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Abstract. The aim of this paper is to define Discrete Orlicz–Morrey spaces. Furthermore, we also present
the sufficient and necessary conditions for the inclusion properties of among these spaces. Computing
the norms of the characteristic sequences is one of the keys results. Similar results for Discrete weak
Orlicz–Morrey spaces are also obtained.

1. Introduction and Preliminaries

The Orlicz–Morrey spaces are generalizations of Orlicz spaces and Morrey spaces. Many researchers
have made important observations about Orlicz spaces and Morrey spaces, for example ([2, 4–6, 8–10, 17, 22],
etc.). Besides the ‘continuous’ Orlicz spaces and ‘continuous’ Morrey spaces, several authors have made
study about discrete Orlicz spaces (see [13, 19]) and discrete Morrey spaces (see [1, 7]).

Recently, Fatimah et al. [3] have proved inclusion relations between two generalized discrete Orlicz–
Morrey spaces and between two generalized weak Discrete Morrey spaces for Nakai’s version. Related
results on discrete Orlicz spaces can be found in [13]. In this paper, we are interested to study another
discrete Orlicz–Morrey spaces and weak discrete Orlicz–Morrey spaces. In particular, we present some
sufficient and necessary conditions for inclusion properties on these spaces. For related works, interested
researcher can see [3, 7, 10, 16].

First, we recall definition of Young function. A function Ψ : [0,∞) → [0,∞) is called a Young function
ifΨ is convex, left-continuous,Ψ(0) = 0 = lim

t→0
Ψ(t), and lim

t→∞
Ψ(t) = ∞. Given two Young functionsΨ1,Ψ2,

we writeΨ1 ≺ Ψ2 if there exists a constant C > 0 such thatΨ1(t) ≤ Ψ2(Ct) for all t > 0.
Let m ∈ Z, N ∈ ω :=N∪{0}, we write Sm,N := {m−N, ...,m, ...,m+N} and |Sm,N | = 2N+1 for the cardinality

of Sm,N. Let Gψ be the set of all functions ψ : 2ω + 1 → (0,∞) such that ψ(2N + 1) is nondecreasing but for
any 2M + 1 ∈ 2ω + 1, ψ(2(N+M)+1)

Ψ−1( 2(N+M)+1
2N+1 )

is nonincreasing.
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For ψ1, ψ2 : 2ω + 1 → (0,∞), we write ψ1 ⪯ ψ2 if there exists a constant C > 0 such that ψ1(2N + 1) ≤
Cψ2(2N + 1) for all N ∈ ω. If ψ1 ⪯ ψ2 and ψ2 ⪯ ψ1, then we write ψ1 ≈ ψ2.

Now, letΨ be a Young function and ψ ∈ Gψ. The Discrete Orlicz–Morrey spaces ℓψ,Ψ(R) is the set of all
sequences x = (xk)∞k=1 taking values in R such that for every m ∈ Z and N ∈ ω, we have

∥x∥ℓψ,Ψ := sup
m∈Z,N∈ω

ψ(2N + 1)∥x∥(Ψ,m,N) < ∞,

where ∥x∥(Ψ,m,N) := inf
{
b > 0 : 1

|Sm,N |

∑
k∈Sm,N

Ψ
(
|xk |

b

)
≤ 1

}
.

In next section, we will show the Discrete Orlicz–Morrey spaces ℓψ,Ψ(R) is a Banach space with respect
to ∥x∥ℓψ,Ψ .

For ψ(2N + 1) := 2N + 1, the space ℓψ,Ψ(R) is the Discrete Orlicz space ℓΨ(R). Meanwhile, forΨ(t) = tp,
the space ℓψ,Ψ(R) reduces to the generalized Discrete Morrey space ℓp

ψ(R).
Throughout this paper, the letter C denotes a constant that may vary in values from line to line. To keep

track of some constants, we use subscripts, such as C1 and C2.

2. Inclusion properties of (strong) Discrete Orlicz–Morrey spaces

First, we will show ∥ · ∥ℓψ,Ψ defines a norm on ℓψ,Ψ(R). For getting a result, we present some lemmas in
the following.

Lemma 2.1. If x = (xk)∞k=1 ∈ ℓψ,Ψ(R), then

1
|Sm,N |

∑
k∈Sm,N

Ψ
( |xk|

∥x∥(Ψ,m,N)

)
≤ 1

for any m ∈ Z and N ∈ ω. Furthermore, ∥x∥(Ψ,m,N) ≤ 1 if and only if 1
|Sm,N |

∑
k∈Sm,N

Ψ(|xk|) ≤ 1 for any m ∈ Z and
N ∈ ω.

Proof. Let x be an element of ℓψ,Ψ(R) and take an arbitrary ϵ > 0, then there exists bϵ > 0 such that

bϵ ≤ ∥x∥(Ψ,m,N) + ϵ and 1
|Sm,N |

∑
k∈Sm,N

Ψ
(
|xk |

bϵ

)
≤ 1 for any m ∈ Z and N ∈ ω. BecauseΨ is increasing, we have

1
|Sm,N |

∑
k∈Sm,N

Ψ
( |xk|

∥x∥(Ψ,m,N) + ϵ

)
≤

1
|Sm,N |

∑
k∈Sm,N

Ψ
( |xk|

bϵ

)
≤ 1.

Since ϵ > 0 is arbitrary, we can conclude

1
|Sm,N |

∑
k∈Sm,N

Ψ
( |xk|

∥x∥(Ψ,m,N)

)
≤ 1

for any m ∈ Z and N ∈ ω.

Next, if ∥x∥(Ψ,m,N) ≤ 1 for any m ∈ Z and N ∈ ω, then

1
|Sm,N |

∑
k∈Sm,N

Ψ(|xk|) ≤
1
|Sm,N |

∑
k∈Sm,N

Ψ
( |xk|

∥x∥(Ψ,m,N)

)
≤ 1.

Now, assume that 1
|Sm,N |

∑
k∈Sm,N

Ψ(|xk|) ≤ 1 holds for any m ∈ Z and N ∈ ω. Clearly, we have ∥x∥(Ψ,m,N) ≤ 1.
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Lemma 2.2. LetΨ be a Young function, ψ ∈ Gψ, m ∈ Z and N ∈ ω. Then the following statements are equivalent:

(1) 1
|Sm,N |

∑
k∈Sm,N

Ψ
(
|xk |

ϵ

)
≤ 1 for every ϵ > 0.

(2) ∥x∥(Ψ,m,N) = 0.

Proof. Assume that (1) holds. By definition of ∥x∥(Ψ,m,N) we have 0 ≤ ∥x∥(Ψ,m,N) ≤ ϵ, for every ϵ > 0. So we
conclude that ∥x∥(Ψ,m,N) = 0. Suppose, on the contrary, that there exists ϵ0 > 0 such that 1

|Sm,N |

∑
k∈Sm,N

Ψ
(
|xk |

ϵ0

)
>

1. By Lemma 2.1 we have ∥x∥(Ψ,m,N) ≥ ϵ0 > 0. As a consequence, we conclude that 1
|Sm,N |

∑
k∈Sm,N

Ψ
(
|xk |

ϵ

)
≤ 1

for every ϵ > 0.

Lemma 2.3. LetΨ be a Young function, ψ ∈ Gψ, m ∈ Z and N ∈ ω. Then the following statements are equivalent:

(1) 1
|Sm,N |

∑
k∈Sm,N

Ψ
(
α|xk|

)
= 0 for every α > 0.

(2) ∥x∥(Ψ,m,N) = 0

Proof. Suppose that (1) holds. As before, we can obtain ∥x∥(Ψ,m,N) = 0. Now, suppose that (2) holds. Take an
arbitrary 0 < ϵ ≤ 1. SinceΨ is a convex function, we have

1
|Sm,N |

∑
k∈Sm,N

Ψ
(
α|xk|

)
≤ ϵ

 1
|Sm,N |

∑
k∈Sm,N

Ψ
(α|xk|

ϵ

) ≤ ϵ.
Since 0 < ϵ ≤ 1 is arbitrary, we can conclude that 1

|Sm,N |

∑
k∈Sm,N

Ψ
(
α|xk|

)
= 0.

Proposition 2.4. LetΨ be a Young function and ψ ∈ Gψ, the mapping ∥ · ∥ℓψ,Ψ defines a norm on ℓψ,Ψ(R). Moreover,
(ℓψ,Ψ(R), ∥ · ∥ℓψ,Ψ ) is a Banach space.

Proof. It is easy to prove that ∥x∥ℓψ,Ψ ≥ 0 and ∥αx∥ℓψ,Ψ = |α|∥x∥ℓψ,Ψ , for every x ∈ ℓψ,Ψ(R) and α ∈ R. Now, we
will prove ∥x∥ℓψ,Ψ = 0 if and only if x = 0. If x = 0, then we have ∥x∥ℓψ,Ψ = 0. Let ∥x∥ℓψ,Ψ = 0, then ∥x∥(Ψ,m,N) = 0

for every m ∈ Z and N ∈ ω. By Lemma 2.3 we have 1
|Sm,N |

∑
k∈Sm,N

Ψ
(
α|xk|

)
= 0. In fact, α, |Sm,N |, and Ψ are

positive values, we have xk = 0 for every k ∈ Sm,N. Since m ∈ Z and N ∈ ω are arbitrary, we have x = 0.
Next, we will prove ∥x1 + x2∥ℓψ,Ψ ≤ ∥x1∥ℓψ,Ψ + ∥x2∥ℓψ,Ψ , for every x1, x2 ∈ ℓψ,Ψ(R). Let x1 = (x(1)

k )∞k=1 and
x2 = (x(2)

k )∞k=1 be elements of ℓψ,Ψ(R). For any m ∈ Z and N ∈ ω, we have

∑
k∈Sm,N

Ψ
( |x(1)

k ) + (x(2)
k )|

∥x1∥(Ψ,m,N) + ∥x2∥(Ψ,m,N)

)
≤

∑
k∈Sm,N

Φ
( 2∑

i=1

∥xi∥(Ψ,m,N)

∥x1∥(Ψ,m,N) + ∥x2∥(Ψ,m,N)

|x(i)
k |

∥xi∥(Ψ,m,N)

)
≤

2∑
i=1

 ∥xi∥(Ψ,m,N)

∥x1∥(Ψ,m,N) + ∥x2∥(Ψ,m,N)

∑
k∈Sm,N

Ψ
( |x(i)

k |

∥xi∥(Ψ,m,N)

)
≤ |Sm,N |

or 1
|Sm,N |

∑
k∈Sm,N

Ψ
(

|(x(1)
k )+x(2)

k )|
∥x1∥(Ψ,m,N)+∥x2∥(Ψ,m,N)

)
≤ 1. By definition of ∥x1 + x2∥(Ψ,m,N), we have

∥x1 + x2∥(Ψ,m,N) ≤ ∥x1∥(Ψ,m,N) + ∥x2∥(Ψ,m,N).

Furthermore, we have

ψ(2N + 1)∥x1 + x2∥(Ψ,m,N) ≤ ψ(2N + 1)∥x1∥(Ψ,m,N) + ψ(2N + 1)∥x2∥(Ψ,m,N).

By taking supremum over m ∈ Z and N ∈ ω, we conclude that ∥x1 + x2∥ℓψ,Ψ ≤ ∥x1∥ℓψ,Ψ + ∥x2∥ℓψ,Ψ , for every
x1, x2 ∈ ℓψ,Ψ(R).
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Lemma 2.5. [15, 17, 21] Suppose that Ψ is a Young function and Ψ−1 denotes its inverse, which is given by
Ψ−1(s) := inf{r ≥ 0 : Ψ(r) > s} for every s ≥ 0. Then the followings hold:
(1)Ψ−1(0) = 0.
(2)Ψ−1(s1) ≤ Ψ−1(s2) for s1 ≤ s2.
(3)Ψ(Ψ−1(s)) ≤ s ≤ Ψ−1(Ψ(s)) for 0 ≤ s < ∞.
(4) If, for some constants C1,C2 > 0, we haveΨ−1

2 (s) ≤ C1Ψ
−1
1 (C2s), thenΨ1( t

C1
) ≤ C2Ψ2(t) for t = Ψ−1

2 (s).

Lemma 2.6. Let Ψ be a Young function and ψ ∈ Gψ. For m ∈ Z and N0 ∈ ω, let ξm,N0 be the characteristics
sequence given by

ξm,N0 :=
{

1, ifk ∈ Sm,N0

0, otherwise

then ∥ξm,N0∥(Ψ,m,N) =
1

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) .

Proof. Let

AΨ,m,N :=
{
b > 0 : Ψ

(1
b

)
≤

|Sm,N |

|Sm,N0 ∩ Sm,N |

}
and

BΨ,m,N :=
{
r > 0 : Ψ(r) >

|Sm,N |

|Sm,N0 ∩ Sm,N |

}
.

Observe that,

∥ξm0,N0∥(Ψ,m,N) := inf
{
b > 0 :

1
|Sm.N |

∑
k∈Sm,N

Ψ
( |ξm,N0 |

b

)
≤ 1

}
= inf

{
b > 0 :

|Sm,N0 ∩ Sm,N |

|Sm,N |
Ψ

(1
b

)
≤ 1

}
= inf

{
b > 0 : Ψ

(1
b

)
≤

|Sm,N |

|Sm,N0 ∩ Sm,N |

}
= inf AΨ,m,N.

Meanwhile,Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

)
= inf

{
r ≥ 0 : Ψ(r) > |Sm,N |

|Sm,N0∩Sm,N |

}
= inf BΨ,m,N. Let b = 1

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) , by Lemma

2.5 (3) we have

Ψ
(1

b

)
= Ψ

(
Ψ−1

( |Sm,N |

|Sm,N0 ∩ Sm,N |

))
≤

|Sm,N |

|Sm,N0 ∩ Sm,N |
.

By definition of ∥ · ∥(Ψ,m,N), we have ∥ξm,N0∥(Ψ,m,N) ≤
1

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) . Suppose, on the contrary, i.e.,

∥ξm,N0∥(Ψ,m,N) <
1

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) , then 1
∥ξm,N0 ∥(Ψ,m,N)

> Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

)
.

By definition ofΨ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

)
, there exists a r1 ∈ BΨ,m,N such that

1
∥ξm,N0∥(Ψ,m,N)

> r1 ≥ Ψ
−1

( |Sm,N |

|Sm,N0 ∩ Sm,N |

)
.

Since r1 ∈ BΨ,m,N we obtain 1
r1
< AΨ,m,N. So we can conclude that 1

r1
≤ ∥ξm,N0∥(Ψ,m,N). As a consequence,

we obtain ∥ξm,N0∥(Ψ,m,N) =
1

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) , as desired.
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Proposition 2.7. Let Ψ be a Young function and ϕ ∈ Gψ. For m ∈ Z and N0 ∈ ω, let ξm,N0 be the characteristics
sequence given by

ξm,N0 :=
{

1, ifk ∈ Sm,N0

0, otherwise

then ∥ξm,N0∥ℓψ,Ψ =
ψ(2N0+1)
Ψ−1(1) .

Proof. Take arbitrary m ∈ Z and N0 ∈ ω. By Lemma 2.6 we have

∥ξm,N0∥ℓψ,Ψ = sup
m∈Z,N∈ω

∥ξm,N0∥(Ψ,m,N)

= sup
m∈Z,N∈ω

ψ(2N + 1)

Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

)
≥
ψ(2N0 + 1)
Ψ−1(1)

.

Now, we will prove ∥ξm,N0∥ℓψ,Ψ ≤
ψ(2N0+1)
Ψ−1(1) .

Case I : For N ≥ N0, write N = N0 +N1 for N1 ∈ ω. Observe that,

ψ(2N0 + 1)
Ψ−1(1)

=
ψ((2N0 + 1) + 0)

Ψ−1
(

(2N0+1)+0
2N0+1

)
≥
ψ(2(N0 +N1) + 1)

Ψ−1
(

2(N0+N1)+1
2N0+1

)
=
ψ(2N + 1)

Ψ−1
(

2N+1
2N0+1

)
=

ψ(2N + 1)

Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

) .
So we get, ψ(2N+1)

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) ≤ ψ(2N0+1)
Ψ−1(1) .

Case II : for N < N0, we have ψ(2N + 1) ≤ ψ(2N0 + 1). Its show that

ψ(2N + 1)

Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

) = ψ(2N + 1)

Ψ−1
(

2N+1
2N+1

) ≤ ψ(2N0 + 1)
Ψ−1(1)

.

Since Case I and II are true for arbitrary m ∈ Z,N ∈ ω, we have

∥ξm,N0∥ℓϕ,Φ = sup
m∈Z,N∈ω

∥ξm,N0∥(Ψ,m,N)

= sup
m∈Z,N∈ω

ψ(2N + 1)

Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

)
≤
ψ(2N0 + 1)
Ψ−1(1)

,

as desired.
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Now we come to inclusion properties of (strong) Discrete Orlicz–Morrey spaces in the following.

Theorem 2.8. Let Ψ1,Ψ2 be Young functions such thatΨ1 ≺ Ψ2 and ψ1, ψ2 ∈ Gψ. Then the following statements
are equivalent:
(1) ψ1 ⪯ ψ2 (on 2ω + 1).
(2) ℓψ2,Ψ2 (R) ⊆ ℓψ1,Ψ1 (R).
(3) There exists a constant C > 0 such that

∥x∥ℓψ1 ,Ψ1
≤ C∥x∥ℓψ2 ,Ψ2

,

for every x ∈ ℓψ2,Ψ2 (R).

Proof. Let us first prove that (1) implies (2). Let x ∈ ℓψ2,Ψ2 (R). Recall that Ψ1 ≺ Ψ2 and ψ1 ⪯ ψ2 means that
there exist constants C1,C2 > 0 such that Ψ1(t) ≤ Ψ2(C1t) every t > 0 and ψ1(2N + 1) ≤ C2ψ2(2N + 1) for
every N ∈ ω. For every m ∈ Z and N ∈ ω, we have

1
|Sm,N |

∑
k∈Sm,N

Ψ1

( |xk|

C1∥x∥(Ψ2,m,N)

)
≤

1
|Sm,N |

∑
k∈Sm,N

Ψ2

( C1|xk|

C1∥x∥(Ψ2,m,N)

)
=

1
|Sm,N |

∑
k∈Sm,N

Ψ2

( |xk|

∥x∥(Ψ2,m,N)

)
≤ 1.

By definition of ∥x∥(Ψ1,m,N), we have ∥x∥(Ψ1,m,N) ≤ C2∥x∥(Ψ2,m,N). Furthermore, we have

∥x∥ℓψ1 ,Ψ1
:= sup

m∈Z,N∈ω
ψ1(2N + 1)∥x∥(Ψ1,m,N)

≤ sup
m∈Z,N∈ω

C1C2ψ2(2N + 1)∥x∥(Ψ2,m,N)

= C1C2∥x∥ℓψ2 ,Ψ2
.

This proves that ℓψ2,Ψ2 (R) ⊆ ℓψ1,Ψ1 (R).
Next, since (ℓψ2,Ψ2 (R), ℓψ1,Ψ1 (R)) is a Banach pair, it follows from [11, Lemma 3.3] that (2) and (3) are

equivalent. It thus remains to show that (3) implies (1).
Assume that (3) holds. Let m0 ∈ Z and N ∈ ω. By Proposition 2.7, we have

ψ1(2N0 + 1)

Ψ−1
1 (1)

= ∥ξm,N0∥ℓψ1 ,Ψ1
≤ C∥ξm,N0∥ℓψ2 ,Ψ2

=
Cψ2(2N0 + 1)

Ψ−1
2 (1)

,

whence ψ1(2N0 + 1) ≤
CΨ−1

1 (1)
Ψ−1

2 (1) ψ2(2N0 + 1). Since N0 ∈ ω is arbitrary, we conclude that ψ1(2N + 1) ≤

C1ψ2(2N + 1) for every N ∈ ω, where C1 =
CΨ−1

1 (1)
Ψ−1

2 (1) .

3. Inclusion properties of weak Discrete Orlicz–Morrey spaces

We have discussed inclusion properties of Discrete Orlicz–Morrey spaces. Now we come to discuss
inclusion properties of weak Discrete Orlicz–Morrey spaces. First we give definition of weak Discrete
Orlicz–Morrey spaces and some lemmas in the following.

Let Ψ be a Young function and ψ ∈ Gψ. The weak Discrete Orlicz–Morrey spaces wℓψ,Ψ(R) is the set of
all sequences x = (xk)∞k=1 taking values in R such that

∥x∥wℓψ,Ψ := sup
m∈Z,N∈ω

ψ(2N + 1)∥x∥w(Ψ,m,N) < ∞,
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where

||x||w(Ψ,m,N) = inf
{
b > 0 : sup

t>0
Ψ(t)

∣∣∣∣∣{k ∈ Sm,N :
|xk|

b
> t

}∣∣∣∣∣ ≤ 1
}

is finite. In next section, we will show the weak Discrete Orlicz–Morrey spaces wℓψ,Ψ(R) is a quasi Banach
space with respect to ∥x∥wℓψ,Ψ .

For ψ(2N + 1) := 2N + 1, the space wℓψ,Ψ(R) is the weak Discrete Orlicz space wℓΨ(R). Meanwhile, for
Ψ(t) = tp, the space wℓψ,Ψ(R) reduces to the generalized Discrete Morrey space wℓp

ψ(R).
The relation between wℓψ,Ψ(R) and ℓψ,Ψ(R) is presented in the following lemma. (We leave the proof to

the reader.)

Lemma 3.1. LetΨ be a Young function and ψ ∈ Gψ. Then ℓψ,Ψ(R) ⊆ wℓψ,Ψ(R) with

∥x∥wℓψ,Ψ(R) ≤ ∥x∥ℓψ,Ψ(R)

for every x ∈ ℓψ,Ψ(R).

The following is an analog of Lemma 2.5.

Lemma 3.2. Let Ψ be a Young function and ψ ∈ Gψ. For m ∈ Z and N0 ∈ ω, let ξm,N0 be the characteristics
sequence given by

ξm,N0 :=
{

1, ifk ∈ Sm,N0

0, otherwise

then ∥ξm,N0∥
w
(Ψ,m,N) =

1

Ψ−1

(
|Sm,N |

|Sm,N0
∩Sm,N |

) .

The following proposition indicates that the characteristic sequence also obtained in Discrete weak Orlicz–
Morrey spaces.

Proposition 3.3. Let Ψ be a Young function and ψ ∈ Gψ. For m ∈ Z and N0 ∈ ω, let ξm,N0 be the characteristics
sequence given by

ξm,N0 :=
{

1, ifk ∈ Sm,N0

0, otherwise

then we have ∥ξm,N0∥wℓψ,Ψ =
ψ(2N0+1)
Ψ−1(1) .

Proof. Take arbitrary m ∈ Z and N0 ∈ ω. By Lemma 3.2 we have

∥ξm,N0∥wℓψ,Ψ = sup
m∈Z,N∈ω

∥ξm,N0∥
w
(Ψ,m,N)

= sup
m∈Z,N∈ω

ψ(2N + 1)

Ψ−1
(

|Sm,N |

|Sm,N0∩Sm,N |

)
≥
ψ(2N0 + 1)
Ψ−1(1)

.

On the other hand, by Proposition 2.7 and Lemma 3.1 we have ∥ξm0,N0∥wℓψ,Ψ ≤
ψ(2N0+1)
Ψ−1(1) , as desired.

Now we come to inclusion properties of weak Discrete Orlicz–Morrey spaces in the following.
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Theorem 3.4. Let Ψ1,Ψ2 be Young functions such thatΨ1 ≺ Ψ2 and ψ1, ψ2 ∈ Gψ. Then the following statements
are equivalent:(1) ψ1 ⪯ ψ2 (on 2ω + 1).
(2) wℓψ2,Ψ2 (R) ⊆ wℓψ1,Ψ1 (R).
(3) There exists a constant C > 0 such that

∥x∥wℓψ1 ,Ψ1
≤ C∥x∥wℓψ2 ,Ψ2

,

for every x ∈ wℓψ2,Ψ2 (R).

Proof. Let us first prove that (1) implies (2). Let x ∈ ℓψ2,Ψ2 (R). Recall that Ψ1 ≺ Ψ2 and ψ1 ⪯ ψ2 means that
there exist constants C1,C2 > 0 such thatΨ1(t) ≤ Ψ2(C1t) for every t > 0 and ψ1(2N + 1) ≤ C2ψ2(2N + 1) for
every N ∈ ω. For m ∈ Z and N ∈ ω, Let

AΨ1,M,N =
{
b > 0 : sup

t>0

Ψ1(t)
∣∣∣{k ∈ Sm,N : |xk |

b > t}
∣∣∣

|Sm,N |
≤ 1

}
and

AΨ2,m,N =
{
b > 0 : sup

t>0

Ψ2(C1t)
∣∣∣{k ∈ Sm,N : |xk |

b > t}
∣∣∣

|Sm,N |
≤ 1

}
=

{
b > 0 : sup

t1>0

Ψ2(t1)
∣∣∣{x ∈ Sm,N : |xk |

b > t1
C1
}

∣∣∣
|Sm,N |

≤ 1
}

=
{
b > 0 : sup

t1>0

Ψ2(t1)
∣∣∣{k ∈ Sm,N : |C1xk |

b > t1}
∣∣∣

|Sm,N |
≤ 1

}
.

Then ∥C1x∥w(Ψ2,m,N) = inf AΨ2,m,N. Observe that, for arbitrary b ∈ AΨ2,m,N and t > 0, we have (by setting
t1 = C1t)

Ψ1(t)
∣∣∣{k ∈ Sm,N : |xk |

b > t}
∣∣∣

|Sm,N |
≤
Ψ2(C1t)

∣∣∣{k ∈ Sm,N : |xk |

b > t}
∣∣∣

|Sm,N |

=
Ψ2(t1)

∣∣∣{k ∈ Sm,N : |C1xk |

b > t1}
∣∣∣

|Sm,N |

≤ sup
t1>0

Ψ2(t1)
∣∣∣{k ∈ Sm,N : |C1xk |

b > t1}
∣∣∣

|Sm,N |

≤ 1.

Since t > 0 is arbitrary, we have sup
t>0

Ψ1(t)

∣∣∣∣{k∈Sm,N :
|xk |

b >t
}∣∣∣∣

|Sm,N |
≤ 1. Hence it follows that b ∈ AΨ1,m,N, and so we

conclude that AΨ2,m,N ⊆ AΨ1,m,N. Accordingly, we obtain

∥x∥w(Ψ1,m,N) = inf AΨ1,m,N ≤ inf AΨ2,m,N = ∥C1x∥w(Ψ2,m,N) = C1∥x∥w(Ψ2,m,N).

Furthermore, we have

∥x∥wℓψ1 ,Ψ1
:= sup

m∈Z,N∈ω
ψ1(2N + 1)∥x∥w(Ψ1,m,N)

≤ sup
m∈Z,N∈ω

C1C2ψ2(2N + 1)∥x∥w(Ψ2,m,N)

= C1C2∥x∥wℓψ2 ,Ψ2
.
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This proves that wℓψ2,Ψ2 (R) ⊆ wℓψ1,Ψ1 (R).
As mentioned in [18, Appendix G], we know that Lemma 3.3 in [11] still holds for quasi-Banach spaces,

so (2) and (3) are equivalent.
Now, we will show that (3) implies (1). Assume that (3) holds. Let m ∈ Z and N0 ∈ ω. By Proposition

3.3, we have we have

ψ1(2N0 + 1)

Ψ−1
1 (1)

= ∥ξm,N0∥wℓψ1 ,Ψ1
≤ C∥ξm,N0∥wℓψ2 ,Ψ2

=
Cψ2(2N0 + 1)

Ψ−1
2 (1)

,

whence ψ1(2N0 + 1) ≤
CΨ−1

1 (1)
Ψ−1

2 (1) ψ2(2N0 + 1). Since N0 ∈ ω is arbitrary, we conclude that ψ1(2N + 1) ≤

C1ψ2(2N + 1) for every N ∈ ω, where C1 =
CΨ−1

1 (1)
Ψ−1

2 (1) .

4. Concluding Remarks

We have shown the inclusion property of (strong) Discrete Orlicz– spaces and of weak Discrete Orlicz–
Morrey spaces. Both use the norm of the characteristic sequences in R. As our final conclusion, we can
states that the inclusion property of (strong) Discrete Orlicz–Morrey spaces are equivalent to that of weak
Discrete Orlicz–Morrey spaces.
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