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Abstract. In this paper, let the BPVIP, GEPS, and SCFPP represent a bilevel pseudomonotone variational
inequality problem, a generalized equilibrium problems system, and a split common fixed point problem
involving demimetric mappings in real Hilbert spaces, respectively. We devise a composite subgradient
extragradient rule with an inertial correction term for solving the BPVIP with constraints of GEPS and
SCFPP, where the rule exploits the inertial technique with a correction term and a self-adaptive stepsize
strategy. The BPVIP consists of the upper-level VIP for one strongly monotone operator and the lower-level
VIP for another pseudomonotone operator. The strong convergence result for the designed algorithm is
established under certain suitable conditions. In addition, the main result is employed to handle a bilevel
split pseudomonotone variational inequality problem (BSPVIP). Lastly, an illustrated instance is utilized to
back up the applicability and performability of the suggested rule.

1. Introduction

Let 0 # C ¢ H with C being convex and closed in real Hilbert space H. We use the (-, -) and || - || to indicate
the inner product and induced norm of H, respectively. Let Pc be the metric projection from H onto C. Let
T : C — H be a nonlinear operator. Denote by Fix(T) and R the fixed-point set of T and the real-number
set, respectively. We use the — and — to represent the weak and strong convergence in H, respectively.
Presume that A, F : H — H both are nonlinear mappings. Then the bilevel variational inequality problem
(BVIP) is defined as follows:

2020 Mathematics Subject Classification. Primary 65Y05; Se65K15; 68W10; 47H05; 47H10

Keywords. Composite subgradient extragradient rule; Inertial correction term; Pseudomonotonicity; BPVIP; GEPS; SCEPP.

Received: 18 September 2024; Revised: 14 December 2024; Accepted: 04 January 2025

Communicated by Adrian Petrusel

This research was supported by the 2020 Shanghai Leading Talents Program of the Shanghai Municipal Human Resources and
Social Security Bureau (20L]J2006100), the Innovation Program of Shanghai Municipal Education Commission (15Z2Z068) and the
Program for Outstanding Academic Leaders in Shanghai City (15XD1503100).

* Corresponding author: Yekini Shehu

Email addresses: zenglc@shnu.edu.cn (Lu-Chuan Ceng), abubakar. adamu@neu. edu. tr (Abubakar Adamu),
yekini.shehu@zjnu.edu.cn (Yekini Shehu), zhaoxiaopeng.2007@163. com (Xiaopeng Zhao)

ORCID iDs: (Lu-Chuan Ceng), https://orcid.org/0000-0002-1916-3876 (Abubakar Adamu),
https://orcid.org/0000-0001-9224-7139 (Yekini Shehu), https://orcid.org/0000-0002-5437-5591 (Xiaopeng Zhao)



L-C. Ceng et al. / Filomat 39:6 (2025), 2039-2059 2040

Find u* € Q such that (Fu*,v—u*) >0 Yv € Q,
where Q2 := VI(C, A) is the solution set of the variational inequality problem (VIP) below:
Find v* € C such that (Av",w—-v*) >0 Yw e C.

It is evident that the above VIP is equivalent to the fixed point problem (FPP) below:

Find v* € C such that v* = Pc(v* — (A0,
where ¢ is any positive number. In 1976, the Korpelevich extragradient approach was first put forth in [29]
for approximating a point of VI(C, A). It is now one of the most effective methods. Till now, the literature on
the VIP is vast and the Korpelevich extragradient method has caught the broad attention of many authors,
who facilitated it in different matters; see e.g., [1, 2, 6, 7, 11-17, 20-22, 27, 28, 30-34, 36, 41] and references
therein, to name but a few.

Fori=1,2,..,N,let H; be a real Hilbert space and 7; : H — H; be a bounded linear operator, and suppose
that T; : H — H and S; : ‘H; — H; are nonlinear operators. The split common fixed point problem (SCFPP)
is formulated below:

N
Find x* € ﬂ Fix(T;) such that 7;x* € Fix(5;), Vie({l1,2,..., N}. (1.1)
i=1

To our knowledge, the SCFPP is a generalization of the split feasibility problem. It has attracted extensive
research from numerous scholars due to its applications in different disciplines such as image reconstruc-
tion, computer tomography, and radiation therapy treatment planning [18]. In recent years, the SCFPP has
been investigated for various classes of operators, and iterative schemes for solving it have also attracted
wide attention from numerous researchers, see, e.g. [23, 24].

Very recently, invoking the inertial technique with a correction term and a self-adaptive stepsize strategy,
Eslamian and Kamandi [25] introduced a new iterative scheme for resolving the strongly monotone VIP
over the solution set of the SCFPP with demimetric mappings in real Hilbert spaces. Presume that the
conditions hold below: (i) for i = 1,2,..,N, S; : ‘H; — H; is &;-demimetric mapping with &; € (—co,1)
such that I — S; is demiclosed at zero, (i) for i = 1,2,...,N, 7; : H — ‘H; is a nonzero bounded linear
operator with the adjoint operator 77 : H; — H such that Q = Ny, T.'Fix(S) # 0, (iii) F: H — H is
x-Lipschitzian and n-strongly monotone, and (iv) the sequences {y,,} C [0,1), {o,} € (0,1) and {c,} C (0, 00),
satisfy limsup,, ., yn <1, Lo 0 = 00, limye 0, = 0 and limy, e ;—’; =0.

Algorithm 1.1 (see [25, Algorithm 1]).
Initialization: Let « > 0, f > 0 and x1, xo, po € H be arbitrary.
Iterative Steps: Given the iterates x,_1, X, (n > 1), calculate x,,11 as follows:
Step 1. Compute p, = X, + @y(Xp—1 — X4) + Pu(Pr-1 — Xp—1) for a, € [0, ] and B, € [O,/_Sn] where

. Cn .
3 = min{«, —||x,,—xH|\} if x,, # xn_l., and
o otherwise,
. . .
2 mln{ﬁ, ”pn—] _xn—lll} lf pn_l i xn_l/

Bu= otherwise.
Step 2. Select two indices iy, 1, € {1,2,...,N} such that ||(I - S;,)7
T = S,)T 5 pull = miniegs o, n 1 = S)Tipall
Step 3. Compute u, = py — 70, 7, (I = Si, )T, Pn and vy, = py — Ty, 7, (I = S,)T,,pn, where the stepsizes are
picked in such a way that for small enough € > 0,

(A=ENA=S)Tipall® : .
Tui € (€, NES €) if (I =8)Tipn #0;

otherwise t,; = 7; is arbitrary nonnegative number.
Step 4. Compute g, = (1 — yn)uy + V40, and x4 = (I — 0,F)gn. Again put n := n + 1 and go to Step 1.
It was shown in [25] that x, — x' € 2, which is only a solution to the VIP: (Fx',x — x") > 0 Vx € Q.

pull = maXiei o, ny I = Si)Tipall and

n
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On the other hand, suppose that H and H; are two real Hilbert spaces. Let C and Q be nonempty, closed
and convex subsets of H and Hj, respectively. Let 7 : H — H; denote a bounded linear operator and
AF:H — H and B : Hy — H; be nonlinear mappings. Then, the bilevel split VIP (BSVIP) (see [3]) is
specified below:

Seek y" € Q such that (Fy',y—y") >0 Vye Q, (1.2)

where Q = {y € VI(C,A) : Ty € VI(Q, B)} is the solution set of the split VIP (SVIP), which was introduced
by Censor et al. [19]. From the aforementioned, the SVIP is to find y" € VI(C, A) such that 7y' € VI(Q, B).
They proposed and analyzed the following iterative method for approximating a solution of the SVID, i.e.,
for any initial p; € H, the sequence {p,} is generated by

Puet = PcI = AA)(py + yT " (Po(I = AB) = D)7 p,) VYn 21, (1.3)

where A and B both are inverse-strongly monotone and 7 is a non-zero bounded linear operator. Under
certain mild restrictions, it was shown in [19] that p, — p' € Q.

It is noteworthy that the VIP can be rewritten as the FPP: Sy = Po(y — uBy), p > 0, with VI(Q, B) = Fix(S),
where Fix(S) is the fixed point set of the mapping S. Then BSVIP (1.2) is rewritten as the problem below:

Seek y" € Q such that (Fy',y—y") >0 Vye Q, (1.4)

where Q = {y € VI(C, A) : Ty € Fix(S)}. Inspired by the problems (1.1) and (1.4), we are devoted to
studying the bilevel pseudomonotone VIP (BPVIP) with the GEPS and SCFPP constraints in real Hilbert
spaces. Here the GEPS is a generalized equilibrium problems system, which is the problem of finding
(ut,v") € C x C fulfilling

m
(0t y) + (Bout, y — o™y + L@ —ut,y—0") >0 Vye(C (1.5)

m2

{ O,(ut,x) + (Biot, x —ufy+ Lt —ot,x—ut)y>0 VxeC

where By, B, : H — H are both nonlinear mappings, ©1,0, : C X C — R are two bifunctions, and 11,1, > 0
are two coefficients.

To solve the BPVIP with the GEPS and SCFPP constraints, we devise a composite subgradient extragradient
rule with an inertial correction term. This rule incorporates the modified inertial subgradient extragradient
algorithm (see [8]) for solving the GEPS with the VIP and CFPP constraints.

Let the mapping S, be nonexpansive on H for r = 1,..,,N and S : H — H be a 9,-asymptotically
nonexpansive mapping. Let A : H — H be an L-Lipschitzian pseudomonotone mapping satisfying
lAA|| < liminf, e ||Ah,|| provided h, — h. Let ©®;,0, : C X C — R be two bifunctions. Let By, B, : H — H
be p-ism and ¢-ism, respectively. Let f : H — H be 6-contractive and F : H — H be x-Lipschitzian
n-strongly monotone with 6 < 7 :=1 - /1 —a(2n—ax?) for a € (0, KZ) Let {e,} C [0,1], ﬁn (0,1] and
{an}, {04} € (0,1) such that (i) lim, e @, = 0and Y74 @, = o0; (ii) limyse0 o =0 and supnZl o <0 and (iii)
0 < liminf, ,e 0, < limsup, . 0, <1and limsup,_ B, <1.

Lety >0, u€(0,1), £€(0,1), ;1 € (0,2p), and 1, € (0 20) be five constants. Set Sp := S, S, := SymodN
and G := T®1 (I- mBl)T,] (I - 12By). Suppose that Q := (1, Fix(S,) N Fix(G) N VI(C, A) # 0.

Algorithm 1.2 (see [8, Algorithm 3.1]).
Initialization: Let xq, x9 € H be arbitrary. Given x,, x,-1 (1 > 1), calculate x,,,; below:

Step 1. Put g, = S"x,, + €,(S"x, — 5"x,—1), and compute p,, = fng, + (1 — Bu)u,, where u,, = T,?ll (I=mB1)v,
and v, = Tf?z (I = 1m2B2)pn.

Step 2. Calculate y, = Pc(pn — CuApn), where C, is the largest C € {y, y¢, y¢?,...} such that {||Ap, — Ayl £
[J“pn - yn”-
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Step 3. Calculate t, = g,x, + (1 — 0,)z,, Where z, = Pc,(pn — C,AY,) and C,, :={y € H : {pp — C,Apy —
Yn, Y — Yn) < O}

Step 4. Compute X1 = a, f(x,) + ([ — a,aF)Spt,.

Again put n :=n + 1 and go to Step 1.

It was shown in [8] that x,, — x' € 2, which is only a solution to the VIP: ((aF — f)xt,y —x") >0Vy € Q. In
this paper, inspired by [8, 25], we prove the strong convergence of our proposed algorithm to the unique
solution of the BPVIP with the GEPS and SCFPP constraints under certain mild conditions. Moreover, the
main result is invoked to treat a BSPVIP with the GEPS constraint. Lastly, some examples are given to show
the implementations and performance of the proposed rule.

We organize the paper as follows: In Sect. 2, we recall certain definitions and basic tools for later use. Sect.
3 explores the convergence criteria of the proposed algorithm. Lastly, Sect. 4 invokes our main results to
deal with the BSPVIP with the GEPS constraint in an illustrated instance. Our results are improvements
and extensions of the corresponding ones in [8, 25].

2. Preliminaries

Suppose that C is a nonempty, closed, and convex subset of a real Hilbert space H. A mapping S: C — H
is said to be nonexpansive if ||Sx — Sy|| < ||x — yl| Vx, y € C. Given a sequence {x,} € H, we denote by x, — x
(resp., x, — x) the strong (resp., weak) convergence of {x,} to x. For each x € H, we know that there exists
a unique nearest point in C, denoted by Pcx, such that ||x — Pcx|| < |lx — yll Yy € C. The operator Pc is called
the metric projection of H onto C. According to [26], we know that the following properties hold:

(a) {x =y, Pcx — Pcy) > [Pcx = PcylP? Vx,y € H;

b)z=Pcx & (x—z,y-2)<0 VxeH,yeC

(© Il = yI? = lx = Pexl? + Ily = Pex|? Vx € H,y € G;

(@) Ik = I = IR = IyIR - 2(x = , ) Vx,y € H;

(&) llsx + (1 = syl = sl + (1 = s)l[yll2 — s(1 - s)llx = yIP ¥x,y € H, s € [0,1].

Recall also that S : C — H is called (see [5])
(i) L-Lipschitz continuous or L-Lipschitzian if AL > 0 s.t. [|Sx — Sy|| < L|lx — yl| Vx,y € C;
(ii) a-strongly monotone if Ja > 0 such that (Sx — Sy, x — y) > a|lx — y|* Vx,y € C;
(iii) B-inverse-strongly monotone (8-ism) if (Sx — Sy, x — y) > lISx — Syl* Vx,y € C;
(iv) pseudomonotone if (Sx,y —x) 2 0 = (Sy,y—x) 2 0Vx,y € C;
(v) quasimonotone if (Sx,y —x) > 0= (Sy,y —x) 2 0Vx,y € C;
(vi) &-demicontractive if AE € (0, 1) such that ||Sx — p|[> < |lx — p|I* + &|lx — Sx||*> Vx € C, p € Fix(S) # 0;
(vii) &-demimetric if 3E € (—oo, 1) such that (x — Sx, x —p) > %le - Sx|* Vx € C, p € Fix(S) # 0;
(viii) sequentially weakly continuous on C if ¥{x,} C C, the relation holds: x, — x = Sx, — Sx.
It is easy to see that (ii)=(iii)=(iv)=(v). However, the converse is not generally true.

Definition 2.1. A mapping S : C — H is said to satisfy the demiclosedness principle if I — S is demiclosed
at zero, that is, for any sequence {x,} C C satisfying both x, — x and (I — S)x, — 0, one has x € Fix(5).

From [26], it is known that if S is a nonexpansive self-mapping on C, then I — S is demiclosed at zero,
that is, for any {x,} C C satisfying both x,, — x and (I — S)x,, — 0, one has x € Fix(S).

Lemma 2.1 [35]. If S : C — H is a {-demimetric mapping, then Fix(S) is closed and convex.
Lemma 2.2 [38]. Let A € (0,1], S : C — H be a nonexpansive mapping, and the mapping S* : C —» H

be defined by S'x := Sx — AaF(Sx) Yx € C, where F : ‘H — ‘H is x-Lipschitzian and n-strongly mono-
tone. Then S is a contraction provided 0 < a < i—'}, ie., |IS'x — S*yll < (1 = AQ)|lx — yl| Yx,y € C, where
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C=1-+1-a@2n-ax? € (0,1].

Lemma 2.3. Assume that A : C — H is pseudomonotone and continuous. Then u € C is a solution to
the VIP (Au,v —u) > 0 Vv € C, if and only if (Av,v —u) >0 Vv € C.
Proof. It is easy to check that the conclusion is valid.

Lemma 2.4 [38]. Let {a,} be a sequence of nonnegative numbers satisfying the conditions: a,.; <
(1= An)a, + Ayyn Vn > 1, where {A,} and {y,} are sequences of real numbers such that (i) {A,} C [0,1] and
Yoot An = 00, and (ii) limsup, _, ¥n < 0 0r Y721 Ay yul < 0. Then lim,,—,e a, = 0.

Lemma 2.5 [30]. Let {A,,} be a sequence of real numbers that do not decrease at infinity in the sense that
A} € {Ay) such that Ay, < Ay,41 Vk 2> 1. Let the sequence {¢(1m)}5m, of integers be formulated below:

¢(m) = maxitk <m : Ag < Apa),

with integer mg > 1 satisfying {k < mg : Ay < Ags1} # 0. Then
(i) Pp(mp) < Pp(mp +1) < -+ and P(m) — oo;
(i) A¢>(m) < A¢)(m)+1 and A, < A(p(m)+1 VYm > my.

For a given bifunction ® : C X C — R, one needs to make the hypotheses below:
HD)O(y,y) =0 Vy e C;

(H2) O, y) +O(y,u) <0 Vy,u e C;

(H3) im0+ O((1 = A)y + Av, u) < O(y,u) Yy, u,veC;

(H4) for each y € C, O(y, -) is convex and lower semicontinuous (l.s.c.).

In 1994, Blum and Oettli [4] derived this lemma.

Proposition 2.1 [4]. Assume that ® : C x C — R fulfills the hypotheses (H1)-(H4). For each x € H and
£>0,let T : H — C be a mapping defined below:

TP(x):={y € C: O(y,z) + %(z—y,y—x) >0 VzeChL

Then, (i) T? is single-valued and satisfies [Ty — TPul> < (TPy — TPu,y — u) Yy,u € H; and (i)
Fix(Tf?) = EP(©) (i.e., the solution set of the equilibrium problem), and EP(®) is closed and convex.

To solve the problem (1.5), the authors in [9] used a fixed-point technique. Indeed, the GEPS (1.5) can be
transformed into a fixed-point problem.

Proposition 2.2 [9]. Suppose that the bifunctions ©1,0, : C X C — R satisfy the hypotheses (H1)-(H4)
and By, B, : H — ‘H are p-ism and o-ism, respectively. Then, (u*,v*) € C x C is a solution of GEPS (1.5) if
and only if u' € Fix(G), where G := T,?ll (I- mBl)T%(I —mBy) and o' = T%(I — mBa)u® for 1 € (0,2p) and
2 € (0,20).

If ©; = ©, =0, then GEPS (1.5) reduces to the generalized variational inequalities system (GVIS) [10]:
Find (u',v") € C x C satisfying

(MmB1o" +ut —of,x—ufy>0 VxeC 2.1)

(B +0" —ut,y-0") >0 Vye(C '
for coefficients 171,12 > 0. From Proposition 2.2 it is easily known that (uf, v*) € C x C is a solution of GVIS
(2.1) if and only if u' € Fix(G), where G := Pc(I — 11B1)Pc(I — 12B) and vt = Pc(I — mpBy)ut for ny € (0,2p)
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and 1, € (0, 20).

Proposition 2.3 [9]. Suppose thatB : H — H is a -ism. Then,
(I = nB)o — (I = BB)YIP < Ilo = yIP* = n(28 — nliBo ~ Byl* Yo,y € H,¥p > 0.

In particular, if 0 < 1 < 28, then I — 1B is nonexpansive.

Proposition 2.4 [9]. Let By, B, : H — H be p-ism and o-ism, respectively. Suppose that the bifunctions
01,0, : Cx C — R satisfy the hypotheses (H1)-(H4). Then, G := Tf?ll I- nlBl)T,,@; (I = n2By) is nonexpansive
for0 <n <2pand 0 <1, < 20.

Corollary 2.1 [10]. Let By : H — H be p-ism and B, : H — H be o-ism. Define an operator G : H — C
by G := Pc(I = mB1)Pc(I — n2B5). Then G is nonexpansive for 11 € (0,2p) and 1, € (0, 20).

3. Main Results

In this section, suppose that H and H; both are real Hilbert spaces fori = 1,2, ..., N and the feasible set C is
nonempty, closed and convex in H. To analyze the convergence of our proposed approach for settling the
BPVIP with the SCFPP constraint, we assume that the following hold:

(C1) f : H — ‘H is o-contractive map and F : H — H is n-strongly monotone k-Lipschitzian mapping
withd <C:=1- y1-a@n—-ax?) fora e (o,i—;’ .

(C2) ©1,0; : C x C — R are both bifunctions fulfilling the hypotheses (H1)-(H4), and B1,B, : H — ‘H
are p-ism and o-ism, respectively.

(C3) A: H — H is pseudomonotone and L-Lipschitzian mapping such that ||Au|| < lim inf,_ [|At,]]
for each {u,} c C with u,, — u.

(C4) fori =1,2,.,N, S; : H; = H; is é;-demimetric mapping with &; € (—co,1) such that I — S; is
demiclosed at zero.

(C5) fori=1,2,..,N,7; : H — H; is a nonzero bounded linear operator with the adjoint 7 : H; — H.

(C6) Q = VI(C, A) NFix(G) N (N, T, 'Fix(S) # 0 where G := Ty (I — mB1)T52(I — 12By) for n1 € (0,2p)
and 1 € (0, 20).

(C7) the sequences {A,} € (0,1], {y.} € [0,1), {04} C (0,1) and {e,} C (0, ), satisty limsup, , A, <
1, 0 < liminf, ey < limsup,_, ¥ <1, Yoo 0n =00, limy, e 0, = 0 and lim,,—,e 2—’; =

Under the above conditions, we introduce and consider the BPVIP with the GEPS and SCFPP constraints

specified below:
Seek x* € 2 such that {((aF — f)x",y—x") 20 Yy € Q.

Algorithm 3.1.
Initialization: Lety > 0, v € (0,1), £ € (0,1), {T,‘}fil c [0,00), a,B €[0,1] and x1, xp, wy € H be arbitrary.
Iterative Steps: Given the iterates x,_1, x, (n > 1), compute x,41 as follows:

Step 1. Put wy, = x, + an(xy — Xp-1) + Pn(wn-1 — x4—1) and calculate

Pn = Ay, + (1 - An)gn/
hy = Tp2(I = 02B2)pn,
gn = T%:l (I —mB1)hy,

if x,, # X1,
otherwise,

.
min{a, =}

where a, € [0,a,] and §,, € [0, Bn] such that o, = {

(3.1)

. A é’n .
3 min{f, o) i wa-1 # X1,
otherwise.
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Step 2. Calculate y, = Pc(pn — C,Apy) and g, = Pc, (pn — ChAy,) where C, is the largest C € {y, v, yé’z, o}
satisfying
ClApn — Ayull < vllpn = yall, (3.2)

and C, ={y € H : (pu = CuApn = Yn, Yy — Yu) < O}

Step 3. Choose two indices i,,1, € {1,2,...,N} such that [|(I — S;,)75,qxll = maxieqi o, Ny I = Si)Tigull and
(I = S,)T,9nll = minieq o, Ny I(T = S)Tigull-

Step 4. Calculate u, = g, — 7, 7; (I = Si,)Ti,9n and v, = g — T, T, (I = S,,)T 1,9, Wwhere 7, ; is chosen to
be the bounded sequence satisfying

(1= &I = SHTigull? .
0 <7, < - — f(I-S)7; 0, 3.3
<e<T, < 70— S)TanP e if(I-S)Tiqn # 3.3)

otherwise set 7,,; = 7;.
Step 5. Calculate z, = (1 = y,)uy + Yuvn and X1 = 04 f(x4) + ([ = 04aF)zy.
Again set n := n + 1 and return to Step 1.

First of all, it is easy to see that VI(C, A) is nonempty, closed and convex in H. In terms of Proposition 2.4,

we know that Fix(G) is also nonempty, closed and convex in H.

We claim that Q is nonempty, closed, and convex in H. Indeed, the conditions (C4)-(C5) ensure that
ﬂﬁl 7'1,‘1Fix(Si) is a closed and convex set. To show this, let {x,} C ﬂﬁl ‘7'1,‘1Fix(5,') s.t. x, — x*. Itis clear
that 7ix, — 7ix" fori = 1,2,..,N. By the demiclosedness of I — S; at zero, we obtain x* € 7'1.‘1Fix(5,-).
Hence, ﬂﬁl 7”1.’1Fix(S,-) is closed in H. In addition, let us show the convexity of Ny, Z’lFix(Si). Consider
X,y € ﬂfil 7'1.‘1Fix(5i) and «a € [0, 1]. This ensures that 7;x, 77y € Fix(S;) for each i. Because Fix(S;) is convex
(due to Lemma 2.1), a7 ix+(1—-a)7;y € Fix(S;), which implies that 7(ax+(1-a)y) = aTix+(1-a)T;y € Fix(S;).
Asaresult,ax+(1-a)y € ﬂfil ‘7'1._1Fix(51-). Therefore, Q = VI(C, A)NFix(G)N (ﬂfil 7'].‘1Fix(5,-)) is nonempty,
closed, and convex in H. Since Q is a nonempty closed convex set, then there exists a unique solution
x* € Q to the following VIP by condition (C1).

{(aF - f)x',y—x)>0 VyeQ. (3.4)

Clearly, the VIP (3.4) is equivalent to the fixed-point equation x* = Pq(f + I — aF)x*. Now, we show that
Po(f + 1 — aF) is a contraction mapping. As a matter of fact, for all x, y € C, by Lemma 2.2 we have

IPo(f +1—aF)x = Po(f +1-aF)yll < [1 - (C-0)]llx -yl

which implies that Po(f + I — aF) is a contraction mapping. Banach’s contraction mapping principle guar-
antees that Po(f + I — aF) has a unique fixed point. Say x* € C, i.e., x* = Po(f + [ — aF)x".

Remark 3.1. From the definitions of a,, and En we claim thatlim,, e g—:llxn—xn_lll =0andlim, e g—:llwn_l—
Xp-1ll = 0. Indeed, we have ayllx, — x,-1l| < €, ¥Yn > 1, which together with lim,_, ;—: = 0, implies that
g—:llxn — X1 < ;—: — 0 as n — co. In a similar way we find that lim, ﬁ—:llwn_l —x,_1]| = 0.

Lemma 3.1 [8]. min{y, %} <Gy <.

The following lemmas are quite helpful for the convergence analysis of our algorithm.

Lemma 3.2. Let {x,} be the sequence generated by Algorithm 3.1. Then, the stepsize 7,; formulated in
(3.3) is well-defined.
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Proof. Itis enough to only show that |77 (I-S;)7igul* # 0. Choose any p € (2. Because S; is &-demimetric
mapping, we obtain
Ngn = pIIT (T = S)Tiqull - = AqGn — p, T (I = S)T i)
=Tiqn = Tip, (L= S)T iqn) (3.5)
2 T = $)Tigul

In the case of (I — $;)7iqn # 0, we know that ||(I - S;)77¢4|1* > 0 and hence ||7;"(I - S;)Tigu|1* > 0.
Lemma 3.3. Letpe Qand g = T%(I — m2By)p. Then,

g = pI? < lwn = pI? = (1 = An)lllwn = pul® + m1(2p = m)lIB1hn — Bagll® (3.6)
+12(20 = n2)1B2pu = BopIP1 = (1 = V){Ilyn = 4ul® + Iy = pull®], '
where h,, = Tn@ZZ (I = mBa)pa-
Proof. According to Proposition 2.4, there exists a unique point p,, € H such thatp, = A,w,+(1-A,)Gp,.
Since p € C,, we have

lgn —pI* < <pn— CuAYn — P, qn — p)

3.7
= lpn = pIP = lgn = pul® + g0 = PIP) = CukAYn, Gn — P), (37)

which implies that
g =PI < llpn = PIP = 1190 = pall® = 2CaCAYn, G = p)- (3.8)

Noting that g, = Pc,(px — C4AY,), we have (p, — CuAPn — Yn, Gn — Yn) < 0. Owing to the pseudomonotonicity
of A, by (3.2), we get

lgn = pIP < llpw = pIP = lgn = pall* = 20 AYn, Y = P+ Gn = Yn)

||pn - P||2 - “qn - Pn||2 - 2Cn<Ayn/ Qn - yn>

||pn - P||2 + 2<Pn - CnAyn - yn/ Qn - yn> - ”yn - Pn||2 - ”qn - ]/n||2

||pn - P||2 - “%1 - %1”2 + 2<pn - CnAPn — Yn,qn — }/n> - “yn - Pn”2 3.9)
+2Cn<APn - Ayn/ qn — ]/n> ’
< llpw = pIP +2vlipn = Yalllgn = Yall = 13 = yul® = llyn = pall®

< ||Pn —P||2 - ”yn - Pn”z + V(”Pn - ynHz + ”‘]n - ynllz) - ”‘Jn - ynHZ

= llpn = pIP = A = V)llyn = pall® + lyn = gall].

I IA

Observe that g, = T% (I =mBhu, hy = Tn922(1 — M2B2)pn, and g = T%(I — mBy)p. Then g, = Gp,,. Applying
Proposition 2.3 to get [|g, — pl* < Ity — ql* = m(2p = n)lIBih, — Bigl? and |k, — ql* < llpn — pl* = 1220 —
n2)IIB2pn — Bopll*. Thus,

g — pI* < lpn =PI = 11 (2p = n)IIB1hy — Bigl* = n2(20 — n2)|1Bapy — Bapll*. (3.10)

Besides, thanks to p, = A,w, + (1 — Ay)g,, we get ||p, — pII2 S Alwy —p,pn —p) + (1 = A)lpn — pll?, which
results in [|p, — pl® < (w, = p, pu — p) = 5lllw, = pl* + lIpn = pI* = llw, = pall*]. So,

lipn =PI < llw, — pI* = llw, — pall (3.11)

Thus,
lpn =PI < (1= Allgn — pIP + Aullw, — pl?

< Mallwy, = pl* + 1 = A)[llpn = pIF = 11(2p = IIB1h, — Bagl?
—12(20 — 72)|IB2py — Bapll*]

< Mllwy, = pl? + 1 = A)[llw, = plP = llwy — pall® = 1220 — 1) (3.12)
X||Bopu — Bapll® — 11(2p — m)|IBihy, — Bagli?]

= |lw, — pl* = (1 = A)lllwy — pall® + m2p — n)IIBih, — Bagll?
+12(20 = m2)|IB2py — Bapll?],
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which, together with (3.9), yields

g = pI* < llpw = pIP = A=)y = pull® + lyn = gull]
< lwy = plI? = (1 = A[llw, — pall® + m1(2p — m)IIB1hy — Bagl? (3.13)
+12(20 = M)IIBapn — BoplP1 = (1 = Wy — pall* + lyn — gullP1.

This ensures that the conclusion holds.

Next, we show that the sequence {x,} in Algorithm 3.1 is bounded.

Lemma 3.4. Let {x,} be the sequence generated by Algorithm 3.1. Then, {x,} is bounded.

Proof. We consider x* € Q the unique solution of the VIP (3.4). This also means that there exists the
unique solution x* € O to the BPVIP with the GEPS and SCFPP constraint. By the definition of w, and the
triangle inequality we obtain that

“wn - x*H = ”xn + an(xn - Xn—l) + ﬁn(wn—l - xn—l) - X*H
< Ixp = x| + anllxn, — xp-1ll + ﬁn”wn—l = Xp—1ll
= [lxn = 2l + 0 - 2l = Xl + 0 - E w01 = x5l

<lxy = x7|| + 20,Mjy,

(3.14)

where supnzl{g—zllxn = Xl g—:jllwn_l — Xp-1ll} £ M; for some M; > 0.
Using the fact that S;, is a &;,-demimetric mapping, we get

[ty — X*HZ = ”qn - Tn,i,,(]:-:(l - Si,,)ﬂ,ﬂn - x*llz
= 11gn = 1P = 20qn = %, T3, T (L= Si,)T5,Gn) + T, 77 (L = S, )T, 0l P
= N = IR = 203, Ty — T, (L= Sy Tisd + 22, 1770~ 375,01 (3.15)
< N = 1 = 205, ST = ST, 0l + 22, 177 (0 = $3)T 0l
= 11gn = 1P + T, (T N7 (L= 83, )T5,al® = (1 = EDNA = Si,)T5,Gull?)-

For each n > 1, from the definition of 7, ;, in (3.3) it follows that
175 (L= Si, )T, gl (€ + T,) < (1= &) = S3,)T5, a1,
and hence €l|7; (I = S;,)75,qal* < (1 = &N = Si,)T5,4ull® = T, 177 (I = S;,)T5,qul*. This immediately arrives

at
T, €177 (L= Si )Tl < T, [(1 = EIT = S3,)T5,qal

. 3.16
i 77 (= $3) T, gl (3.16)
So it follows from (3.15) and (3.16) that
1t = X < 1190 = %I = T, €llT; (L= Si,)T5,4ull>. (3.17)
Similarly, we obtain
llon = X1 < 1lgu = X = T, €l = S,) T, 90l (3.18)

From the convexity of the function || - |I> and inequalities (3.17)-(3.18) we have

lzo =212 < (1= yllun = X2 + yullon — |2
< lign = x'IP = (1 = y) T, €l 77 (= S3,) 75,4l (3.19)
_VnTn,zy,e”(r;: (I - Sty,)77,ﬂn||2~

In addition, by Lemma 3.3, we get

lgn —xI* < llw, — x*I* = (1 = Ap)lllws — pal® + m1(2p = n)IIB1hy — Bagl?
+12(20 = )IB2pyn — BaplP1 = (1 = v)[lyn — gull® + Iy — pall®] (3.20)
< [lwy, — x|
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Combining (3.14), (3.19), and (3.20), we obtain
llzn = X7l < Mlgn = XM < llwy, = X7 < lxy = X7 + 20,M1 - Y > 1. (3.21)
For a € (0, g) and {o,} € (0,1), we reduce from Lemma 2.2 that
I = onaF)zy — (I = opaF)x*|| < (1 = 0, C)llzn — X7, (3.22)
where (=1 - \/m € (0,1]. Using inequalities (3.21) and (3.22) we obtain that

llow(f(xn) = f(x)) + (I = onaF)z, — (I — 0,aF)x" + 0, (f — aF)x|]
anll f(xn) = FOON + I = onaF)zy — (I = 0,aF)X|| + 0,lI(f — aF)x7|
0,0y = X[ + (1 = 6,01z — x| + 0nll(f — aF)x|

< 0,6l — Xl + (1 = 0, O)llxn — x7|| + 20, M1] + 0ull(f — aF)x"||

< [1 = 0u(C = O)lxu — "Il + 0u[2Mi +[I(f — aF)x'[l]
= [1 = 0(C = Oty — 'l + 0 (C — §) - 22D
2M+HI(f—aF)x"]| !

[ ’

121 — x|l

IANIA I

< max{|lx, — x*,

By induction, we obtain ||x, — x*|| < max({|lx; — x|, w

the sequences {g,.}, {ttx}, (vn}, {wn}, {yu}, {2n}, {Fzu} and {f(x,)}.

} Vn > 1. Thus, {x,} is bounded, and so are

Lemma 3.5. Let {g,}, {wy}, {x,}, {yn}, {z4} be the sequences generated by Algorithm 3.1. Suppose that
Pr=Yn—0, 40— yn = 0, w, —p, = 0and g, — 1, = 0. Then wy,({x,}) € Q, with w,({x,})) = {z€ H 1 xp, —
z for some {x,, } C {x,}}.

Proof. Take a fixed z € wy({x,}) arbitrarily. Then, 3{x,,} C {x,} such that x,, — z € H. From Algorithm
3.1, we get w, — x, = ay(xy — Xp—1) + Br(Wy—1 — xy—1) Y1 2 1, and hence

lwn = xall = llvn(xn = Xn—1) + Bru(Wn-1 — Xu—1)ll
an”xn - xn—l” + ﬁn”wn—l - xn—l”

O 22l = Xl + 0n 22 lle0no — X

IN I

Using Remark 3.1, we have
lim ||w, — x,|| =0, (3.23)
n—-00

Due to w,, — x, — 0, we know that Hw,, } C {w,} s.t. w,, — z € H. In what follows, let us show thatz € Q.
Indeed, from y, = Pc(p, — C.Apy), we have (p, — CuApn — Yu, Yn — y) = 0 Vy € C, and hence
1
C—(pn =Y, Y = Yu) + AP, Y — Pn) < (Apn, y —pn) Yy €C. (3.24)

According to the Lipschitz continuity of A, {Ap,,} is bounded. Note that C, > min{y, Vf" }. So, from (3.24) we
get liminfy_,co{Apy,, ¥ — Pn) = 0 Yy € C. Observe that (Ay,, v — yu) = (Ayn — Apn, Y — Pu) + (AP, Y — Pu) +
(AYn, Pn — Yn)- Since p, — y» — 0, we obtain Ap, — Ay, — 0 from L-Lipschitz continuity of A, which together
with (3.24) gives

liknli?f(Aynk, Y=Yy 20 YyeC (3.25)

We now take a sequence {0k} C (0,1) such that 0 | 0 as k — co. For all k > 1, we denote by my the
smallest positive integer such that

(AYn, Y = Yn,) + 06k 20 Vj=my. (3.26)

Since {0k} is decreasing, it is clear that {1} is increasing.
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Again from the assumption on A, we know that lim infy_,«, [|Ay,, || > [|Az||. If Az = 0, then z is a solution,

e,z € VI(C,A). Let Az # 0. Then we have 0 < ||Az|]| < liminfi_, [|Ay,,|l. Without loss of generality, we
may assume that Ay, # 0 Vk > 1. Noticing that {y,,} C {y,} and Ay, # 0 Vk > 1, we set vy, = MAyy—'""HZ,
e

we get (AYm,, V) = 1 Yk > 1. So, from (3.26) we get (Ay,,, Y + OxUm, — Ym,) = 0 Yk > 1. Again, by the
pseudomonotonicity of A, we have (A(y + 6xvn,), Y + 0kUm, — Ym,) = 0 Yk > 1. This immediately yields

(AY, Y = Ym,) 2 (AYy — A(Y + Ok, ), Y + OkVmy, — Ymy) — Ok{AY, U,y V2 1. (3.27)

We claim that limy_,. Ok, = 0. Indeed, from x,, = zand x, -y, — 0 (duetow,, —x, = 0, py —y, = 0
and w, — p, — 0), we obtain vy, — z. So, {y,} C C guarantees z € C. Note that {y,,} C {y, )} and & | 0 as
k — co. So it follows that

limsup, _, , Ok

0 < limsup [|6kvp, || = lim sup

k—oo k—oo

L =0.
lAYm ] — Hminfe,co [[AYs,l

Hence we get 6;v,, — 0.

Next, we claim that z € Q. Indeed, letting k — oo, we deduce that the right-hand side of (3.27) tends to
zero by the uniform continuity of A, the boundedness of {y,,}, {vy,} and the limit limy_, 04V, = 0. Thus,
we get (Ay, y — z) = liminfy,(AY, ¥y — Ym,) = 0 Yy € C. By Lemma 2.3 we have z € VI(C, A). Furthermore,
we claim that 7z € Fix(S;) fori = 1,2, ..., N. In fact, noticing u, = q,, — 7., 7, (I = S;,)75,9n, from 0 < € < 7y,
and g, — u, — 0, we get '

ell7; (I = Si)Ti, qull < Tui 175 (L= Si) T, qull = lgn — tnll = 0 (1 — o0),

n

which together with the &; -demimetric property of S;,, leads to

S _max 0= SOTaulP = 210 - S,)Tq.0F

ie{1,2
<= Si) T, T, (G — X)) (3.28)
<73 (I = Si)Tiqullllgn = x| =0 (n — o0).
This ensures that (I - 5;)7:9, — Ofori=1,2,..,N. By p, — vy, = 0, 9, — y» = 0, w, — p» — 0 (due to the
assumptions) and w, — x, — 0, it follows that

”qn =Xl < ||% - yn” + ”yn _pn” + ”Pn —wyll + llw, — x|l = 0 (n — o0),

which together with x,, — z, leads to g,, — z. Since each 7; : H — H; is a bounded linear operator, we
know that 7; is weakly continuous from H to H; for i = 1,2, ..., N. Hence, we obtain that 7;4,, — 7z for
i=1,2,..,N. Using the demiclosedness assumption of each (I — S;) at zero, we infer from (I — S;)7iqn, — 0
that 7z € Fix(S5;) fori = 1,2,...,N. As aresult, z € ﬂf\il 7'1.‘1Fix(Si). Finally, using the definition of p,, we
have

(1= ADIGPn = pall = (A = A)llgn = pull = Aullwn = pull < llwn = pall = 0 (n — o).

Since 0 < liminf, (1 —A,), we get lim,_,« [|Gp, — pull = 0. Note that G is nonexpansive (due to Proposition
2.4) and p,, — z (due to w, — p, — 0). Thus, we deduce from the demiclosedness of I — G at zero that
z € Fix(G). Therefore, z € VI(C, A) N Fix(G) N (ﬂfil ‘7'1._1Fix(S1-)) = (. This completes the proof.

Theorem 3.1. Let {x,} be the sequence generated by Algorithm 3.1. Then {x,} converges strongly to the
unique solution z* € (2 to the BPVIP with the GEPS and SCFPP constraints.

Proof. First of all, in terms of Lemma 3.4 we obtain that {x,} is bounded. It is known that there exists
the unique solution x* € Q to the BPVIP with the GEPS and SCFPP constraints, that is, the VIP (3.4) has the
unique solution x* € Q. By the definition of w, and using the Cauchy-Schwarz inequality, we have
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ey, — X*HZ =lx, - x*Hz + |levn (x = xp-1) + ﬁn(wn—l - xn—l)”2

+2<xn - x*/ an(xn - xn—l) + ﬁn(wn—l - xn—1)>

=lx, — x*”2 + a%“xn - xn—lHZ + ,B%“wn—l - xn—l”2
+2anﬁn<xn — Xp-1,Wp-1 — xn—1> + 2an (xn - x*/ Xn — xn—1>
+2ﬁn<xn - X*, Wy-1 — xn—l)

<l = X1 + agllxn — 2l + Brllwwn—1 — xu-al?
+2anﬁn”xn = Xp—1lllltwn—1 = xp-1ll + 2aullx, = 2"l — Xl
+zﬁn”xn = x*lllewy—1 = xp1ll

= [y = X1 + Bullwn-1 = X1 ll2llxn = 2711 + Bullwn-1 = X1 ll)
+an“xn - xn—l”(an”xn - xn—l“ + 2ﬁn”wn—1 - xn—l” + 2||xn - x*”)-

Since {x,}, {a,}, {Bn} and {w,} are bounded, it can be readily seen that

llw, = %I < [l = X°IP + Maaylb, = %11l + MaBullws—1 = xu-all, (3.29)

where sup, -4 {anllx, —xp-all +2,8n||wn—l = Xp-1ll+2||x, —x*||} £ M and sup, -4 {2fJx, = x| +,Bn||wn—1 —Xp-1ll} < M3
for some M, > 0 and M3 > 0.

We divide the rest of the proof into several steps to show the theorem'’s conclusion.
Step 1. We claim that

(1 - UnC){(l - /\n)”wn - Pn”2 + (1 - V)[”yn - ‘h”z + ”yn - anZ]
+(1 =y T (= Si,)T5,qul* + yu€? T (I = S,,)7T,qul *}
<y = 2P = llxper = x°IP + 0Ms  Vn>1,

for some M5 > 0. In fact, noticing the inequality ||x + y|[* < [|lx||*> + 2(y, x + y) Yx, y € H, from (3.22) we obtain

[1xp41 — X*Hz = “an(xn) + (I = opaF)z, — x*”2
= “Gn(f(xn) - f(x*)) + (I —onaF)z, — (I — 0,aF)x* + Gn(f - aF)X*Hz
< “Gn(f(xn) - f(x*)) + (I —onaF)z, — (I - 0'710‘1:)3‘*”2

—20,{(aF — f)x*r Xp41 — X°)
< [0,0llxy — x| + (1 = 0,0)llzy — x*H]z —20,{(aF — f)x*/ Xps1 — X°)
< 0,0l — x*HZ + (1 =0,0llzy - x*Hz +o,My Ynx=1,

(3.30)

(due to 0,6 + (1 — 0,0) =1 —0,4(C - 6) < 1) where sup, ., {2[l(aF — f)x"|lllx, — x*[[} < M4 for some My > 0.
Using Lemma 3.3 we deduce from (3.19), (3.29), and (3.30) that for all n > ny,

X1 = x*”2 < 0,0l — x*HZ + (1 =0,0llzn - x*Hz +0,My

< 0,0|lx, — x*Hz + (1 - GnC)[HQn - x*Hz - (1 - yn)Tn,iy,e”(]',;(I - Siy,)(]'iy,‘hllz
_ynTn,L,,GH(]:: (I - 51,,)7-1,,C1n||2] +0,My

< 0,0l = X[ + (1 = 0, Ofllw, = X°|* = (1 = Ap)llwy, — pall?
(L =)y = gall® + 1y = pall?] = (1 = y) T, €l 77 (L = Si, )T, qul P
_ynTn,z,,GH(T: (I - 51,,)77,1%”2} + GnM4

< 00llxn = X°IP + (1 = 00Ol = x| + Maallx, = %1l
+M3,Bn||wn—l - xn—l“ - (1 - An)Hwn - Pn||2 - (1 - V)[”yn - %“2
Hlyn = pallP1 = (1= yu) T, €T (L= S;,)T5,all?
_7/;17771,1,,6”72 (I - 51,1)7-1,,%4”2} + 0,My

< 1= 0u(C = O)llxn = X + Mol — X1l + MaBullwwn-1 = Xl
_(1 - anC){(l - /\n)”wn - pn”2 + (1 - V)[”yn - ‘114”2
+”]/n - Pn”Z] + (1 - Vn)'fn,in":”?-;:(l - Si,,)(]'i,ﬂnuz
‘i']/n’7:11,1,,(':||7~1)i (I - 51,,)7-1,,%”2} + GnM4

n
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< Ml = X1 + Maallxt, — X1l + MaBullewy—1 — X1l
—(1 = 0, O{(1 = Ap)llwn = pull> + A = V)[llyn = qul?
+||]/n Pn” 1+ (1 yn)Tn 1,,‘5”7-* (I Sl,,) inq ”2
+ynTn z,,ellT* (I SZ,,) z,ﬂn” } + O'11]\/14
= [l = 22 = (1 = 0. {1 = Ap)llwn = pall® + A = V){llyn = gall®
+||]/n - Pn||2] +(1- yn)Tn 1,,€||T* (- Sln) ”2 (3.31)
+7/nTn z,,elth (I Sl,,) 1,1qn”2} + O_n[M ”xn xn—l”
+M3 “|lwp—1 = X1l + Ma]

< |lx, — X ”2 (1 - UnC) (1 A )”wn Pn”z + (1 - V)[Hyn - %1”2
+||yn pn” 1+ (1 )/n)Tn 1,1€||7-*(I Sl,,) 1,,‘771”2
+Yn T, €T (L= S,) T, qal? } +0,Ms,

where supn>1{M2 lx, — X1l + M3a—:||wn_1 — Xp-1|| + My} < M5 for some M5 > 0.
Step 2. We claim that

I = 1P < [1 = 0u(C = 0)]llxn = X1 + 0,(C = )25 - 2lxy — Xl

+ 25 B,y — xall + Z5((f - AP 5 — 5] Y3 1

Indeed, from (3.21), (3.29), and (3.30) it follows that

1 = 2P < 0u0llxy = XIP + (1 = 05 0)llzn = X°IP + 20,((f = @F)x", X1 = X°)
< 0ules = X1 + (1 = 0, O)llwwy = X1 + 20,((f = aF)x", xna1 = )
< Gn6||xn - x*”Z + (1 - GVIC)[”le - X*HZ + M2an”xn - xn—l”
+M3ﬁn||wn—1 — xpll] + 20n<(f — aF)x*, xp — Xx7)
< [1 = 0u(C = )bty = 2112 + Mol = -l + Mapillivy-1 = x5 (3.32)
+20,{(f — aF)x", Xpe1 — X*)
=[1 = 0u(C = O)lxu — x°IP + Gn(C N - 22l = Xl
2 By, g — x4 Z5((f — aP)X, X — X)) V> 1,
Step 3. We claim that {x,} converges strongly to the unique solution x* € (2 to the VIP (3.4). Indeed,
putting A, = [lx, — x*||?, we show the convergence of {A,} to zero by the following two cases.
Case 1. Suppose that there exists an integer my > 1 such that {A,} is nonincreasing. Then the limit
lim, e Ay, = d < 400 and lim, o (A, — Ay41) = 0. From (3.31) we obtain

(1 = 0O = Allwy = pull® + (1 = WY = Gull® + lyn = pulP]
+(1 =y T} (L= Si,)T5,qal + yu€’l 1,,(1 ST 441}

< o = X1 = [e1 — X°IP + 0, Ms

=N, — A1 +0,Ms.

Since v € (0,1),0 < liminf, (1 = Ay), 0 < liminf, ey, < limsup, | vy, <1,0, = 0and A, — Ayy1 — 0,
one has that
r}im 75 (I = Si,)T5,9ull = V}im 17 (I = S,)T,4all =0, (3.33)

and limy, . [[w, — pall = limy, e [V = gall = limy e [[yn — paull = 0, which implies |[x,, — pull < |Ixn — wyll + |[w, —
pull >0 (1 — o0) and
|lew,, — qn“ < lwy, _pn” + ”pn - yn” + “]/n - Qn” -0 (n— o).

Noticing u,, = g, — T, ,,17' (I=Si)Ti,9n, On = qn — Tn,,n‘T,’; (I-S,,)7.,,9, and the boundedness of {7}, from
(3.33) we obtain that
g = tnll = Tui I77 (L = Si,)Ti,qnll = 0 (1 — o0),

and
g — vull = Tn,zn||7'1:(1 =57 ,q:l = 0 (n— o). (3.34)
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So it follows that
||5]n -zl <(1- Vn)||qn — Uyl + Vn”‘]n — Uyl
<Ngn = ttull +1gn = vall = 0 (n — o),

and
Xy =zl < lxy — yn“ + ”]/n - qn“ + HQn = Zyl| (3.35)
< “xn - pn” + ”pn - yn“ + “yn - QH“ + HQn - Zn” -0 (11 - Oo) '

Since x, —z, — 0, 0, = 0 and {f(x,)}, {Fz,} are bounded, from Algorithm 3.1 we obtain that

X1 = xall < Xps1 = zall + |z — x4l

< 0u(lF el + llaFzall) + 120 — %ll = 0 (12— co). (3:36)

In addition, from the boundedness of {x,} it follows that there exists a subsequence {x,,} of {x,} such that

lim sup{(f — aF)x", x, —x*) = I}im((f —aF)x*, x, —x"). (3.37)

n—oo

Since H is reflexive and {x,} is bounded, we may assume, without loss of generality, that x,, — x. Thus,
from (3.37) one gets
Limsup{(f — aF)x*,x, — x*) = lLim{(f — aF)x*,x, —x*)
m sup f Lim((f s i (338)
={(f —aF)x", x — x*).
Since py—yn = 0, gu—yn — 0, w,—p, — 0and g, —u, — 0, by Lemma 3.5 we deduce that x € w,({x,}) € Q.
Hence from (3.4) and (3.38) one gets

lim sup{(f — aF)x",x, —x*) = {(f —aF)x",x —x") <0, (3.39)

n—oo

which together with (3.36), leads to

lim sup{(f — aF)x", xp11 — x*)

= Tim supl{(f — aP)Y', ¥yt — %) + ((f — aF)X", %y — )] (3.40)
< limsup[|I(f — aF)x"[llxp+1 — Xull + {(f — aF)x*, x, —x*)] < 0.

Note that {o,(C ~ 8)} € [0,1], T3y 04(C ~ 8) = o0, and
B,

timsup( 22 - 2, — .l + 25+ Pl = Xyl + 25 (= B e = )] <0

Consequently, applying Lemma 2.4 to (3.32), one has lim,_,« |[x, — x*||* = 0.

Case 2. Suppose that I{A,,} C {A,} s.t. Ay, < Ay Yk € N, where N is the set of all positive integers.
Define the mapping ¢ : N = N by

¢(n) ;== maxik <n: Ar < Agi).

By Lemma 2.5, we get
A¢,(n) < A¢(,,)+1 and A, < A¢(n)+1-

From (3.31) we have

(1 - gpmOA(1 . Ap)wem) — Poml* + (21 - V)[||yd5(n) — Go* + Yo — qu(nz)HZ]
+(1 - V(b(n))e ||7'* (I - Si@(,,))ﬂm,«,)‘i(b(ﬂ)” + 7/([)(11)6 ||7'z* (I - Sl@(,,))?'l(p(n)qd)(l’l)n }

() ()
< xgmy = X112 = xpum+1 — X112 + 0penMs
= Moy = Mgy + TpmMs,

(3.41)
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which immediately yields

}}E‘I&}O “(TZ:M) (I - Siq‘)(n) )(Tdi(&(n) qq”(”)“ = ’}1_1;1;10 ”7_7

P(n

(I = S1) T Tonll = 0,
and limy,co [[Weny = Pomll = limMu—eo 1Yom) — Gopmll = limyse 1Y) — Pomll = 0, which hence leads to
Iim [xom) = poell = Hm llwee = gomll = 0.
Using the same inferences as in the proof of Case 1, we deduce that
Hm llgoe) = ugonll = Hm 19w — vl = 0,

Hm [l = zpell = M [Xpe+1 = X0l = 0,

and
lim sup((f — aF)x", x¢p(m+1 — x) < 0. (3.42)

n—oo

On the other hand, from (3.32) we obtain

0o (€= ot < Mgty = Mgy + T (C = )25 - %“xwm = Xg(n-1l
M Bowy

5 G [wpmy-1 — Xpmy-1ll + C%—(s((f — aF)x", Xpmy+1 — X))},
which implies

QAp(n)
O(n)

lim supAgy < lim sup[% .
n—oo ﬁ n—oo
+% : go—((:; Mewpe-1 = Xom-1ll + Z5{(f = aF)x", Xppye1 = x7)] < 0.

Nxpny = Xl

Thus, limy,—e [Xsm) — **I* = 0. Also, note that

xgm+1 — X1 = llxge — x°IP
= 20Xp01 — Xy, X — X + [Xpe1 — Xoonll> (3.43)
< 201 — XpmllXem — X1+ 1Xpm+1 — Xomll

Thanks to Ay, < Aymy+1, we get

llon = X1 < llxpgner — X7
< lxgmy — X1 + 2lxpee1 — XomllXee — X + [Xpm+1 — Xoml> = 0 (1 — o0).

That is, x, — x* as n — oo. This completes the proof.

Remark 3.2. Compared with the corresponding results in Eslamian and Kamandi [25] and Ceng et al.
[8], our results enhance and develop them in the following aspects.

(i) The problem of finding an element of ﬂfil Ti’lFix(Si) in [25] is extended to develop the BPVIP
(3.4) with the GEPS and SCFPP constraints, i.e., the problem of finding x* € Q = VI(C, A) N Fix(G) N
(ﬂﬁ1 ‘7'1,‘1Fix(5j)) such that ((aF — f)x*,p —x*) = 0 Vp € Q. The inertial method with a correction term and a
self-adaptive step size strategy in [25] is extended to develop our composite subgradient extragradient rule
with inertial correction term for settling the BPVIP (3.4) with the GEPS and SCFPP constraints, which is
based on the subgradient extragradient method with adaptive stepsizes, adaptive inertial correction term,
and hybrid deepest-descent method.

(ii) The problem of finding a solution to the GEPS with the VIP and CFPP constraints in [8] is ex-
tended to develop the BPVIP (3.4) with the GEPS and SCFPP constraints, i.e., the problem of finding
x* € Q =VI(C A)NFix(G)Nn (ﬂfil ‘7'1._1Fix(S,-)) such that ((aF — f)x*,p—x*) > 0 Vp € Q. The modified inertial
subgradient extragradient algorithm for solving the GEPS with the VIP and CFPP constraints in [8] is



L-C. Ceng et al. / Filomat 39:6 (2025), 2039-2059 2054

extended to develop our composite subgradient extragradient rule with inertial correction term for settling
the BPVIP (3.4) with the GEPS and SCFPP constraints, which is based on the subgradient extragradient
method with adaptive stepsizes, adaptive inertial correction term, and hybrid deepest-descent method.

Remark 3.3. In particular, when N = 1, the above BPVIP (3.4) with the GEPS and SCFPP constraints,
is reduced to the bilevel split pseudomonotone variational inequality problem (BSPVIP) with the GEPS
constraint:

Seek x* € 2 such that {(aF — f)x",y—x") >0 Yy e Q. (3.44)

where Q = VI(C, A) N Fix(G) N 7’1‘1Fix(51) = Fix(G) N {z € VI(C, A) : T1z € Fix(51)}. In this case, Algorithm
3.1 is rewritten as

Algorithm 3.2.
Initialization: Lety > 0, v € (0,1), € €(0,1), 71 € [0, ), o’z,ﬁ € [0,1] and x1, x9, wo € H be arbitrary.
Iterative Steps: Given the iterates x,_1, x, (n > 1), compute x,41 as follows:

Step 1. Put w, = x, + an(xy — Xp—-1) + Pn(wn—1 — x4—1) and calculate

Pn = Anwy + (1= An)gn/
Iy = T = maB2)pa,
In = Tél (I —mB1)hy,

m

a 3 — minf{a, —2—1} if x, # X1
h € € h h = ’ ”xn_xn—lu ./
where a, € [0,@,] and g, € [0, B,] such that @, : e an d
B = min(B, E=eg) if Wi # X0,
! p otherwise.

Step 2. Calculate y, = Pc(pn — C,Apy) and g, = Pc, (pn — ChAy,) where C, is the largest C € {y, v, y€2, o}
satisfying
APy = Ayall < viipn = yall,
and Cn = {y € 7_{ : <pn - CnApn - yn/y - yn> < 0}
Step 3. Calculate z, = g, — 4,17, (I — S1)719,, Where 7,1 is chosen to be the bounded sequence satisfying

1- I — 51T 19,11
0<€$Tn,1<( EDIIC V7gull”

=T = S)TgalP 0= 507200 # 0,

otherwise set 7,1 = 7.
Step 4. Calculate x,,41 = 0, f(xy) + (I — 04aF)z,.
Again set nn := n + 1 and return to Step 1.

Theorem 3.2. Let {x,} be the sequence generated by Algorithm 3.2. Then {x,} converges strongly to the
unique solution z* € Q of the BSPVIP (3.44) with the GEPS constraint.

4. Viability and Performability

In what follows, we present an instance to show the viability and performability of the proposed rule. Put

®1z®2=0/a:21n1=n2=%ITizéra:ﬁ_:%/’yzlrsz:%/ yn:An=§16n:m/and

oy = 3(#1) for all n > 1. First, we construct an instance of Q = VI(C, A) N Fix(G) N (ﬂﬁl ‘7"1.‘1Fix(5,<)) 0
with G = T,(?ll (I- 171B1)T%(I — m2B2) = Pc(I — m1B1)Pc(I — 12B2), where A : H — H is pseudomonotone and

Lipschitzian mapping, B1, B, : H — H are two ism mappings, 7; : H — H; is bounded linear operator,
and S; : H; — H; is &;-demimetric mapping fori =1,2,...,N.
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LetH; = H =Rand use (a,b) =aband ||-|| = || to denote its inner product and induced norm, respectively.
Put C = [-2,2] and the starting points x1, X, wo are arbitrarily chosen in C. Let f(x) = F(x) = %x Vx € H,

with
5———<C=|—1“— (Z — 2)—|_\/|_2(:2.__ (_)2)_
P alan — ax 2 =1.

Assume that Tix = xV¥x € H. Let Bix = Box := Bx = x — %sinx Vx € C. Let the operators A, S, : H — H be
defined by

Ax .

1 1 3 1
= - d Saxi=Sx=Sx=2x+=sinx(r=1,.,N)VreH.
1+ |sina] 1+ o0¢ 2dmo=od 5x+55mx(7 e N)Vx € H

We have the following conclusions:
(i) A is pseudomonotone and 2-Lipschitzian. Indeed, for each v, w € H one has

<| [yl [+ Hsi'nyllfllsin?(ll |
= LA+yIDA-+IxIl) (1+I'sin t[[)(1+[] sin x[[)

< x—y| " I sinx—sin yIII

= (DAl - QA+ sinxl) 1+ sin yl)

<|lx = yll + [|sinx — sin y|| < 2|lx — yl|.

lAx — Ayl

This ensures that A is 2-Lipschitzian. Let us show that A is pseudomonotone. For each x, y € H, itis readily
known that
(Ax,y = 2) = (37 — )y —0) 2 0
= Ay - ) = (e — ) - 1) 2 0.

(ii) Bis %—ism. Indeed, since B is %—strongly monotone and %—Lipschitzian, we know that B is %—inverse—

strongly monotone with p = 0 = 3.
(iii) S is a &1-demicontractive mapping with & = % and Fix(51) = {0}. Indeed, S; is a &;-strictly
pseudocontractive mapping with & = § because

3 1, . . 1
1S1x = Siyli* = lI5(x =) + 5 (sinx —sin PIP < Il = yIP + ST =S)x (I - Sy,

Consequently, Q := VI(C,A) N Fix(G) N 7’1’1Fix(51) = {0} # 0, where G = Pc(I — mB1)Pc(I — m2B2) =

" —ENNI=51)T 121 .
[Pc(I - £B)I*. In addition, we observe that 0 < £ =€ < 7,1 < (1“7‘5_112'1'(_15—1)%;‘??“ —e=2if (I-S1)71qn # 0, and
Tyl = T1 = é otherwise. So, we set 7,1 = % ¥n > 1. Also, it is clear that 7(I — S1)719, = (I — S1)g, and
1

Xps1 = 0 f(Xn) + (I — 0paF)z, = ﬁ . %xn +(1- W)Z”' In this case, putting

1
. 2 .
o = min{=— 1} if X, # X,
. -
3 otherwise,

and

[[ewn—1—24-111"
1

1
. 3(n+1)2 1 .
B = min{————, 3} ifw,1 # xy-1,
3 otherwise,

we rewrite Algorithm 3.2 as follows

Wy =Xy + an(xn - Xn—l) + ﬁn(wn—l - xn—l)l
Pn = %wn + %Glﬂn,

Yn = PC(Pn - CnApn)/

qn = PC,, (Pn - CnA]/n)/

Zn =qn — %(Qn - 51%),

Xpa1 = 3(%“) SExy +(1- ﬁ)zn Yn>1,
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where for each n > 1, n, and C,, are chosen as in Algorithm 3.2. Therefore, using Theorem 3.2, we know
that {x,} converges to 0 € Q.

Example 1. In this example we will give a numerical illustration on R¥ to show that our proposed algorithm
is implementable on R¥, for k = 100, 500, 1000 and 5000 and compare its performance with Algorithms 3.1
and 3.2 of Xu et al. [39]. Let f, F : R¥ — R¥ be defined by f(x) := 3x, F(x) := 2x. Let C = {x € R* : ||lx|| < 2}, ©,
and ®; be the zero bifunctions and By = B, = I, where I is the identity map on R¥. Let A : R — R¥be defined
by A := (3 —|lx|[)x. Fix N = 5. Let S;x = éx and 7; =ix,a =025, 11 =05, 1, =03, 7, = %, a=0.1, B =0.3,

y=1Lv=C0=1% y,=05 1,=02¢, = m, and ¢, = (anl) In Algorithms 3.1 and 3.2 of Xu et al.

[39], (XTL Alg. 3.1 and XTL Alg. 3.2 for short) welety =03, Ay =04, 6=02, ¢ =12, 0, = ﬁ, My =
s, €n = (nlf%z, &n =7 +11)5, Q = S and B = F. The initial points xp, x; and gy are generated randomly in

RF. The numerical simulations is continued until n = 1001 or E,, = ||x,41 — X,|| < 1078 is not satisfied. The
results of the numerical simulations are presented in Table 1 and Figures 1 and 2.

Table 1: Numerical performance of all algorithms in Example 1

Algorithms k=100 k =500 k = 1000 k = 5000
Iter. Time (s) Iter. Time(s) Iter. Time(s) Iter. Time (s)
Alg 3.1 22 0.0024 22 0.0034 23 0.0051 23 0.0065
Alg. 318,=0 24 0.0026 24 0.0039 26 0.0066 26 0.0081
Alg. 318, =a,=0 26 0.0036 26 0.0044 27 0.0076 27 0.0094
XTL Alg. 3.1 88 0.0156 89 0.0155 95 0.0162 104 0.0385
XTL Alg. 3.1 30 0.0052 30 0.0051 32 0.0045 34 0.0096

Algorithm Performance Comparison
T T T ] T

—Alg. 3.1
A3, 0

- - Kg34, =0
—-=-XTL Alg. 31
=-=XTLAlg. 32

Q0 50 60 70 80 90
Number of iterations

Algorithms

Figure 1: Graphical plot of the results in Table 1 Top: k = 100 Bottom: k = 500
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5. Conclusions

With the help of the modified inertial subgradient extragradient algorithm in [8], we have devised a
composite subgradient extragradient rule with inertial correction term to solve the BPVIP (3.4) with the
constraints of the GEPS and SCFPP involving demimetric mappings in real Hilbert spaces. The BPVIP is
composed of the upper-level VIP whose solution set is VI(Q2, aF — f) and the lower-level VIP whose solution
set is VI(C, A). Furthermore, we have established a strong convergence theorem under certain appropriate
conditions. Meanwhile, we have applied our main outcome for solving a bilevel split pseudomonotone
variational inequality problem (BSPVIP) with the GEPS constraint. The problem considered in this paper
has potential applications in real-world problems such as image recognition, signal processing, machine
learning, and so on. Additionally, an illustrated instance is provided to support the implementation and
performance of the proposed rule. Our rule incorporates an adaptive stepsize technique without the prior
knowledge of the operator norm and exploits the inertial technique with a correction term to speed up the
convergence of the proposed algorithm.
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