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Abstract. The purpose of this paper is to investigate (LCS),-manifolds whose metric tensors satisfy in
almost hyperbolic Ricci solitons. We show that (LCS),-manifolds admit in almost hyperbolic Ricci solitons

under some conditions. Also, we give some examples of almost hyperbolic Ricci solitons on (LCS),-
manifolds.

1. Introduction

Shaikh [20] in 2003, introduced Lorentzian concircular structure manifold (briefly (LCS),-manifold or
LCSM) as a generalization of Lorentzian para-Sasakian manifolds [15, 17]. Also, he proved the existence
and applications of LCSMs in general relativity and cosmology. After that, many studies have been done.
For instance see [14, 22-24] and the references therein.

On the other hand, geometric flows and geometric solitons are important topics in differential geometry
and physics. One of them is Ricci flow which a special solution to it is called Ricci soliton ( or RS) and

introduced by Hamilton [13]. Let (M, g) be a pseudo-Riemannian manifold with the Ricci tensor S. A RS
[5] on (M, g) is a triplet (g, C, y) such that

Leg+25+2yg=0, (1)

for some vector field C and constant y where £ denotes the Lie derivative along V. If y is a function on M,
then Ricci soliton becomes almost RS.

Another one of these geometric flows is the hyperbolic geometric flow which is given by

> s 0) = % )=k
ﬁg—— , 9(0) = go, E()_ 0-
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Here ko denotes a symmetric (0, 2)-tensor (2).
Suppose that (M", g(t)) is a solution to (2) on (M, go). The self-similar solution of (2) [2, 11] is

S(g0) + ALxgo + (Lx o Lx)g0 = ugo, 3)

for A and p as constants. In this state, the metric gy is called a hyperbolic Ricci soliton (or HRS). We represent
itas (M, go, X, A, p) (shortly (g0, X, A, w)). If A = % and X is a 2-Killing [8, 18], i.e., (Lx o Lx)go = 0 then a HRS
becomes a RS. The HRS is called a gradient HRS (or GHRS) whenever X = V¢ for a function ¢ on M.

A 4-tuple (g9, V, A, u) on M is declared an almost HRS (or AHRS) if it satisfies the equation
S+ALyg+(LyvoLy)g=uyg, (4)

for some functions A and p and vector field V.

According to the works mentioned above, we consider AHRSs on LCSMs. We give two examples of
AHRSs on a LCSMs. The paper is structured as follows: The subsequent section will introduce fundamental
concepts and formulas of LCSMs. This will be followed by the presentation of our main results and their
corresponding proofs in Section 3. The final section will feature examples of AHRS on LCSMs.

2. Preliminaries

Suppose (M", g) is a Lorentzain manifold. In this section, vector fields (;, (; and (3 on M are arbitrary
unless otherwise stated. A vector 0 # v € T,M is called timelike when g,(v, v) < 0. Assume that vector field
v admits g(Cy1,v) = A(Cp). v is called concircular if

(Vo A)(C2) = a{g(Cy, C2) + w(C)A(C2)) (5)

for some non-zero function a, and some closed 1-form w where V is connection corresponding to g. If v is
unit then it is anointed the characteristic vector field (briefly characteristic) of M.
Let & be the characteristic of M, then g(&, £) = —1, and there is a non-vanishing 1-form 9 as follows

9(C1, &) = 3(Cy). (6)
We conclude the following identity

(Ve 9)(G) = afg(Cy, C) + 9(C)N(C)}, a#0, 7)
where a satisfies

Voa = G(a) = pd(G), 8)
where p = —&(a). From (7) we have

Ve, & = a(G + 9(C1)d). )
We consider ¢C = 1V, &, then

GG =G+ HGr)é. (10)

The tensor ¢ is called the structure tensor. A Lorentzian concircular structure manifold is the Lorentzian
manifold M together with &, 9, and ¢. The LP-Sasakian structure is obtained when a = —1. In a LCSM the
following identities are true:

(&) -1, (&) =0, So0¢p =0, (11)
9(@C1, 9C2) 9(C1, C2) + 9(C)I(Ca). (12)
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Applying (9) and (11), the Riemannian curvature tensor R admit

R(v1,12)& = (a® = p)[S(2)v1 — (v1)val,
R(v1, &va = (@ = p)g(v1, v2)& — S(va)v1],
S(R(v1,v2)Z) = (@ = p)lg(va, Z)S(v1) — g(v1, Z)d(12)].

Also, for the Ricci tensor S of a LCSM M, we have

S(v1,&) = (n - 1)(a® - p)d(11).

3. Main results and their proofs

1871

(13)
(14)
(15)

(16)

In this section, vector fields Cy, ..., C, U, C,v1,v2,v3 and Z on M are arbitrary unless otherwise stated.
A LCSM is said to 9-Einstein if

S5=b9®9 +ay,

for some smooth maps b and a. Let M be a LCSM. Assume that M admit AHRS (4) with V = f& where f is
a function on M and ¢ is structure vector field. Applying (9), it follows that

Lfég(VLVZ) = g(vwfg/ VZ) + g(vll Vszg)

hence

= (1)) + fag(vi + S(r1)&,v2) + (vaf)S(v1)
+fagvy, va + 9(12)8)
= (v1f)S(v2) + (v2f)S(v1) + 2af(g(v1, v2) + S(v1)9(12)),

(Lre(Lreg)) (v, v2)
= fE&(Lreg(v1,v2)) — Lreg(Lrevi, va) — Lreg(va, Lyevo)
= fE((vif)d(v2) + (vaf)S(v1) + 2af(g(v1, v2) + S(v1)9(12)))
—((LsevD) 18() + W2 f)S(Lpevy) + 20 f (9(Lyev1, v2) + HLpev) (1))

— (01 H)9(Lpeva) + (Lreva) HO() + 2af(g(v1, Lygva) + (1) S(Lev2)))

Plugging V = f& and (18) in (4), we conclude

S(v1,v2) + A((v1f)(v2) + (V2 f)S(v1) + 2af(g(v1, v2) + S(v1)9(12)))
+FE(1 /)8(v2) + (v2f)S(v1) + 2af(g(v1, v2) + H(v1)8(v2)))

—((Lsev1) 18(n) + W2 f)S(Lpevr) + 2 f (9(Lygv1, v2) + H(Lpev1) (1))
— (1 F9(Lpeva) + (L) HO(1) + 2 f(g(v1, Lygva) + 9()(Lgev2)))
—pg(vi,v2) =0,

We plug v1 = v, = £in (19) and applying (16) and (11) to obtain
(@2 = p)(n — 1) + 2fE(E()) + 2AE(f) + AEF))? - p = 0.

So, the following theorem is concluded.

(17)

(18)

(19)

(20)

Theorem 3.1. Suppose that (M, g, ¢, <&, 9) is a LCSM. If M satisfies an AHRS (g, f€, A, p) for some smooth map f
on M, then the relation (20) is true.
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Now, assume that M is an 9-Einstein LCSM and V = &. Then, there are two maps b and a on M so that
S =ag+bd®. From (17), we obtain

Leg(vi,v2) = 2a(g(vi, va) + 9(v1)d(v2)), (21)
and
(Le(Leg)vi,v2) = 2a&(g(vi,v2) + 3(v1)9(12))
+2&(a) (g(v1,v2) + 3(v1)9(12))
—2a(g(Levy,v2) + 3(Lev1)S(12))
=2a(g(v1, Leva) + 3(v1)8(Lev2)) .- (22)
We get
g(Levy,v2) = g([&vil,v2)
= g(Vevy =V, &, 1)
= g(Vevy — a(vy + 3(v1)E), v2)
= g(Vevy,va) — ag(vy, va) — ad(v1)d(va). (23)
Similarly
g(vi, Levz) = g(v1, Vevz) — ag(vy, v2) — ad(v1)9(v2).
Then

9(Levi,v2) + g(va, Leva) = E(g(v1,v2)) — 2a(g(v1, v2) + 9(v1)9(12)). (24)
Since V& = a(€ + 3(E)E) = 0, using (23), we have
HLevr) = g(Levy, &) = g(Veve, &) = E(g(v1, &) = E(S(v1)),

similarly
H(Levz) = E(3(v2)).
Thus
I(Lev1)3(v2) + 3(v1)¥(Leva) = E(B3(11))9(v2) + I(1)E(S(v2)) = E(S(v1)3(v2))- (25)

Therefore, applying (24) and (25) in (22), we conclude
(Le(Leg))vi,v2) = (a7 +2E@)(g(v1,v2) + S(v1)(12)). (26)
Using (21) and (26), we infer
S+ALg+ (Lo Le)g—ug

=g +b9® S +2aAg +2aA8 ® 9 + (da? +28(a))g + (4a? + 2E(@)9 ® O — g
= (a+2aA +4a® + 2&(a) — p)g + (b + 20 + 4a* + 2E(a)9 ® 9.

The last equation yields M admits an AHRS (g, &, A, p).
So, the following theorem is concluded

Theorem 3.2. Assume that M is an 9-Einstein LCSM, that is, there are two maps b and a on M such that

S = ag + b ® 3.Then manifold M satisfies an AHRS (g, ¢, —b+4g;_2p,a -Db).
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For any (0, k)-tensor T, k > 1, and symmetric (0, 2)-tensor B, we give endomorphism C Ag U by
(CApU)Z = B(U, Z)C - B(C, 2)4,
and

(CAgU)T)(Cy, -, G) = =T((CABU)CL, G, &)
=T(C, (CApU)Cp, -+, Cp) — -+
_T(Cll CZ/ Tty (C /\B U)Ck)

for all vector fields C, U, Z,Cy,- -+, Cx. Also, we define R.T and I'((B, T) as follow
(R(Cr U)T)(Cl/ Tty Ck) _TR(C/ u)Clr CZ/ Tty Ck)

=T(C1, R(C, U)C2, -+, Cp) — =+
_T(Crlr CZ/ e /R(C/ U)Ck)/

and

I(B, T)(Cy, -, GG, U)) = (C A U).T) (Cr, -+, C).

Now assume that a LCSM (M", g) satisfying the condition R.S = fsI'(g, S) with fs # a® — p, that is M is
Ricci-pseudosymmetric. From [25], it follows that

S =(n-1)(a*-p)g.
So, the next corollary is obtained by using Theorem 3.2.

Corollary 3.3. Let M be a LCSM satisfy the condition R.S = fsT'(g, S) where fs # a*> — p. Then M admits an AHRS
(9,& -2, (n = D(e? = p)).

Definition 3.4. Let M be a LCSM. The concircular curvature tensor C on M is given by

C(vy,v2)v3 = R(vy,v2)vs — ﬁ (g(va, va)v1 — g(vi,v3)12). (27)

Also, a LCSM M is called concircular Ricci pesudosymmetric if C satisfies
(C(v1,v2).5)(vs, U) = LsI(g, S)(vs, U; v1,v2), (28)
where Ls is some function onon Us = {x e M : S # g at x}.

Now consider a LCSM M is concircular Ricci pesudosymmetric with Ls # a® — p — 7+ Then by using
(28), it follows that

(29)
S(C(v1,v2)vs, U) + S(v3, C(v1, v2)U)
= Ls [g(v2,v3)S(v1, U) = g(v1,v3)S(va, U) + g(va, U)S(v1,v3) — g(vy, U)S(v2, v3)].
Inserting v3 = v, = £ in (29) and applying (27), (13), and (15), we obtain
S, U) = —(n — 1)(@® - p)* (g(v1, U) + 28(v1)S(U)) (30)

Therefore, the next corollary is obtained.

Corollary 3.5. Let M be a concircular Ricci pesudosymmetric LCSM with Ls # a* — p — iy~ Then manifold M
satisfies an AHRS (g, ¢, _ @@ oppe (n—1)(@? - p)).

a
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It is known that every three-dimensional (LCS)3;-manifold is an 9-Einstein manifold and S is determined by
[27]

S= (% +(p—a?)g + (% +3(p—a?)9® 9.
So one can stat that:

b+4a%-2p
2a 4

Corollary 3.6. Then every three-dimensional (LCS)3-manifold satisfies an AHRS (g, &, —
L—(@*-p)andb=1%-3(a*-p).

a — b) where a =

A non-flat LCSM (M", g) (n > 3) is termed as generalized weakly symmetric manifold, if its Riemannain
curvature tensor R is non-zero and

(ViR)(v1,v2,v3,vs) = O1(V)R(v1,v2,V3,v4) + O2(v1)R(v, V2, v3,v4)
+02(v2)R(v1, v, v3, v4) + O3(v3)R(v1, v2, v, v4)
+03(v4)R(v1, v, v3, V) + O4(v)G(v1, v, V3, V4)
+05(v1)G(v, v, v3, V) + O5(v2)G(v1, v, v3,v4)
+06(v3)G(v1,v2,V,v4) + O6(va)(v1, v2, V3, V),

where

G(v1,v2,v3,va) = g(v2,v3)g(v1, va) — g(v1,v3)g(v2, va),

and 0;,i =1,--- ,6 are non-zero 1-forms.
Now assume that (M", g) be a generalized weakly symmetric LCSM. Then from [3], we arrive at

(p — a®)a - 65(&)

S = |&?-p-(n-2) ot 0.0
_(n=2)(p - a?)03(&) + 06(&)]
0.0 9@ 9.

This implies that:

Corollary 3.7. Let (M", g) be a generalized weakly symmetric LCSM. Then M admits an AHRS (g, &, — h+4g;_2p ,a—Db)
(@®~p)a—65(8) and b = — (1=-2)[(a*~p)B3()+66(£)]

a+05(&) a+065(&)

wherea = a* - p + (n —2)
A manifold is called generalized weakly Ricci symmetric if

(VeS)v,v2) = 1(Q)S(v1, v2) + w2(v1)S(C, v2) + ws(v2)S(vy, C)
+w4(CQ)g(v1,v2) + w5(v1)9(C, v2) + we(v2)g(v1, ),

where w;,i = 1,--- ,6 are non-zero 1-forms.
Now assume that (M", g) be a non-flat generalized weakly Ricci symmetric LCSM. Then from [3] we have

(1 -na(p - a®) — ws(&)
a+ wy(&)
(1= n)(p — aP)wz(&) + ws(&)

- 9® 9.
a+ w(&) ®

S =

Thus we get:

Corollary 3.8. Let (M", g) be a non-flat generalized weakly Ricci symmetric LCSM. Then M admits an AHRS

b+4a2-2p _ (n=Da(@®-p)-ws(&) _ (=) (@ -p)wr(&)+ws(E)
(9,6 ——%—",a—Db) wherea = BTy E— and b = — at+ws(&) :
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For a manifold M", the Weyl conformal curvature tensor C is provided by

C(CI Vl)VZ
= R(C,v1)va — anZ{S(Vl,Vz)C — S(C, va)v1 + g(v1,v2)QE — g(C, v2)Qv1}
+Wr(n_2){!7(v1,vz)€ = g(C,va)v1}.

where 7 is the scalar curvature of the manifold.
Now, assume that a LCSM satisfies in condition C(&, Z).C = 0 and r # n(1 — n)(p - a?). Then from [28] we
have

S:[az—p+ ]8@8.

r il oe r
n(1—n) g p n(1 —n)
So one can stat that:

Corollary 3.9. Let (M", g) be a LCSM satisfies in condition C(&, Z).C = 0 and r # n(1 — n)(p — a?). Then manifold

M admits an AHRS (g, &, —b+4§;_2p,a —bywherea=0a’—p— s andb=a® —p +

_r
n(n-1)"°

Shaikh and Ahmad [21] introduced CL-curvature tensor field as

1
Ay v2)vs = R(vy,va)vs — -5 [{S(2, va)vr = S, va)val

+{S(v2,v3)8(v1) — S(v1,v3)8(12)}£]
2

= 2{3 [{g(v2, va)v1 — g(vi, v3)va}

+(n = Dig(va, v3)9(v1) — g(v1,v3)d(v2) <]
A LCSM M is called CLflat if A = 0. If r # n(1 — n)(p — a?) then from [21], we have

+

|2 r (2 r
S—[a+p+n_1]g+[ n(a p)+n_1]9®9.
So, the following result is obtained.

b+da®-2p
a4

Corollary 3.10. Let (M", g) bea CL-flat LCSM and r # n(n—1)(a*—p). Then M admitsan AHRS (g, &, —
b) wherea = p —a®+ = and b = n(p — a?) + 1.

n—-1

The pseudo projective curvature tensor P is given by
P(vi,va)vs = aR(vi,v2)vs + b[S(v2, v3)v1 — S(v1,v3)vel
e
nn-1

+ bl[g(v2, v3)v1 — g(vy, v3)val,

where g and b are non-zero constants.
Now assume that a LCSM satisfies in condition R(v1,v;).P = 0, then from [25], we deduce

S=(1—n)(p—a2)g+Z[—r—n(l—n)]&@&.

Therefore we conclude:

Corollary 3.11. Suppose that (M", g) is a LCSM satisfies in condition R(X,Y).P = 0. Then M admits an AHRS
ry pp 9

(9,6 -2 ) k) where ky = (1 - n)(p — a?) and ks = & [n(n — 1) - 7].
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Also, if P = 0 then

r —a a
= [E(m +1) - E(az - P)]!J

n

+[%(ﬁ +1) = (n + g —1)(a2—p)]9®9.

Thus, the following corollary is obtained.

Corollary 3.12. Let (M", g) be a pseudo Projectively flat LCSM, that is manifold satisfies in condition P = 0. Then
manifold M satisfies an almost HRS (g, &, —k2+42a:_29,k1 — k) where ki = [ﬁ(ﬁ +1) - ;’;(oz2 — p)] and

ko= [L( + 1) = (G +n—=1)@? - p)|

The C-Bochner curvature tensor [16, 32] is given by

1
B, v)vs = R(vy,va)vs + m[S(Vth)Vz = S(vo, v3)v1 + g(v1,v3)Qva

—g(v2,v3)Qv1 + S(Pv1, v3)pva — S(pva, v3)pra
+9(pv1,v3)QPva — g(Pva, v3)Ppvi + 25(Pv1, v2)Pvs
+2g(Ppv1, v2)Qpvs — S(v1,v3)9(12)€
+5(v2,v3)8(v1)E = 9(v1)S(v3)Qva + S(v2)d(v3)Qvi]

n+p-1
345 @i, va)va — g(@ve, va)pv + 2g(pve, v2)vs]

_ZT3[9(V1’V3)V2 — g(v2,v3)v1l

+;1P%3[9(V1,V3)9(V2)5 = g(v2,v3)3(1)E€ + S(v1)d(va)va — H(v2)d(va)r1l.

n

where p = :Z'+;1 If B(v1,v2)vs = 0, then we say that the manifold is C-Bochner flat.

Now assume that a LCSM M is C-Bochner flat. Then from [32], we get
_ 2_ 5y _ r_

He-me-p-a+
This yields:

r
n+1

)]9@9.

Corollary 3.13. Let (M", g) be a C-Bochner flat LCSM. Then manifold M satisfies an AHRS (g, &, - b+4gz_2p ,(n—
1))(@? — p)) whereb = (3 —n)(a* - p)— (1 + ===

n+1/°

The quasi-conformal curvature tensor C is determined by

Cvi,v2)vs = aR(vi,va)vs + b[S(vo, v3)vi — S(v1, v3)va + g(v2, v3)Qvi — g(v1, v3)Qva]
— [+ 2b][g(v2, vs)v1 = g1, vs)va]

where a and b are non-zero constants.
Now assume that a LCSM is quasi-conformal flat, that is, satisfies in condition C(vq,v2)v3 = 0, then from
[1], we obtain

= [égl__”n) +20) = (n+ % = 1)(a® - p)]g

r a a
+[%((1_n) +2b)+(E—2(1—n))(p—a2)]\9®\9.

Thus, we can the following assertion:
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Corollary 3.14. Suposse that (M", g) is a quasi-conformal flat LCSM. Then manifold M satisfies an almost HRS

(g, E,—k2+4;a_2",k1—kz)wherekl = (o +2b)+(&+n-1)(p—a*)andk, = Sy +2b)+(§ —2(1-n))(p—a?).

The B-tensor C is defined as
B = aS+brg

where b and a are non-zero constants.
Now letan LCSM is B-pseudosymmetric, thatis, satisfies in condition (R(Cy, (2).B)Z(Z, C) = LgI'(g, B)(Z, C; (1, (7).
If Lg # a* — p, then from [4], we have

S = (n-1)@-py.
So one can stat that:

202~
aa P’(n_

Corollary 3.15. Suposse that (M", g) is a quasi-conformal flat LCSM. Then M admits an AHRS (g, &, -
D(@® - p)).

An n-dimensional LCSM is called C-pseudosymmetric if R(Cy, 2).C = Le(Gy Ag (2).Q) where L is some
maponUc ={xeM:C+ WG # Oatx} where G is the (0,4)-tensor is determined by G((q, (o, Z, U) =
g((C1 Ay C2)Z, U). Now assume that a LCSM is C-pseudosymmetric, then from [4], we can write

r r
R PR el 2

Then, one can stat that:

Corollary 3.16. Let (M", g) be a C-pseudosymmetric LCSM. Then M admits an AHRS (g, &, — 2p 1y (n—1)(a?-

p+ n(lr—n))'
Definition 3.17. A conformal Killing vector field (or CKVF) V is a vector field such that
Lyg =2hy, (31)

for some smooth function h. The CKVF V is called Killing, homothetic, and proper when h = 0, h is a constant, and h
is not constant, respectively.

Let V is a CKVF and satisfies in (31). Then

(Lv o Lv)g)(vi,v2) = V(Lvg(v1,v2)) — Lyvg(Lyvi,v2) = Lyg(vi, Lyva)
= V(2hg(v1,v2)) — 2hg(Lyv1,v2) = 2hg(v1, Lyvy)
= 2V(h)g(vi,v2) + 2hLyg(vi, v2)
= QV(h) +41)g(v1,v2). (32)

By inserting (32) in the equation (4), we have

S(v1,v2) + 2hAg(vi, vo) + RV (h) + 4h2)g(v1,vz) — ug(vi,vp) =0. (33)
Replacing v, by & in (33), one gets

((n = 1)(a® = p) + 2hA + 2V (h) + 4h* — u)S(vy) = 0.
Since (; is optional, we have the next theorem.

Theorem 3.18. If the metric g of a LCSM admits the AHRS (g,V, A, u) where V is CKVE, that is Lyg = 2hg then
M is Einstein and

(n—1)(? = p) + 2hA + 2V(h) + 4h* — pu = 0. (34)
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Definition 3.19. A torse-forming vector field V ( or TFVF) [30] on pseudo-Riemannian manifold (M, g) is a vector
field such that
VcV = hi+0(Q)V, (35)

for smooth function h and a 1-form o. The TFVF becomes concircular [7, 29], concurrent [19, 31], parallel, and
torqued [6], if o vanishes identically, o vanishes identically and h =1, h = ¢ = 0, and o(V) = 0, respectively.
Let (g, V, A, ) be an AHRS on a LCSM where V is a TFVF and admits (35). Then

Lyg(vi,v2) = 2hg(vy,v2) + 0(v1)g(V,v2) + a(v2)g(V,v1) (36)
and
(Lv(Lvg)(vi,v2) = V(2hg(vy,v2) +o(v1)g(V,v2) + o(v2)g(V,v1))
=2hg(Lyvy,v2) — o(Lyv)g(V,v2) — a(v2)g(V, Lyv1)
=2hg(vy, Lyvz) — o(v1)g(V, Lyva) — o(Lyv2)g(V,v1).

On the other hand,

g(Lyvi,v2) = g(Vyvi, v2) = hg(vy, v2) — o(v2)g(V, v1), (37)
similarly

g(vi, Lyva) = g(v1, Vyva) — hg(vy, v2) — a(v1)g(V, v2). (38)
Thus

g(Lyvy,v2) + g(vi, Lyva) = V(g(v1,v2)) — 2hg(v1,v2) — 0(v2)g(V, v1) — o(v1)g(V, v2). (39)
Also, we have

o(Lyvi) = o(Vyry =V, V) =0o(Vyvy —hvy —a(1n)V)

= o(Vyv1) —ho(v1) — a(v1)a(V),

similarly

o(Lyvy) = o(Vyvy) —ho(n) — a(vy)a(V).
Hence,

(Lv(Lvg)vi,va) = @V(h) +4h)g(v1,v2) + V (0(r1)g(V, v2) + 0(v2)g(V, v1))
+4ho(v1)g(V, v2) + 4ho(v2)g(V, 1)
—0(Vyv1)g(V,v2) + o(v1)a(V)g(V,v2) = a(v2)g(Vyve, V)
+a(v2)o(V)g(V,v1) — o(Vyv2)g(V,v1) — o(v1)g(Vyva, V) (40)
+20(v1)o(v) V2.
Inserting v1 = v, = £ in (36) and (40), we infer
Lvg(&, &) = -2h+20()I(V) (41)
and
—QV(h) + 41%) + V (0(E)N(V) + a(£)(V))
+4ho(E)S(V) + 4ho(E)I(V)
—20(Vy&)S(V) + 26(&)a(V)S(V) — 20(E)g(VvE, V)
+20(&)a (VI
= —QV(h) +4h*) + 2V (6(£)(V)) + 8ha(E)S(V)
+20(&)a(V)(V) = 2a0(V)(V) — 4a(S(V))*5(&)
—2a0(&)|VF +20(E)a(&)IVP. (42)

(Lv(Lvg))(E, €)
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Applying (41) and (42) into (4), we arrive at

—(n = 1)@ = p) + pt + A(=2h + 20(E)S(V)) — QV(h) + 4h?)

+2V (0(£)S(V)) + 8hw(E)I(V) + 20(&)a(V)I(V) — 2aa(V)S(V)

—4a(3(V))’0(&) = 2a0(E)IVF + 20(E)a(E)IVP. (43)
Hence, we can state:

Theorem 3.20. If the metric g of a LCSM admits the AHRS (g, V, A, u) where V is TFVF and satisfied in (35), then
the equation (43) holds.

Corollary 3.21. If the metric g of a LCSM admits the AHRS (g, V, A, pt) where V is concircular vector filed, that is,
Ve,V = hX, then (n — 1)(e® — p) + u + 2hA + 2V (h) + 4h* = 0.

In [12], the authors using two (0, 2) tensor fields, have defined bi-conformal vector fields. Then De et al. in
[10] defined Ricci bi-conformal vector fields as follows.

Definition 3.22. A vector field U on a pseudo-Riemannian manifold (M, g) is declared to be a Ricci bi-conformal
vector field if the following equations are satisfying

Lug = fg+hS, (44)
and

LuS=fS+hyg, (45)
for some non-zero smooth functions f and h.

Now assume that a LCSM (M", g) admits AHRS (g, V, A, u) and V satisfies in (44) and (45). We have

Lv(Lyg) = (f + 12+ V(f)g + 2fh + V(h))S. (46)
Inserting (44) and (46) in (4), we get

A+ Ah+2fh+ V()S(Cr, &) + (Af =+ f2+ 1 + V(£))g(Ci, C) = 0. (47)
Putting ¢; = {; = £1in (47), we find

L+ Ah+2fh+ V() —1)(a* = p) + (Af —p+ 2+ + V(f)) =0, (48)
and

(1+Ah+ 21+ V)(SX, Y) = (n = D(@® = p)g(Cr, L) = 0. (49)

SetA=1+Ah+2fh+V(h)and B = Aa — u + a® + h? + V(). Taking the Lie derivative of (47) and applying
(44) and (45), we conclude

(fA+hB+V(A)S(X,Y)+ (fB+hA+ V(B)B((1, () = 0. (50)
Putting ¢; = (; = £in (50), we arrive at
(fA+hB + V(A)(n—1)(@® - p) + fB+hA + V(B) = 0. (51)
Applying (48) and (51), we obtain
Al - -1%p - a®?) - 1 -n)V(p—a?)] =0.

If A # 0 then equation (49) implies that manifold is a Einstein manifold and r = (n — 1)(a? — p) where p — a?
is a constant. If A = 0 then B = 0. Thereore, we can write:

Theorem 3.23. Suppose that the metric g of a LCSM admits the AHRS (g, V, A, u) where V satisfies in (44)
and (45). Then manifold M is a Einstein manifold and r = (1 — n)(p — a?) or A = —%(1 + 2fh + V(h)) and

w=-La+vm) - 2+r2+v(.
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4. Examples
Now, we give some examples of LCSM admit AHRSs.

Example 4.1. We denote the standard coordinates of R® by (x, y, z) and consider M = {(x, y,z) € R3|z # 0} and

B d d d 5,0
U1 = ez(xa + ya), (%) eZ@, vz =¢e %"
The metric g determined as follows
1.0 0
g=[01 0
0 0 -1
The structure (¢, &, d) on M is determined by
0 -1 0
E=uv3, 9O =9gCuv3), ¢=| -1 0 0 [
0 0 0

Note the relations (11) and (12) hold. We get
[01, 2] = =€y, [01,03] = —€*01, [0y, 03] = —€%0,
and
—e%vs 0 —e%y,
Vovj=| €vp  —eFuz—euy —eFuy |.
0 0 0

The identity Vc& = —e**(C + 9(C)E) is true, then we get a (LCS)z-manifold with a = —e*. Then p = 2¢*. The
nonvanishing elements of the curvature tensor are:

R(v1,v2)01 = —€*(e** — 1)va, R(v1,02)02 = (¢* — €¥)oy,

R(v1,v3)01 = —€%03, R(va,v3)v2 = —€*(¢*v3 + 11),

4

R(v1,v3)03 = —ee**v1, R(va, v3)v3 = —*0y,

Hence, we obtain

e 0 0
S=| 0 & 0 |=cZg+@e*+e¥)9®9.
0 0 2%

We have Leg = —2¢%(g + 9 ® 9) and (L o Le)g = 0. Therefore (g,&,A = —(e* + 1), u = —2¢*) is an AHRS on
manifold M.

Example 4.2. Let M = {(y1, Y2, Y3, Y1, y5) € R°|lys > 0} and
.9 S S S S
Y1=VY3 ayll Y2 =1Y3 ayZI V3 =1Y3 aySI Y4=Y3 8y4' Vs = Y3 8y5'

We consider the metric g as g11 = 9o = 933 = gas = 1, gs5 = —1 and other component of g are zero with respect
to {y1,72,Y3, V4, Vs}. Structure (¢, &, 9) on M defined as follows & = y5, 9(C) = g(C, ys5) and

OO0 =-r2, ¢02)=-y1, O(3)=-ys, O(ya)=-y1, ¢(s)=-0,
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The relations (11) and (12) are true. Hence, (¢,&,9,9) is an almost contact structure on manifold. We get
[vi,¥s] = =lys, yil = —yifori =1,2,3,4 and other brackets are equal to zero. Also

—Vs5 0 0 0 -1
0 Vs 0 0 -2
Viyvi= 0 0 =y 0 -y
0 0 0 =V5s —V4
0 0 0 0 0

The relation V& = —(C + S(C)&) is true, thus we get a (LCS)s-manifold with o = —1. Also, we obtain

R(y1,y2)71 = =y2, ROy, 72)y2 = y1, RO, v3)y = —ys,
R(y1,73)ys =71, Ry, vy = =va, Ry, ya)ys =y,
R(y1,y5)y1 = =ys, R(y1,vs)ys = =y1, R(y2,v3)y2 = =3,
R(y2,73)y3 = y2, R(y2,74)y2 = Y4, R(y2,v4)ys =2,
R(y2,v5)v2 = =75, R(ya,y5)ys = =y2, R(y3,74)y3 = )4,
R(y3, ya)ya = v3, R(y3, v5)ya = —ys, R(y3,V5)ys = =3,
R(ys,y5)ys = =ys, R(ya,¥5)ys = —Va-

Hence, we get

=49-89®9.

95

Il
OO OO
OO OO

0
4
0
0
0

SO OO
Ok O OO

—4

We have Leg = -2(g+9®9) and (L 0 L:)g = 4(g+9®9). Then (g,&, A = =2, u = 12) is a HRS on manifold M.
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