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Abstract. This paper aims to investigate the boundedness of some operators on grand generalized
weighted Morrey spacesLp),ϕ

φ (ω) over RD-spaces. Under assumption that functions φ and ϕ satisfy certain
conditions, we prove that Hardy-Littlewood maximal operator and θ-type Calderón-Zygmund operator
are bounded on these spaces. Moreover, the boundedness of the commutator [b,Tθ] generated by the θ-type
Calderon-Zygmund operator and locally integrable function b is also established. The results presented for
grand generalized weighted Morrey spaces are also new even in the context of Euclidean domains.

1. Introduction

The space of homogeneous type, first introduced by Coifman and Weiss [2, 3], provides a general
framework for the study of Calderón-Zygmund operators and function spaces. Around the 1970s, Coifman
and Weiss began exploring various harmonic analysis problems on metric spaces, which are referred to
as spaces of homogeneous type (X, d, µ). These spaces are equipped with a metric d and a regular Borel
measure µ that satisfies the doubling condition, i.e., there exists a constant C0 > 1 such that for any ball
B(x, r) := {y ∈ X : d(x, y) < r}, where x ∈ X and r > 0, the following inequality holds:

µ(B(x, 2r)) ≤ C0µ(B(x, r)).

Since then, many classical results have been extended to spaces of homogeneous type in the sense of
Coifman and Weiss. However, certain results have so far been established only for RD-spaces. An RD-
space is a space of homogeneous type (X, d, µ) that satisfies an additional condition: there exist positive
constants a > 1 and b > 0 such that,

bµ(B(x, r)) ≤ µ(B(x, ar)) (1)
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holds for all x ∈ X and r ∈ (0,diam(X)/a). For developments and research on operators over RD-spaces, we
refer readers to see [22, 30, 31].

Morrey spaces were first introduced by Morrey in 1938 [24] in connection with local regularity problems
of solutions to second-order elliptic partial differential equations. In 2009, Komori and Shirai [20] extended
this concept by introducing weighted Morrey spaces in the Euclidean setting. Since then, numerous
studies have focused on Morrey spaces and weighted Morrey spaces in various contexts; see, for example,
[1, 5, 6, 13, 25, 28, 32]. The concept of generalized weighted Morrey spaces over RD-spaces was introduced in
[4], where the boundedness of the Hardy-Littlewood maximal operator and Calderón-Zygmund operator
was established. More recently, Li et al. [21] investigated the boundedness of commutators generated
by the θ-Calderón-Zygmund operator and BMO functions in generalized weighted Morrey spaces over
RD-spaces.

The theory of grand Lebesgue spaces, introduced by Iwaniec and Sbordone [14], has become one of the
rapidly developing areas in modern analysis. These spaces have proven useful in various applications,
including partial differential equations, geometric function theory, and the theory of Sobolev spaces; see
[8, 10, 11, 26, 27] for example. Since their introduction, numerous classical operators have been extensively
studied on grand function spaces. For example, Kokilashvili [15] provided criteria for the boundedness of
several well-known operators in generalized weighted grand Lebesgue spaces. In 2019, Kokilashvili et al.
[18] established weighted extrapolation results for grand Morrey spaces and applied these findings to partial
differential equations. More recently, the boundedness of certain operators on grand generalized Morrey
spaces over non-homogeneous spaces was studied in [12]. For additional research on the boundedness of
operators in grand spaces, we refer readers to see [16, 17, 19, 23] and references therein.

Inspired by the above studies, this paper aims to establish the boundedness of the Hardy-Littlewood
maximal operator and θ-type Calderón-Zygmund operators on grand generalized weighted Morrey spaces
over RD-spaces.

Let 1 < p < ∞ and φ be a function on (0, p − 1] which is a positive bounded and satisfies lim
x→0
φ(x) = 0.

The class of such functions will be simply denoted by Φp. Then the norm of functions f in weighted grand
Lebesgue space Lp)

φ (ω) is defined by

∥ f ∥Lp)
φ (ω) = sup

0<ε<p−1
[φ(ε)]

1
p−ε ∥ f ∥Lp−ε(ω), (2)

where Lr(ω) is the classical Lebesgue space with respect to a measure µ, and defined by the norm:

∥ f ∥Lr(ω) :=
( ∫

X
| f (x)|rω(x)dµ(x)

) 1
r

, 1 ≤ r < ∞.

On the base of weighted grand Lebesgue space Lp)
φ (ω) , we give the definition of grand generalized

weighted Morrey spaces as follows.

Definition 1.1. Let 1 < p < ∞, ω be a weight and φ ∈ Φp. Suppose that ϕ : (0,∞) → (0,∞) is an increasing
function. Then grand generalized weighted Morrey space Lp),ϕ

φ (ω) is defined by

∥ f ∥
L

p),ϕ
φ (ω) :=

{
f ∈ L1

loc(ω) : ∥ f ∥
L

p),ϕ
φ (ω) < ∞

}
,

where

∥ f ∥
L

p),ϕ
φ (ω) := sup

0<ε<p−1
φ(ε) sup

B⊂X
[ϕ(ω(B))]−

1
p−ε

( ∫
B
| f (x)|p−εω(x)dµ(x)

) 1
p−ε

.

Especially, if we take φ(ε) = εθ with θ > 0 in (4), then we can denote ∥ f ∥
L

p),ϕ
φ (ω) := ∥ f ∥

L
p),ϕ
θ (ω).
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Remark 1.2. (1) When ϕ(x) = 1,Lp),ϕ
φ (ω) = Lp)

φ (ω). Therefore, the grand generalized weighted Morrey space

L
p),ϕ
φ (ω) is an extension of the grand weighted Lebesgue space.

(2) If ω ∈ Ap(µ), the generalized weighted Morrey space Lp,ϕ(ω) (see [4]), which is defined with respect
to the norm:

∥ f ∥Lp,ϕ(ω) := sup
B⊂X

( 1
ϕ(ω(B))

∫
B
| f (x)|pω(x)dµ(x)

) 1
p

, 1 ≤ p < ∞. (3)

(3) If we take function ϕ(t) = t
p
q−1 for t > 0 and 1 < p ≤ q < ∞, then grand generalized weighted Morrey

space Lp),ϕ
φ (ω) defined as in (3) is just the grand weighted Morrey space Lp),q

φ (ω) which is sightly modified
in [18], that is,

∥ f ∥
L

p),q
φ (ω) = sup

0<ε<p−1
φ(ε) sup

B
[ω(B)]

1
q−

1
p−ε ∥ f ∥Lp−ε(ω). (4)

We recall that a weight function ω belongs to the Muckenhoupt class Ap(µ)(1 < p < ∞) if

∥ω∥Ap := sup
B

( 1
µ(B)

∫
B
ω(x)dµ(x)

)( 1
µ(B)

∫
B
[ω(x)]1−p′dµ(x)

)p−1

< ∞,

where the supremum is taken over all balls B ⊂ X.
Further, ω ∈ A1(µ) if there is a positive constant C such that, for any ball B ⊂ X,

1
µ(B)

∫
B
ω(x)dµ(x) ≤ C ess inf

y∈B
ω(y),

as in the classical setting, let A∞(µ) =
⋃
∞

p=1 Ap(µ).
We end this section by stating some conventions on notation. The constant C denotes a positive constant

that is independent of the main parameters. The symbol p′ represents the conjugate exponent, i.e., 1
p+

1
p′ = 1.

The ball B(x, r) is defined as {y ∈ X : d(x, y) < r}. For any x, y ∈ X and δ ∈ (0,∞), let V(x, y) := µ(B(x, d(x, y)))
and Vδ := µ(B(x, δ)). From the doubling condition, it follows that V(x, y) = V(y, x). We also assume that
µ(X) < ∞.

2. Hardy-Littlewood maximal operator onLp),ϕ
φ (ω)

2.1. Weighted boundedness of the maximal operator
In this subsection we study the one-weighted problem for the Hardy-Littlewood maximal operator M

defined by setting

M( f )(x) := sup
r>0

1
µ(B(x, r))

∫
B(x,r)
| f (y)|dµ(y), for all x ∈ X (5)

Lemma 2.1. [29] Let p ∈ (1,∞) and ω ∈ Ap(µ). There exist positive constants C1 and C2 such that for any ball
B ⊂ X and each measurable set E ⊆ B,

ω(E)
ω(B)

≤ C1

[µ(E)
µ(B)

] 1
p

and
ω(E)
ω(B)

≥ C2

[µ(E)
µ(B)

]p
.

Lemma 2.2. [4] Let (X, d, µ) be an RD-space, if ω ∈ Ap(µ), p ∈ (1,∞), then there exist positive constants C3,C4 > 1
such that for any ball B ⊂ X,

ω(2B) ≥ C3ω(B), (6)

and

ω(2B) ≤ C4ω(B). (7)
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Lemma 2.3. [4] Let 1 < p < ∞, ω ∈ Ap(µ), φ ∈ Φp and ϕ : (0,∞) → (0,∞) be an increasing function. Assume
that the mapping t 7→ ϕ(t)

t is almost decreasing. Then M be as in (5) is bounded on Lp,ϕ(ω).

Theorem 2.4. Let 1 < p < ∞, ω ∈ Ap(µ), φ ∈ Φp and ϕ : (0,∞) → (0,∞) be an increasing function. Let M be as
in (5). Assume that the mapping t 7→ ϕ(t)

t is almost decreasing, namely, there exists a positive constant C such that

ϕ(t)
t
≤ C
ϕ(s)

s
, (8)

for s ≥ t. Then there exists a positive constant C such that for any f ∈ Lp),ϕ
φ (ω),

∥M( f )∥
L

p),ϕ
φ (ω) ≤ C∥ f ∥

L
p),ϕ
φ (ω).

Proof. Choosing a number δ such that 0 < ε ≤ δ < p − 1, observe that

∥M( f )∥
L

p),ϕ
φ (ω) = sup

0<ε<p−1
φ(ε) sup

B⊂X
[ϕ(ω(B))]−

1
p−ε ∥M( f )∥Lp−ε(ω)

≤ sup
0<ε≤δ

φ(ε) sup
B

[ϕ(ω(B))]−
1

p−ε ∥M( f )∥Lp−ε(ω)

+ sup
δ<ε<p−1

φ(ε) sup
B

[ϕ(ω(B))]−
1

p−ε ∥M( f )∥Lp−ε(ω)

=: E1 + E2.

The estimates for E1 goes as follows. By applying theLp,ϕ(ω)-boundedness of M (see[4]) and Definition
1.1, we can deduce that

sup
0<ε≤δ

φ(ε) sup
B

[ϕ(ω(B))]−
1

p−ε ∥M( f )∥Lp−ε(ω)

= sup
0<ε≤δ

φ(ε)∥M( f )∥Lp−ε,ϕ(ω)

≤ C∥ f ∥
L

p),ϕ
φ (ω).

Now let us estimate E2. Since δ < ε < p − 1, then we have p−δ
p−ε > 1. Further, by virtue of Hölder’s

inequality and Lp,ϕ(ω)-boundedness of M, we get

E2 = sup
δ<ε<p−1

φ(ε) sup
B

[ϕ(ω(B))]−
1

p−ε ∥M( f )∥Lp−ε(ω)

≤ sup
δ<ε<p−1

φ(ε) sup
B

[ϕ(ω(B))]−
1

p−ε ∥M( f )∥Lp−δ(ω)(ω(B))
ε−δ

(p−ε)(p−δ)

= sup
δ<ε<p−1

φ(ε)[φ(δ)]−1φ(δ) sup
B

[ϕ(ω(B))]−
1

p−ε [ϕ(ω(B))]
1

p−δ

× [ϕ(ω(B))]−
1

p−δ ∥M( f )∥Lp−δ(ω)(ω(B))
ε−δ

(p−ε)(p−δ)

= sup
δ<ε<p−1

φ(ε)[φ(δ)]−1φ(δ) sup
B

[ϕ(ω(B))]
1

p−δ−
1

p−ε [ω(B)]
ε−δ

(p−ε)(p−δ)

× [ϕ(ω(B))]−
1

p−δ ∥M( f )∥Lp−δ(ω)

≤ C∥ f ∥
L

p),ϕ
φ (ω).

Which, together with the estimate for E1, the Theorem 2.4 is proved.



S. He, S. Tao / Filomat 39:7 (2025), 2269–2279 2273

With an argument similar to that used in the proof of Theorem 2.4, it is easy to obtain the following
result on the maximal operator M̃r.
Corollary 2.2. Let 1 < p < ∞, ω ∈ Ap(µ), φ ∈ Φp and ϕ : (0,∞)→ (0,∞) be an increasing function. Assume
that the mapping t 7→ ϕ(t)

t is almost decreasing function satisfying (8). Then non-centered maximal operator
M̃r is bounded on Lp),ϕ

φ (ω), where M̃r is defined by

M̃r( f )(x) := sup
x∈B

( 1
µ(B)

∫
B
| f (y)|rdµ(y)

) 1
r

.

2.2. Vector-valued extension
To discuss the vector-valued extension of Theorem 2.4, we need the following assumption on ϕ: there

exists a positive constant C such that∫
∞

r

ϕ(t)
t

dt
t
≤ C
ϕ(r)

r
for any r ∈ (0,∞). (9)

Lemma 2.5. [4] Let p ∈ (1,∞), ω ∈ Ap(µ) and ϕ : (0,∞) → (0,∞) be an increasing function which satisfies (9),
assume that the mapping t 7→ ϕ(t)

t satisfies (8). Then there exists a positive constant C such that for any ball B ⊂ X,

∞∑
k=1

[ϕ(ω(2kB))
ω(2kB)

] 1
p

≤ C
[ϕ(ω(B))
ω(B)

] 1
p

.

Lemma 2.6. [9] Let r ∈ (1,∞), p ∈ (1,∞) and ω ∈ Ap(µ). Then there exists a positive constant C depending on p
and r, such that, for any { fi}∞i=1 ⊂ Lp(ω),

∥∥∥∥∥{∑
j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp(ω)

≤ C
∥∥∥∥∥{∑

j∈N

| f j|
r
} 1

r
∥∥∥∥∥
Lp(ω)
.

Theorem 2.7. Let 1 < p, r < ∞, ω ∈ Ap(µ), φ ∈ Φp and ϕ : (0,∞)→ (0,∞) be an increasing function that satisfies
(9). Assume that the mapping t 7→ ϕ(t)

t satisfies (8). Then there exists a positive constant C depending on p and r,
such that for any { f j}

∞

j=1 ⊂ L
p),ϕ
φ (ω),

∥∥∥∥∥{∑
j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
L

p),ϕ
φ (ω)

≤ C
∥∥∥∥∥{∑

j∈N

| f j|
r
} 1

r
∥∥∥∥∥
L

p),ϕ
φ (ω)
.

Proof. Choosing a small δ such that 0 < ε ≤ δ < p − 1, then, by Definition 1.1, observe that∥∥∥∥∥{∑
j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
L

p),ϕ
φ (ω)

= sup
0<ε<p−1

φ(ε)
∥∥∥∥∥{∑

j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp−ε,ϕ(ω)

≤ sup
0<ε<δ

φ(ε)
∥∥∥∥∥{∑

j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp−ε,ϕ(ω)

+ sup
δ<ε<p−1

φ(ε)
∥∥∥∥∥{∑

j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp−ε,ϕ(ω)

=: F1 + F2.
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The estimates for F1 is given as follows. By the Lp,ϕ(ω)−boundedness of M (see[4]), it follows that

sup
0<ε<δ

φ(ε)
∥∥∥∥∥{∑

j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp−ε,ϕ(ω)

≤ C sup
0<ε<δ

φ(ε)
∥∥∥∥∥{∑

j∈N

| f j|
r
} 1

r
∥∥∥∥∥
Lp−ε,ϕ(ω)

≤ C
∥∥∥∥∥{∑

j∈N

| f j|
r
} 1

r
∥∥∥∥∥
L

p),ϕ
φ (ω)
.

Similar to the estimate of E2 in the proof of Theorem 2.4, By virtue of Hölder’s inequality and Lemma
2.6, we have

sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε

∥∥∥∥∥{∑
j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp−ε(ω)

≤ sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε

∥∥∥∥∥{∑
j∈N

[
M( f j)

]r} 1
r
∥∥∥∥∥
Lp−δ(ω)

(ω(B))
ε−δ

(p−ε)(p−δ)

≤ C sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε

∥∥∥∥∥{∑
j∈N

| f j|
r
} 1

r
∥∥∥∥∥
Lp−δ(ω)

(ω(B))
ε−δ

(p−ε)(p−δ)

≤ C sup
δ<ε<p−1

φ(ε)[φ(δ)]−1φ(δ) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε [ϕ(ω(B))]
1

p−δ

× [ϕ(ω(B))]−
1

p−δ

∥∥∥∥∥{∑
j∈N

| f j|
r
} 1

r
∥∥∥∥∥
Lp−δ(ω)

(ω(B))
ε−δ

(p−ε)(p−δ)

≤ Cϕ(p − 1)[ϕ(δ)]−1
∥∥∥∥∥{∑

j∈N

| f j|
r
} 1

r
∥∥∥∥∥
L

p),ϕ
φ (ω)

≤ C
∥∥∥∥∥{∑

j∈N

| f j|
r
} 1

r
∥∥∥∥∥
L

p),ϕ
φ (ω)
.

Which, together with the estimate for F1, is our desired result.

3. θ-Type Calderón-Zygmund operators onLp),ϕ
φ (ω)

In this section, we shall deal with the boundedness of the θ-type Calderón-Zygmund operators and its
commutator on grand generalized weighted Morrey space Lp),ϕ

φ (ω) over RD-spaces.
The following definition see, Duong et. al. [7].

Definition 3.1. Let θ be a non-negative and non-decreasing function on [0,∞) with satisfying∫ 1

0

θ(t)
t

dt < ∞. (10)

And the measurable function K(·, ·) on X × X\{(x, y) : x ∈ X} is called a θ-type Calderón-Zygmund kernel,
if for any x , y,

|K(x, y)| ≤
C

V(x, y)
, (11)
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and for d(x, z) < d(x,y)
2 ,

|K(x, y) − K(z, y)| + |K(y, x) − K(y, z)| ≤
C

V(x, y)
θ
( d(x, z)

d(x, y)

)
. (12)

Remark 3.2. If we take the function θ(t) = tδ with t > 0 and δ ∈ (0, 1]. Then K(x, y) defined as in Definition
3.1 is just the standard Calderón-Zygmund kernel.

Definition 3.3. Let b a real valued µ−measurable function on X, if b ∈ L1
loc(µ) and its norm is

∥b∥∗ := sup
B

1
µ(B)

∫
B
|b(x) − bB|dµ(x) < ∞,

then b is called a BMO(µ) function, where the supremum is taken over all B ⊂ X and

bB :=
1
µ(B)

∫
B

b(y)dµ(y).

Let L∞b (µ) be the space of all L∞(µ) functions with bounded support. Let K(x, y) be a θ-type Calderón-
Zygmund kernel. A linear operator Tθ is called a θ-type Calderón-Zygmund operator with kernel K(x, y)
if Tθ can be extended to a bounded linear operator on L2(X), and

Tθ f (x) :=
∫

X
K(x, y) f (y)dµ(y) (13)

for all f ∈ L∞b (µ) and x < supp( f ).
Given a locally integrable function b on X, then the commutator [b,Tθ] of θ-type Calderón-Zygmund

operator Tθ is defined as

[b,Tθ] f (x) := b(x)Tθ f (x) − Tθ(b f )(x) =
∫

X
[b(x) − b(y)]K(x, y) f (y)dµ(y). (14)

The main theorems of this section is stated as follows.

Theorem 3.4. Let p ∈ (1,∞), ω ∈ Ap(µ), φ ∈ Φp. Let ϕ : (0,∞) → (0,∞) be an increasing function, continuous
function satisfying conditions (8) and (9). Then Tθ defined as in (13) is bounded on Lp),ϕ

φ (ω), that is, there exists a

constant C > 0 such that, for all f ∈ Lp),ϕ
φ (ω),

∥Tθ( f )∥
L

p),ϕ
φ (ω) ≤ C∥ f ∥

L
p),ϕ
φ (ω).

Theorem 3.5. Let p ∈ (1,∞), ω ∈ Ap(µ), b ∈ BMO(µ), φ ∈ Φp. Let ϕ : (0,∞)→ (0,∞) be an increasing function,
continuous function satisfying conditions (8) and (9). Then [b,Tθ] defined as in (14) is bounded on Lp),ϕ

φ (ω), that is,

there exists a constant C > 0 such that, for all f ∈ Lp),ϕ
φ (ω),

∥[b,Tθ] f ∥
L

p),ϕ
φ (ω) ≤ C∥b∥BMO(µ)∥ f ∥

L
p),ϕ
φ (ω).

To formulate the above theorems we also need the following lemma.

Lemma 3.6. Let p ∈ (1,∞), ω ∈ Ap(µ). Let ϕ : (0,∞)→ (0,∞) be an increasing function, continuous function
satisfying conditions (8) and (9) and θ be a non-negative, non-decreasing function on (0,∞) with satisfying
(10). Then Tθ defined as in (13) is bounded on the generalized weighted Morrey space, that is, there exists
a constant C > 0 such that, for all f ∈ Lp,ϕ(ω),

∥Tθ( f )∥Lp,ϕ(ω) ≤ C∥ f ∥Lp,ϕ(ω).
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Proof. Let p ∈ (1,∞), we only need to consider that for any fixed ball B = B(x0, r) ⊂ X,{ 1
ϕ(ω(B))

∫
B
[Tθ f (x)]pω(x)dµ(x)

} 1
p

≤ C∥ f ∥Lp,ϕ(ω). (15)

To estimate (15), we decompose f as f := f1 + f2, where f1 := fχ2B and 2B = B(x0, 2r), write{ 1
ϕ(ω(B))

∫
B
[Tθ( f )(x)]pω(x)dµ(x)

} 1
p

≤

{ 1
ϕ(ω(B))

∫
B
[Tθ( f1)(x)]pω(x)dµ(x)

} 1
p

+
{ 1
ϕ(ω(B))

∫
B
[Tθ( f2)(x)]pω(x)dµ(x)

} 1
p

= G1 + G2.

The estimate for G1 goes as follows. From [7, Theorem 1.3], slightly modified, we know that the Tθ is
bounded on Lp(ω) for p ∈ (1,∞). By applying (7) and (8), implies that

G1 ≤
1

[ϕ(ω(B))]
1
p

[ ∫
X
| f1(x)|pω(x)dµ(x)

] 1
p

≤ C
[ 1
ϕ(ω(2B))

∫
2B
| f (x)|pω(x)dµ(x)

] 1
p
[ϕ(ω(2B))
ϕ(ω(B))

] 1
p

≤ C∥ f ∥Lp,ϕ(ω)

[ω(2B)
ω(B)

] 1
p

≤ C∥ f ∥Lp,ϕ(ω).

For term G2, notice that, for any x ∈ B and y ∈ (2B)c, we obtain d(x, y) ∼ d(x0, y) and V(x, y) ∼ V(x0, y),
by virtue of Hölder inequality and Lemma 2.5,

|Tθ( f2)(x)| ≤
∫

d(y,x0)≥2r
|K(x, y) f (y)|dµ(y)

≤ C
∫

d(y,x0)≥2r

| f (y)|
V(x, y)

dµ(y)

∼ C
∫

d(y,x0)≥2r

| f (y)|
V(x0, y)

dµ(y)

≤ C
∞∑

k=1

∫
2kr≤d(y,x0)≤2k+1r

| f (y)|
V(x0, y)

dµ(y)

≤ C
∞∑

k=1

1
V2kr(x0)

[ ∫
B(x0,2k+1r)

| f (y)|pω(y)dµ(y)
] 1

p
[ ∫

B(x0,2k+1r)
ω(y)1−p′dµ(y)

] 1
p′

≤ C
∞∑

k=1

[ϕ(ω(B(x0, 2k+1r)))]
1
p

V2kr(x0)
·

V2k+1r(x0)

[ω(B(x0, 2k+1r))]
1
p

∥ f ∥Lp,ϕ(ω)

≤ C
[ϕ(ω(B))
ω(B)

] 1
p

∥ f ∥Lp,ϕ(ω).

Thus { 1
ϕ(ω(B))

∫
B
[Tθ( f2)(x)]pω(x)dµ(x)

} 1
p

≤ C
[ϕ(ω(B))
ω(B)

] 1
p
[ ω(B)
ϕ(ω(B))

] 1
p

∥ f ∥Lp,ϕ(ω)

≤ C∥ f ∥Lp,ϕ(ω).
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Which, together with estimate of G1, we obtain the desired result.

Lemma 3.7. [21] Let p ∈ (1,∞), ω ∈ Ap(µ) and b ∈ BMO(µ). Let ϕ : (0,∞) → (0,∞) be an increasing function,
continuous function satisfying conditions (8) and (9) and θ be a non-negative, non-decreasing function on (0,∞)
with satisfying (10). Then the commutator [b,Tθ] defined as in (14) is bounded on Lp,ϕ(ω).

Proof of Theorem 3.4. Let δ be a fixed constant satisfying 0 < ε < δ < p − 1. By Definition 1.1, observe that

∥Tθ( f )∥
L

p),ϕ
φ (ω) = sup

0<ε<p−1
φ(ε)∥Tθ( f )∥Lp−ε,ϕ(ω)

≤ sup
0<ε<δ

φ(ε)∥Tθ( f )∥Lp−ε,ϕ(ω) + sup
δ<ε<p−1

φ(ε)∥Tθ( f )∥Lp−ε,ϕ(ω)

= H1 +H2.

The estimates for H1 goes as follows. From Lemma 3.6, it follows that

H1 ≤ C sup
0<ε<δ

φ(ε)∥ f ∥Lp−ε,ϕ(ω)

≤ C∥ f ∥
L

p),ϕ
φ (ω).

Fix ε ∈ (δ, p−1) so that p−δ
p−ε > 1. Using Hölder inequality with respect to the

( p−δ
p−ε

)′
=

p−δ
ε−δ and the boundedness

of Tθ in Lp(ω) for p ∈ (1,∞), we can deduce that

H2 = sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε

( ∫
B
|Tθ( f )(x)|p−εω(x)dµ(x)

) 1
p−ε

≤ sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε

( ∫
B
|Tθ( f )(x)|p−δω(x)dµ(x)

) 1
p−δ

ω(B)
ε−δ

(p−δ)(p−ε)

≤ C sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε

( ∫
B
| f (x)|p−δω(x)dµ(x)

) 1
p−δ

ω(B)
ε−δ

(p−δ)(p−ε)

≤ C sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε [ϕ(ω(B))]
1

p−δω(B)
ε−δ

(p−δ)(p−ε)

× [ϕ(ω(B))]−
1

p−δ

( ∫
B
| f (x)|p−δω(x)dµ(x)

) 1
p−δ

.

Let

S = [ϕ(ω(B))]−
1

p−ε [ϕ(ω(B))]
1

p−δω(B)
ε−δ

(p−δ)(p−ε) .

Since δ < p − 1 and ε ∈ (δ, p − 1), imply that

0 <
ε − δ

(p − δ)(p − ε)
<

p − 1 − δ
p − δ

.

By applying the monotonicity of ϕ, we can deduce that

S ≤ [ϕ(ω(B))]−
1

p−δ [ϕ(ω(B))]
1

p−δω(B)
ε−δ

(p−δ)(p−ε)

≤ ω(B)
p−1−δ

(p−δ)(p−δ) ≤ C.
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Then combing the above estimates, we further obtain that

H2 ≤ C sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−δ

( ∫
B
| f (x)|p−δω(x)dµ(x)

) 1
p−δ

≤ C sup
δ<ε<p−1

φ(ε)[ϕ(δ)]−1ϕ(δ) sup
B⊂X

[ϕ(ω(B))]−
1

p−δ

( ∫
B
| f (x)|p−δω(x)dµ(x)

) 1
p−δ

≤ Cφ(p − 1)[ϕ(δ)]−1
∥ f ∥

L
p),ϕ
φ (ω)

≤ C∥ f ∥
L

p),ϕ
φ (ω).

Which, together with estimate of H1, the proof of Theorem 3.4 is finished. □

Proof of Theorem 3.5. First observe that the Lp(ω)-boundedness of [b,Tθ] (see [7]) and the interpolation
theorem imply that there is a number δ, δ ∈ (0, p − 1), such that

∥[b,Tθ]( f )∥Lp−ε,ϕ(ω) ≤ C∥b∥BMO(µ)∥ f ∥Lp−ε,ϕ(ω), ε ∈ (0, δ].

Fix ε ∈ (δ, p − 1) so that p−δ
p−ε > 1, by virtue of Hölder’s inequality and Lemma 3.7, we can obtain that

∥[b,Tθ]( f )∥
L

p),ϕ
φ (ω) = max

{
sup

0<ε<δ
φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω), sup

δ<ε<p−1
φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω)

}
≤ max

{
sup

0<ε<δ
φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω),

sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−ε ∥[b,Tθ]( f )∥Lp−δ(ω)ω(B)
ε−δ

(p−δ)(p−ε)

}
≤ max

{
sup

0<ε<δ
φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω),

sup
δ<ε<p−1

φ(ε) sup
B⊂X

[ϕ(ω(B))]−
1

p−δ ∥[b,Tθ]( f )∥Lp−δ(ω)

[ ω(B)
ϕ(ω(B))

] ε−δ
(p−δ)(p−ε)

}
≤ max

{
sup

0<ε<δ
φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω),

sup
δ<ε<p−1

[ ω(B)
ϕ(ω(B))

] ε−δ
(p−δ)(p−ε)

sup
0<ε<δ

φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω)

}
.

Let S := sup
0<ε<δ

φ(ε)∥[b,Tθ]( f )∥Lp−ε,ϕ(ω) and T := sup
δ<ε<p−1

[
ω(B)
ϕ(ω(B))

] ε−δ
(p−δ)(p−ε)

. Then

∥[b,Tθ]( f )∥
L

p),ϕ
φ (ω) ≤ max{1,T} · S ≤ C∥b∥BMO(µ)∥ f ∥

L
p),ϕ
φ (ω).

This completes the proof of Theorem 3.5. □
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