integral operator
Lemma 3.1. [15] Leta > 0,s € [1,00],0<d <sand -n+ (n — 1)§ < u < oo, then
1/d

f IO = ylfdy | < VD).

|<alx|
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In the next theorem we prove the boundedness of the Marcinkiewcz integral operator on continual Herz-

Morrey spaces HMZ(# (y)b;X()(]R”), with all the parameter p(-), q(-) a(-) are variables conditioned that the

Marcinkiewcz integral operator is bounded on LFO(R").

Theorem 3.2. Suppose that p € PLJRY), g € PE(u,00) with 1 < p_ < py < 00, 1 < g_ < g, < oo and
@ € Moo(Ryi). Let 1> 0,0 <y <6 < oo and P be homogeneous of degree zero and ® € L(S"™1), s > q'~. If

—i<am<l—ﬁ, (16)
Peo pPe S

then every Marcinkiewicz integral operator i.e is bounded on LFO(IR"), is also bounded from the continual Herz-Morrey
spaces HMVA020) Ry 44 HM”(')fq(')fa(')(]R”)for any 5 < <coand 0 <y’ <7y.
By’ ) Biai(y,0)
Proof. Without loss of generality, we choose p =2,y =1, and 0 = 2. We want to show that
P (i
”M®9 HLP(')(B(0,2+6)) +Nip" (Mog) < ”g ||LP<')(B(O,2+9)) Ny (@),
withy’ <1,0 > 2,
PAR Y —k o
Ny,b (g) T 2222 o “ta ”gXthrN”Ln(-)“Lq(»)((z,ko),dt/t) :
0

The estimation for ||[Magll;y0(5(0,2+0) can be calculated by using the boundedness of the Marcinkiewicz on
Lebesgue spaces with variable exponents. So we have

IMogllromoz+ey < 19llo@o20)) < I|g||HMZ<£)-?’V(;)§(;)(R”)'

For estimating the term N (Mq,g)p e

Let fo(x) = g(x)xp(,1)(X), f1(x) = ()X B0,\B0,1)X), 9:(X) = g)XBE\BO, 0, 1(X) = g(X)XRNBO51), then
the function g(x) will be splitted as

g(x) = fo(x) + fi(x) + gs(x) + he(x).

Now we have pointwise inequality,
[Mag(x)| < [Mofo(x)| + Mo fi(x)| + [Mage(x)| + IMoh:(x)].
Now we will find the estimate for Mo fo:

Let y € B(0, 1) with x € R, and t > 2 we get

£<t—l<|x|—||<|x— |
2— 2 y— yr
which implies

IMa(f0)(xX)-XR, ]

(
<c f |n 0= 9,y

B(0,1/2)

<Cr f O(x — gy xx,.
B(0,1/2)

< Ct_n”fO”Lp(-)(”(cD(x - '))XB(0,1/2)||Lp'<->)-)(1e,,2f-
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We define the relation ﬁ = PL(X) + 1. By using Lemma 3.1 and generalized Holder’s inequality we have
I(D(x — -Nxsoyllre SINDPE = Nxsoulls@yllxsonllo
1/s
<| [ 106~y
<1
Letz=x—yand |z| < |x| + |yl <2t + 1 < 3t. We have
1/s
0= Mwonlo <| [ 10@rez
z| <3t
<Dl gr),-
Consequently, we get
Mo fo(2)- X, 10
<Ct™l follm-)(fgIICDIILs(sn—l)IIXR,,ZtIIU<->)

< CtT follpo NP s g1y X Ry 0
< CtsTxsyllpoll follyo -

N(Mcpfo)p,q,a <C sup 2—koﬁ”tam—n+§ ”XBZ,||LP<~)”Lq((z,ko);%)||f0||Lp(~)
koeZ

_n
< Csup 27FP||t" 7%
ko€

< Cllfollppo,

L
) ”Lq((z,ko);%)||f0||Lﬂ(-)

where we used the fact that ae — pi, +% < 0 and finiteness of L7 norm of power function we got last
inequality.

Now we will find the estimate for M f;:
Let x € R; 5 and considering (1 — ')t < |x — y| we get
1Q(x = y)|
Mo fr(x)| < C f MIg(y)ldy.

lx —yl"
B(0,y’)\B(0,1/2)

By using Holder’s inequality we obtain,

Mofil < [ 106 Doty

1/2<]y|<t

c (d
<+ f ?p f 1Q(x — llgw)ldy

172 L<yl<p
t

SR [ (1w~ )
= p !]XR%,P Lp¢) ( (x ))XR%,P“LP'(‘) .
1/2
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1 1

We define 4(-) by the relation T® = PE

have
10 = )xm, Mo <IPC=)am, le@ylixr, o
1/s
<| [ ww-yray| ot
Slyl<p
Letz=x—-yand|z| < |x| + |y| <2t + p < 3t, we have
1/s
10 = )xm, Mo < f |0@z)fdz| p™
z| <3t

St? ”cD”Ls(Sn—l)pa_; .

||Mcpft(X) AR ”U’(')
t

. (dp
<Ct ”fFIIgXR,Z,,PIIW(II@(x— ‘)XR%,‘)“p’(-)”X’Rm”LP('))
172
t

_ dp n o _n
<Ct nf?||£7)(1eglp||m>(ff||‘D||Ls(sn1)P"°° 5||XRf,2t||Lp<«))
172

— dp n S
<Ct nf?”g}(ﬂg’p”Lﬁ(')”XBz,”Lﬂ(')ts“(D”LS(S”*)PP” .
172

£ [[Ma f1(x)- X R 120

t
=N+ -+ S--1-1
< Ct* " -*fllg)(mpllm-)ppw dp
3
1/2

t
Aoo— = +4 S-=1-1
SCE™ ¥ ‘flngRap“m-)p”w *dp
g,
1/2

t Qoo T4 2 d
A
<JG) T o
P P
1/2

where w(p) = p“wllg)(RE/pllmq. Define I'(t) as

Qo= +4
I(t) = o s, >,
0, 0<t<1,

by defining, the operator T'w(t) = f K(ﬁ)w(p)%p,
0

2024

1 . . . yo. .
+ 5. By using Lemma 3.1 and generalized Holder’s inequality we

(17)
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where w(p) = p*|lxr,,,llro- Left hand side of above equation is a Hardy type operator and by applying
Lemma 2.2 we get

N5 (Mofy) < sup2° PIT @I 0 2 yity S Sup2 Bl (@k);2y < 119l

i 4 HP( ) ﬂ()a( )(]R”
0

Now we will find the estimate for Meg;:

As the operator Mg, is bounded on the space LPO(R") — LPO(IR") so we obtain

IMage) Xz, llro < Cllgellpe = Cllgxry esello

which implies
P
N1y (Magr) < CllGXRy 1l ppoa020 oy
4 B2 )

Now we will find the estimate for Mgh;(x):

By using the fact that |x — y| > p/2 since x € Ry, and Holder’s inequality, we get

Q
Mol < C f |n K= D1y,
yI>8t
|Maohy(x)|
C
<& [ 106wy
ly|>8t
(dp f [CRD
< s
4t p<lyl<2p

d
< f Fp||m,,,zp||Lp<»>p‘"(||<<1>(x - ~>>mp,2pllm'<->)-
4t

We define 4(-) by the relation ——
have

5 (x) P,%x) + 1. By using Lemma (3.1) and generalized Holder’s inequality we

ID(x = )X, 5, o SHPX = )AR, o, LR IXR, 5, 1270
1/s
[ 10w yray| o
lyl<2p
Letz=x-— yand|z|<|x|+|y|<2t+p< +p< L. We have
1/s
0=l <| [ 0@rz| o
z|<37p
<p*|Dllpsgnp™
SND[s g1y p e
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1Mol (x). XR, 5|00

oodp i
<cC f g, lop (10 = M o o )
4t
dp - 51
< C | g op™ (19150 il
4t

wdp _ a2
< Cf?||gX'Rp,2p||m->p "X By llpo |Pllsr-1yp 7
4t

(o)

e dp
<C f P g ool o 2

4t

Next we have

£ \Mohy (). xR, I

(o]

o —n+ - dp
< Ctam+Poo fp n+p(x, “gXRp,szLP(')?

4t

X ¢ ozm—i dp
< |z w(p)—,
JG) e

2026

where w(p) = p*[Igxr,,, |l X@,x) (). We reaches at Hardy type inequality, now the inequality ac +71/pe > 0

and Lemma 2.2 implies

koeZ !

O

4. Conclusion

—k o
sup 2 O‘BHta ||XR,2IM<Dht(x)”LV(-)||Lq(~>((2,k0);ﬂ) < Cl|g||HM;('2)](’15',)'(;Y,()"(]I{")‘

In this paper, we introduced the idea of continual Herz-Morrey spaces with variable exponents and

obtained the boundedness of Marcinkiewicz integral operator on these spaces.
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