Filomat 39:6 (2025), 1855-1868

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL.2506855C

University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
2 S
) @
b, &
Ty s

5
TIprpor®

Evolution of functionals under extended Ricci flow
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Abstract. In this paper, we investigate the evolution of certain functionals involving higher powers of a
scalar quantity F under Bernard List’s extended Ricci flow on a compact Riemannian manifold. By deriving
explicit expressions for the time derivative of integrals of the form ﬁw F" - % du for various powers 1,

we explore the intricate interplay between geometric quantities and scalar functions without making any
assumptions about the manifold, the scalar field @, or the function u.

1. Introduction

In this paper, we aim to achieve estimates of a functional F* = [u + aulogu + bSu]”, where n € Z* under
the action of extended Ricci flow, propounded by Bernhard List, who modified the classical Ricci flow by
Richard Hamilton, to incorporate delicate general relativity connotations. In the above expression of the
functional F, which is raised to the power 1, represents a set of functionals F3, F5 and F; as examples or
representatives among all values of n. These functionals for different values of n are analysed in this paper
under the action of extended Ricci flow. u is a scalar function but S is tensorial in nature because

S = Ric — (i),' ® (P i
or in local co-ordinates
Sij = Rij — ¢ip;

, where Ric is the Ricci tensor associated with the metric g;j of the complete Riemmanian manifold M",
where 7 is the dimension of the manifold and ®(f) denote an additional field, which could be (depending
on the context or coupling) a scalar function, a vector field, or a differential form on M. Here u is an
appropriate measure on Riemmanian settings. The main obstruction in our context is the tensorial Ric
and its variation 0 due to the variation of the functional F” for different values of n. The variation of the
functional F results in the variation of the Riemann Christoffel tensor, Ricci tensor, Riemann tensor, as well
as the Riemannian measure and the Laplace-Beltrami operator. Here we use v;;, which is a one-parameter
group of diffeomorphism, associated with g;j, which is involved in the variational equation [Besse] in

section 4. v;; is the main connection between S and the functional in context. We equate S;j’s expression to
v;; and later perform variations or derivative with respect to time to obtain the non -linearized version or
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the “raw” version of the variation and later linearize it through De-Turck’s trick and later smooth out the
irregularities using Ulhenbeck’s trick. We have expressed functional F” in terms of integral components
consisting of S;j and also components invoving F"~! and also lower order terms of F. Ulhenbeck’s trick and
Ricci flow with surgery developed by Perelman are two of the foundational works which aim to smooth
out irregularities of the nature of the equation and that of the Ricci flow respectively, Ulnhenbeck’s case has
been also used in case of deformation of symplectic manifold in supersymmetric case.

2. Literature Review

The study of Ricci flow and its extensions has significantly advanced the understanding of geometric
structures and curvature evolution on manifolds. Li Yi’s work on local curvature estimates for Ricci-
harmonic flow and generalized Ricci flows provides crucial insights into singularity formation and long-
time behavior of solutions (Li, 2018a; Li, 2009). Gradient estimates for heat equations under Ricci flow
have been extensively developed by researchers like Shiping Liu (2009), Huang and Ma (2015), and Shu-
Yu Hsu (2008), enhancing the analysis of heat equations on evolving manifolds and proving essential
inequalities. Rugang Ye (2005) introduced curvature estimates based on scaling-invariant integrals of the
Riemann curvature tensor, aiding singularity analysis. Colding and Minicozzi (2003) estimated extinction
times for Ricci flow on certain 3-manifolds, addressing questions posed by Perelman. Abolarinwa (2016)
studied eigenvalue evolution under extended Ricci flow, while Meng Zhu (2013) established Gaussian
bounds for the heat kernel. Min Chen (2020) introduced gradient estimates relating solution values to
distances, applicable to quasilinear parabolic equations. Gianniotis (2013) obtained higher-order curvature
estimates near boundaries, crucial for manifolds with boundary. Bing Wang (2007) identified criteria for
extending Ricci flow beyond singularities. Contributions by Bdilesteanu et al. (2009, 2015) and Bamler
(2014) further enriched the field by exploring the coupling of geometric flows with harmonic maps and
generalizing Perelman’s estimates. Xian-gao Liu and Yongjie Shi (2014) derived Sobolev inequalities and
Gaussian bounds for the conjugate heat equation along extended Ricci flows, enhancing analytical tools in
geometric analysis.

3. Mathematical Preliminaries

From [Besse], Let M be a smooth manifold and let g; be a one-parameter family of Riemannian or
pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth

coordinate chart, the derivatives v;; = 3 ((gt),-]-) exist and are themselves as differentiable as necessary for

d
the following expressions to make sense. Here, v = % is a one-parameter family of symmetric 2-tensor

ot
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fields.
d 1,
1. EI’U = Eg P (V,’Z)]'p + Vjvip - va,']')
d 1 1., 1.,
2. 5 Riju =7 (V]‘Vkvﬂ +ViVivj = ViVioj — VjVIUik) + SRijOp = S Rip"vpk
d 1 . 1 1
3. ERik = E (V”Vkvip + V,‘(le U)k - Vz-Vk(trg U) - Av,-k) + EijUpk - ER,'pquJW

d
4. ZR = div, div, v — A(tr, v) — (v, Ric),

d 1
5. Edﬂg = 59%;%7 dyy
d 20\ 1 2]
6. = ViVi®=V,V, (W) 597 (Vivjp + Yoy = Vy03) o
d . 1
7. EA(D = —(v,Hess @), — g(dwv - Ed(trg v),dq))

where T* are the Christoffel symbols associated with the metric g, R,y is the Riemann curvature tensor,
ij y g ]

Rj is the Ricci curvature tensor, R is the scalar curvature, dy, is the Riemannian volume form associated
with the metric g, V denotes the covariant derivative with respect to g, A is the Laplace-Beltrami operator,
defined by Af = div, (V) for a scalar function f, div v is the divergence of the tensor field v, tr; v is the trace
of v with respect to the metric g, (-, -), denotes the inner product induced by g, Hess @ is the Hessian of the
scalar field @, given by V;V;® and d® is the differential of ®, with components %.

4. Theorems and Proofs

Theorem 4.1. Under Bernard List’s extended Ricci flow, applying DeTurck’s trick and Uhlenbeck’s gauge fixing, the
curvature tensors evolve according to the following equations:

o
ot
where W* = g”q(F’;q - Tf,q) is the DeTurck vector field, and f]’;q are the Christoffel symbols of g;;.

=-2 RiC,‘j +2ViCDV]-<D + V,'Wj + V]'Wi,

a0

= = AD + W'V, .

ot + Wk

%_ 3 K _ ok UlbR. . _ (VT ,
- = AR;j + 2RyjRY — 2VFOV!' DRy — 2(V,VFD)(V, VD)

+2(Vi@)(V;AD) + 2(V,®)(V;,AD) — V,V[VO[?
+ViV;Q = (ViRjx + ViRg)W* + RyV; W + RV, WE,
1
where Q = divW — 5 tr,(VW).
dR

e AR + 2| Ric * — 4RV, @V @ — 2|V D + 2(AD)? + LR,

where LR = WXV(R denotes the Lie derivative of the scalar curvature along W.
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Proof. On initiating with Bernard List’s extended Ricci flow equations, which coalesce the Ricci flow of a
Riemannian metric g;; with the evolution of a scalar field ® we derive,

a ..

g;] = vjj = =2 Ric;; +2V;OV;0,
J0

— = AD.

ot

We introducing a diffeomorphism generated by a vector field W* to deploy De-Turck trick. The modified
flow equations become:

90
% =-2 RiC,']' +2V1'(DV]‘(I) + ViW]' + V]'Wi,
% = AD + WKV, O,

where W; = g;W*. The DeTurck vector field W* is represented as:
k _ ko _ Tk
W= g7 = Ty,

with F’;q and f’;q being the Christoffel symbols of g;; and g;;, respectively. To deploy we select harmonic
coordinates relative to g;;. This choice simplifies the terms involving the divergence of tensors and the
vector field WF.

Our goal is to compute the evolution equations for the curvature tensors under the modified flow,

.pe 0. i

specifically % and ‘Z—If.
1. Computation of %:

We use the general variation formula for the Ricci tensor:

8R,-]-

1
7 = E (V"Viv]»k + VkV]‘Z)ik - Avij - ViV]-(trg 0)) + R,’kﬂvkl.

2: Compute v;; and its derivatives.
We have:

vij = —2Ric;j +2V,0V;® + V,W; + V; W,
Compute the trace:
tr,v = g/vi; = —2R + 2[VOP + 2div W,
where |VOI> = g/V,®V;® and div W = V, Wk,
3: Compute VkV,-vjk and Vijvik.

We compute V;vj first:

Vﬂ)]'k = V,‘(—Z RiC]'k +2V,-CDVk<D + V]‘Wk + Vij)
=-2V; RiC]'k +2(V,V]CDVkCD + V,@V,qub) + V,'V]‘Wk + VIVkW]

Next, compute VkVivjk = gleIV,-vjk.
Compute V,V; Ricj:

V,Vi RiCjk = Vz'Vl RiC]'k —Rlip]' RiCpk —Rl,‘pk Riij .
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Similarly, for the scalar field terms:
ViViV;® = V;V\V;® - R;;V,®.
Therefore, we have:
VEVi0j = =264 (Vi) Ricj Ry Ricyi — Ry Ricyy)
+29" ((ViViV® = R (Y, @)V, @ + V,O(V,V,V, @ = RV, D))
+ g (ViViV Wi + ViV VW)
Similarly, compute V¥V vj.
4: Compute Av;;.
Avj = gV V0.

Compute Vi Vv;; by considering each term in v;;.
First, compute V, V(-2 Ric;)):

Vkvl(—z RiC,‘j) = —2VkV1 RiC,‘j = —2VkV1 RiC,‘j .
Second, compute V;V;(2V;®V,;D):

VkV,(ZVl(IJV]CD) = ZVk(VlVl(IJV]CD + VICDVIV](IJ)

= Z(VleV,-CIJV]»q) + V;V,-(I)VijCD + VkV,-q)VleCD + ViCDVkVqu)).

Third, compute Vi V|(V;W; + V;W)):
ViVi(ViW;) = ViViViW; = ViViVIW; — Ry V,W;.

5: Compute V;V(tr, v).
Recall that:

tr,v = —2R + 2|VO[* + 2div W.
Compute V;V(tr, v):
ViV(tr; ) = —2V;V,R + 2V;V,[VOP + 2V,V (div W).
Compute V;V;R using the contracted second Bianchi identity:
ViViR = ViVj(g"Rpg) = g""ViV jRpg = RpgViV g
Since V;g"" = 0, we have:
ViV;R = g"V;VR,.
Compute V;V|[VD[*:
ViVjIVOP = V,V(g"V, 0V, D)
= Vi (V;g"1V, 0V, + gV ¥, 0V, @ + g1V, 0V V@)
= g" (ViVV, @V, @ + V;V,0V,V,® + V,V, 0V V, @ + V,0V,V,V, D).

1859
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6: Compute Rikﬂvkl .
First, compute o = g gl"v,,,:

o = —2RM 4+ 2VFOV'D + VIW! + VIWE,
Then,
Rikjﬂ)kl = —ZRik]'lel + 2R,-k]-leCDV’qD + Rik]»l(V"Wl + Vka).

7: Assemble All Terms to Compute %.
Collecting all computed terms, we have:

&_tl] = E (Vkviv]'k + Vij'Uik — AZ)Z']' - ViVj(trg U)) + R,'kjﬂikl

= (Terms involving Ric;;, ®, and Wk).

After careful and detailed calculations, we find:

& _ o okl _ k 1 . vk .
= = ARjj + 2R R — 2V* OV DR g — 2(ViVD)(V VD)

+2(Vi@)(V;AD) + 2(V;@)(V;AD) — V;V;|VO]
+ViV;Q = (ViRjx + ViRg) WX + RyeV ;W + RV, WE.

AR;j is the Laplacian of the Ricci tensor.
2R,-kj1Rkl represents the quadratic curvature term.

—2Vk<1>Vl(DR,-kﬂ shows the interaction between the Riemann curvature tensor and the gradient of ®.

—Z(V,-VkCI))(V]-VkCD) involves the second derivatives of ®.
2(Vi®)(V;AD) + 2(V,;0)(V;AD) are cross terms involving ®.

1860

- —ViVjIVq)IZ accounts for the second derivatives of the squared gradient of ®. - V;V;Q comes from the
divergence of WX, with Q = div W — 1 tr,(VW). - =(ViRjx + V;Rix) W¥ + Ry V;W¥ + R4 V;W* are terms involving

WK and its derivatives.
Computation of 2:
The general variation formula for the scalar curvature is:

0;—1: = div(div o) — A(tr,; v) - (v, Ric).
8: Compute div(div v).
First, compute (div v); = Vivy;:
(diV ’0),‘ = V](—2 RiCi]' +2Vi<DV]-CD + V,W] + V]WZ)
= —2V/ Ric;; +2V/(V,®V;®) + VIV,W; + VIV, W,

Using the contracted Bianchi identity VI Ric; i = %V,R, we have:

—2V/Ricjj = -ViR.
Compute V/(V;®V;D):

V/(VidV;0) = (VV,O)V,® + V,OVV,0
= (ViV®)V,® + R/ V, 0V @ + V,0AD.
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Since R/;# = R¥, we have:

R/j’V,dV;® = RV, V0.
Thus,

V/(VidV;0) = (V,VO)V,® + RV, DIVOP + V,OAD.
Compute div(div v):

div(div o) = Vi(div v);

= —AR + 2V ((ViVID)V,@ + ViDA®D) + V(VIV,W; + VIV W),

9: Compute A(tr, v).
Recall that:

tr,0 = —2R + 2|VO|* + 2div W.
Compute:
A(tryv) = =2AR + 2A[VOP + 2A(div W).
Compute A|[VO[*:
AIVOP? = V'V;(g"1V, DV, D)
= 2V/(V; VPOV, D)
= 2(V'V,VPOV,® + V'VPOV,V,D).

Since V;V;V,® - V;V,V,® = R,-]-k’VlCD, we can express higher-order derivatives in terms of curvature.
10: Compute (v, Ric).

(v, Ric) = v/ Ric;;
= (-2RY + 2VIOVI® + VW + VIW') Ric;,
= —2RVR;; + 2Ric’ V;0V;® + (V'W/ + V/IW) Ricy; .

11: Assemble All Terms to Compute %—If.
Combining the computed terms, we have:

(Z—I: = div(div v) — A(tr, v) — (v, Ric)

= AR + 2| Ric[* - 4RV, 0V ;@ - 2|V2D]* + 2(AD)* + LwR.
Here, |V2® = VIVI®V,V;®, and LiyR = W*V,R represents the Lie derivative of R along W¥. [

Theorem 4.2. Let (M, gij(t)) be a compact Riemannian manifold evolving under Bernard List’s extended Ricci flow,
which states

99ij _ .
7 =-2 RlC,']' +2V1’(DV]'(D,
o0

— = AD
ot !



S. D. Choudhury / Filomat 39:6 (2025), 1855-1868 1862

where Ric;; is the Ricci curvature tensor, ® is a smooth scalar function, A is the Laplace-Beltrami operator.
Let us designate S;j = R;j — V;®V;®, where R;; is the Ricci tensor incorporating S = tr; S;j = R — VO], Let
u: Mx[0,T) = R be a smooth function, and consider the quantity:

F=—-Au+aulogu + BSu,

where a, B € R are constants. Then, the integral:

oF
17 _ 5
() = f P —-dy,

where dy is the Riemannian volume measure, can be expressed explicitly in terms of the geometric quantities and their
time derivatives under the extended Ricci flow.

Proof. We initiate computing of the time derivative of F:

8_1—"
ot
We state

8 (Au) + a (u logu) + B (Su)

d gl
Z = i 2
8t(Au) (8 )VVu+g (ViVju).

We deduce
P o
% = 2Ric/ —2VipViD,

We also deduce

9 au\ (7%
E(Viv]'u) ViV (8t) [ ot ]Vku Uat(Vku)

Therefore:
k

9 ou\  [9 d
1] AV — il
775 ViV A(at) g [at vk””wat(v"”)]

Hence,

? A AT .9
. = — ict — 1 ] V. — - ]
= () (2Ric” -2V'OVID) V;Vju - A ( > ) +g [ = Vit + rs 5 (Vi) |.

We now have
8 —(ulogu) = a(a )(logu +1).
&t

As before,

0 ds Ju

We compute

as

i = AR + 2| Ric | = 2|V2D]* + 2(AD)? — 2V;(AD)V'D — 4|VD[*,
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We make now an assumption % = —F (since F = —Au + aulog u + BSu), we substitute back:
JF i dS iy
T AF - 25VVju —aF(logu +1) + B > u — SF| + Additional Terms,

where the ”“Additional Terms” are:

k

Additional Terms = gij [a—;jvku +T f] (—VkF)] .

We calculate

oF
17 _ 5 .
() = fMF = du.

Substituting the expression for %:
7 5 i7 as ey
I'"t) = F°(AF - 258V;Vju —aF(logu +1) + B 3 u — SF| + Additional Terms | dpu.
M
We will compute each term separately. Integrating by parts
f PPAFdyu = - f Vi(F°)V'Fdpu.
M M

We compute V;(F°) = 5F4V,F:

f PPAFdu = -5 f FX(V:F)(V'F) dp.
M M

Integrating by parts,
-2 f F°STV,Vudy =2 f Vi (F°S7) 6V judy.
M M
We compute Vj (FSSif) = 5F4(VF)S + F5V, S
2 f (5F*(ViF)ST + FOV,S) ok V ju dy = 2 f (5F*(ViP)ST + FOV;SY) Vju dp.
M M
This following term remains invariant,
—af Fe(logu + 1) dp.
M
B 1P (%)) i
dS
Bf F5((—)u) du.
R\ A

On -B [, F°Sdu=

-B f F®Sdyu.
M
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We have:
k

[Tk
fM g a—;vku—rﬁfjka du.

Combining all terms we get,

I’(t) = -5 f F4(ViF)(V'F) du +2 f (5FH(ViP)ST + FPV;SY) Vjudp
M M

—afFé(logu+1)dy+BfF5((a—S)u) dy—BfF6Sd/J
M M ot M

(T
+ fM g a—;vku—rfjka du.

On further simplification and rearrangement,

I"(t) = -5 f FY(V:F)(V'F)du + 10 f FYV,P)S"Vudy +2 f P (V;STYV judy
M M M

—afFé(logu+1)dy+BfF5((a—s)u) dy—BfF6de
M M ot M
L
+ | Plg"| =~Viu—-T.ViF||du.
j]\:{ g at k 1] k Au

I"(t) = -5 f F4(V:F)(V'F)du + 10 f FYV,F)S"Vudu +2 f Fo(V;STYV judy
M M M

—afF6(logu+1)dy—BfF6de+BfF5((a—S)u) du
M M M ot
(T
+ | Plg"| =-Viu—-T;ViF||du.
L g ot k ij vk H

Theorem 4.3. Let (M, gij(t)) be a compact Riemannian manifold evolving under Bernard List’s extended Ricci flow,
which states

Hence

O

9ij :

7 =-2 RlCij +2V1'CDV]'®,
2D

— = AQ,

ot

where Ric;; is the Ricci curvature tensor, ® is a smooth scalar function, A is the Laplace-Beltrami operator.
Let us designate S;j = R;j — V;®V;®, where R;; is the Ricci tensor incorporating S = tr; S;j = R — VO], Let
u: Mx[0,T) = R be a smooth function, and consider the quantity:

F=—Au+aulogu + BSu,

where a, B € R are constants. Then, the integral:

oF
111 _ 7 .
I = j}\;l—" e du,
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where du is the Riemannian volume measure, can be expressed explicitly in terms of the geometric quantities and their
time derivatives under the extended Ricci flow.

Proof. Our objective is to compute the integral I’ (t) explicitly, keeping all variables in integral form, making
no assumptions about u and @, and mentioning all additional terms. Initiating the computation of the time
derivative of F:
oF
ot

We now deduce

—%(Au) + g—(u log u) + B £ (Su)-

gl
(Au) ( )VVu+ga(VVu)

We now compute

g’
ot

We now calculate

2 au\ (905
E(V[Vju) = Vivj‘(g) [ ot ]Vku Fl]at(Vku)

which implies

= 2Ric’ —2V'OVidD,

9 o\ 70 2
11— (V.V.y) = ij k
775 ViV (at) g [8t Vit + Ty (Vi) |

Hence the total time derivative of Au is depicted as
—i(Au) = —(2Ri i 2v1cDV/q>)v Viu— A M) | i mjv u+Tk (V u)|.
ot = ¢ oF) T o T gk

We now have:
i(ulogu) = a(a )(logu +1).

We also have:

sion=s((5)e+s(Z))

Administering
S =R —|VDP.

we derive
dS JR 0 ”
il ElV@I .

From [1] we get

dR

i = AR + 2| Ric[* - 4Ric" V,OV;® — 2|V2DP + 2(AD)%.



S. D. Choudhury / Filomat 39:6 (2025), 1855-1868 1866

Hence

d oD\ . gl ‘
S Ival _2V,(&t)V(I>+2( > )v,cpv]cp.

Utilizing 22 = A® and 22 = 2 Ric'/ —2ViVid:

9 , y
—|VOP = 2V(AD)V'D + 4 Ric! V,OV;D — 4|V,
ot /

Hence, ‘;—f is

‘;—f = AR + 2| Ric [ = 2|V2D]? + 2(AD)? — 2V, (AD)V'D — 4|VD[*,

Assuming 2 = —F (since F = —Au + aulog u + BSu), we substitute back:

k
JoF i dS | 9 X
E = AF-2§ ]ViV]-u - aF(logu + 1) +B ((E) u-— SP) + g] [WV](M + 1"1] (—Vkp)] .

We compute
JoF
I”’(t):fl-"7~—d .
o
We substitute for ‘;—f:

I'"(t) = f F’ (AF —25YV;Vju —aF(logu +1) + B ((g—f) u— SF) + Additional Terms | du.
M

Using integration by parts:

f F'AFdu = - f Vi(F')V'Fdu.
M M

We compute V;(F”) = 7F°V,F:

f F'AFdu=-7 f FS(V:F)(V'F) dp.
M M

Again, Using integration by parts:

-2 f FSIV,Vudy =2 f Vi (F7S") 85V u dy.
M M

We compute Vj (F7Sif) = 7F%(VF)S + F7V, S

2 f (7F°(ViP)ST + F7V;S7) Vju dp.
M
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This term remains invariant as:

—afFS(logu+1)dy.
M
Now,BfMF7((%—f)u) duy =
(25
BJI;IF ((&t)u)dy.
Now, -B [, F3Sdy =

-B f F*Sdy.
M

Combining all terms:

() = -7 f FO(ViF)(V'F) du +2 f (7Fo(ViP)ST + F7V;SY) Vjudy
M M

—afFs(logu+1)dy+BfF7((&—S)u)dy—BfFBde
M M ot M

k

7| i 8Fif k

1

+fMF g" vau—l"ijvklf du.
Now,

_ 6. i
7 fM F(ViF)(V'E) dy.

This term is non-positive since (V;F)(V'F) > 0.
Also

2 f (7F(ViP)ST + F'ViSY) Vjudy = 14 f FO(ViE)SV judy + 2 f F/(ViST)Vudu.
M M M
Hence finally

') = -7 f FS(V:F)(V'F)du + 14 f FS(V,F)S"Viudu +2 f F/(V;ST\V udy
M M M
8 7 dS 8
—a | FP(ogu+1)du+B | F 5 ¢ du—B | F°Sdu
M M t M
P
+ | Flg/| =Viu-TEViF (| du.
j]\:{ g at k 1] k y
") =-7 f FS(V:E)(V'F)du + 14 f FS(V,F)S"Viudu +2 f F/(V;STV judy
M M M
8 8 7 (95
—a | F(logu+1)du—-B | F°Sdu+B | F Ik du
M M M t
P
+ | Flg/| —=Viu-TEViF || du.
f]\;{ g 07t k 1] k H
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