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Abstract. Fractional calculus extends the differentiation and integration of functions to non-integer or-
der. This work presents a new identity to represent specific differentiable mappings through generalized
fractional integrals. On the basis of the newly established identity, several Boole’s type inequalities for dif-
ferentiable generalized convex functions are obtained. Generalized fractional integrals are more versatile
as compared to the traditional integral operators because they embody them. This method brings the con-
nection between integer order calculus and fractional calculus, which gives more effective tools for solving
non-singular problems where integer order calculus tools can be ineffective. The results provide further
understanding of geometric properties of differentiable mappings and generalized convex functions which
give rise to new identities and inequalities enriching the field of integral inequalities. Some numerical
examples and applications are given in order to support these results as more feasible and relevant.

1. Introduction

In 1915, the term “numerical integration” first appeared in a publication under the title “A Course in
Interpolation and Numerical Integration for the Mathematical Laboratory” by David Gibb [9]. In recent
decades, numerical integration has become essential in scientific computing, engineering, and data analysis.
Advanced techniques such as adaptive quadrature algorithms, numerical integration with error estimation,
and high-dimensional integration methods have been developed to handle increasingly complex problems.
In numerical integration, “quadrature” refers to the calculation of area and has historical mathematical
significance. Constructing various interpolating polynomials allows one to generate a broad class of
quadrature rules. Assuming a constant interpolating function (zero degree polynomial) is among the most
straightforward techniques of this kind. The Midpoint or rectangle rule is thus the term used to describe
it. If the interpolating function is linear (i.e., a straight line), we obtain the Trapezoidal rule. Simpson’s
rule applies in the case of a second-degree interpolating polynomial. Thomas Simpson, a mathematician,
is credited with giving it the name Simpson’s rule (1710-1761). Simpson’s 1/3 rule is the most fundamental
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numerical method. In numerical integration with lower error bounds, the third Simpson’s rule or Simpson’s
2/45 rule, also called Boole’s rule, is named after George Boole.

fﬁF(é)dé - % [7F(a) +32F(¥) + 12F(“T+ﬁ) +32F(%3ﬁ) + 7F(ﬁ)] +EF), (1)

where E (F) is an error term. One can see [8, 15] to learn more about numerical integration and its
applications. The error bound for Boole’s rule approximation is described as
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The history of convex functions is intertwined with mathematics and optimization theory develop-
ment. Convexity can be traced back to ancient civilizations, where geometric ideas were explored. Early
mathematicians, such as Euclid (300 BC), studied the properties of convex shapes like circles and triangles.
However, the formalization of convex functions came much later. The study of convex functions began to
take shape during this period. Mathematicians like Leonhard Euler (1707-1783) and Johann Radon (1887-
1956) contributed significantly to understanding convex sets and functions. Euler, in particular, explored
the properties of convex curves. The rigorous study of convex functions gained momentum with the
development of convex analysis. Mathematicians like Hermann Minkowski (1864-1909) and Constantin
Carathéodory (1873-1950) made foundational contributions to convex geometry and convex optimization
theory. Convex optimization has become a cornerstone of applied mathematics, with applications spanning
various fields such as engineering, economics, computer science, and machine learning. The development
of efficient algorithms for solving convex optimization problems, such as interior-point methods have
fueled its widespread adoption. For more details about the history of convexity, one can visit [5, 8, 15].
Convex set and function are defined as:

Definition 1.1 (Convex Set). [5] A set I C R" is convex, if for any two points a, B € I, the entire segment joining
a and B lies in 1. The points in the segment are of the form

da+(1-0)pel, Yoe[0,1]. (2)

Definition 1.2 (Convex Function). [5] Let I be a convex subset of a real vector space and F : I C R — R is said to
be convex, if

OF(a) + (1 = 8)F(B) = F(6a + (1 = 6)p), (3)
forall 6 €[0,1] and o, p € 1.

The Hermite-Hadamard inequality was first presented by French mathematicians Charles Hermite
(1822-1901) and Jacques Salomon Hadamard (1865-1963). C. Hermite and J. S. Hadamard made major
contributions to mathematics in the fields of inequality theory, complex analysis, and much more; to learn
more about these [16, 21]. The inequality states that: If a function F : [a, f] € R — R is convex then

F(a) + F(B) 1 (f a+p
5 Zﬁ_afaF(g)dng(T). (4)

If the function F is concave, then the afore-mentioned inequalities hold in the opposite direction. Put
another way, a function is convex if and only if its weighted average of functional values at its endpoints is
larger than or equal to its value at the middle of any interval containing a set of real numbers. Akber ef al.
proved the generalization of quantum calculus and corresponding Hermite-Hadamard inequalities in [1].

Breckner was the first mathematician to introduce an s-convex function in 1979 [4], and the number of
connections with s-convexity in the first sense is negotiated in [12]. Direct proof of Breckner’s result was
esteemed in 2001 by Pycia [19]. Many scholars primarily concentrated on s-convex functions because of
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the importance of convexity and s-convexity in studying optimality to resolve mathematical programming.
For instance, earlier works by H. Hudzik et al. [12] presented two kinds of s-convexity {s € (0,1]}. And
demonstrated that whenever {s € (0, 1]}, the second sense is fundamentally stronger than the s-convexity
in the first sense. In the second sense, we use the s-convexity of a function generally known as the s-convex
function. Since s € (0,1], this class of functions is more important than the convex. We also observe in
the main section that the results obtained by s-convexity are much better than the convexity. Secondly,
s-convexity is the generalization of a convex function, so we can obtain the results for convex functions by
using s = 1 in the results of s-convex functions.

Definition 1.3 (s-convex function). [12] A function F : [0, c0) — IR is said to be s-convex, if
O°F(a) + (1 = 0)°F(B) = F (o + (1 = 0)B), )
forall 6 €[0,1],s € (0,1] and o, B € [0, 0).

S.S. Dragomir and Fitzpatrick also introduced Hadamard inequality for s-convex functions in the second
sense in [6].

Theorem 1.4. [6] Suppose that F : [0, 00) C R — [0, o0) is an s-convex function in the second sense, wheres € (0,1] .
If F € Ly [, B], then the following inequality holds:

B

s+1 T f-a

Fractional calculus, an extension of classical calculus, focuses on the derivatives and integrals of non-
integer orders. The formal development of fractional calculus started in the 18th century, but its origins may
be seen in the work of mathematicians such as Leibniz and Euler. The Italian mathematician Joseph Liouville
made significant contributions in the mid-19th century, introducing the notion of fractional derivatives.
One of the key figures in advancing fractional calculus was the Polish mathematician Stanistaw Saks, who
introduced the concept of fractional integrals in the 1920s. He extended the classical integral operators
to non-integer orders, providing a powerful tool for solving various differential equations and addressing
problems in mathematical analysis. The notion of generalized fractional integral emerged as a natural
extension of Saks” work, aiming to generalize integral operators to a broader class of functions and orders.
This extension was motivated by the need to address more complex problems in mathematical analysis
where classical integral operators were inadequate. The generalized fractional integrals are defined by
Sarikaya and Ertugral in [22].

Let us define a function W : [0, c0) — [0, c0) satisfying the following condition:

1
f TO s < oo )
, o

We examine these generalized fractional integral operators on the left and right sides.

< -
dok @ = [ TS @, 6> a ®
and
B -
ok € = [ R @0, > ¢, ©)

respectively. The key feature of generalized fractional integrals is their ability to extend various forms
of fractional integrals, including Hadamard, Katugampola, conformable and Riemann-Liouville fractional
integrals, among others. These important special cases of the integral operators (8) and (9) are mentioned
below:
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(1) If we choose W(0) = 6, the operators (8) and (9) reduce to the Riemann integral.

(2) Considering W(5) = % and @ > 0, the operators (8) and (9) reduce to the Riemann-Liouville
fractional integrals J2F (£) and ](ﬁDF (&) respectively. Here I' is a Gamma function. Numerous articles have
been published on inequalities involving generalized fractional integrals. Sarikaya and Ertugral proved
Hermite-Hadamard inequalities for these integrals in [22]. Additionally, Budak et al. established Midpoint-
type inequalities in [2] and extended Hermite-Hadamard inequalities in [3]. Ertugral and Sarikaya also
presented Simpson-type inequalities for these fractional integral operators in [7]. Furthermore, Kara et
al. proved Simpson-type inequalities for convex functions using generalized fractional integrals in [13].
Haider et al. recently proved to analyze Milne-type inequalities by using tempered fractional integrals in
[10]. Meftah et al. in [17] proved some local fractional Maclaurin-type inequalities for generalized convex
functions and their applications. For more information, readers are referred to [11, 14, 18, 20, 23, 24].

Inspired by the previously mentioned literature, we use the generalized fractional integral to establish
a novel identity for differentiable mapping. Using generalized fractional integral, we show Boole’s type
inequality for differentiable general convex functions and analyze several exceptional examples using the
recently obtained identity. We provide numerical examples to verify the accuracy of recently established
results.

The article is structured as follows: Section 2 introduces a new identity for differentiable mappings
using a generalized fractional integral. We use this identity to establish several Boole-type inequalities
for differentiable general convex functions through generalized fractional integrals. Section 3 includes
numerical examples and computational analyses to validate the newly established results. In Section 4,
a discussion about graphical behaviour is given. In Section 5, we discuss applications to the quadrature
formula. Finally, Section 6 offers conclusions and future research.

2. Main Results

This section uses a generalized fractional integral to provide a new identity for differentiable mapping.
We utilize the recently obtained identity; we show several Boole’s type inequalities for differentiable general
convex functions using a generalized fractional integral. For conciseness, throughout this work, we define
® : [0, 0) — [0, o) satisfying the following:

D (6) ::fwdu.
0 u

Lemma 2.1. Assume that F : [a, f] — R is differentiable on (a,B). If F € Ly [a, B], then we have the following
identity for generalized fractional integral:

1 3a+ B a+p a+3p
%[7F(a)+32F( 1 )+12F( > )+32F( 1 )+7F(ﬁ)]

: Satp a+p a+3p
(-0 [(W)I‘DF (@) +(apy I‘DF( z ) +(“2”)I‘I’F( 2 )"‘ﬁ qu( i )
= 1‘[2(1:3) [+ + 13+ 1], .

where

I = fol (cp ©) - % (1))F’ (‘%‘Sa N Zﬁ)dé,
L= fol (cp ©) - ﬁo1>(1))F' (ﬂa N #ﬁ)da,

60 4

Iy = fol (cp ©) - %(D(l))F' (24;60z + 2%‘3;3)015,
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and

L= fol( ((5)-@q1>(1))F'(14(S +wﬁ)d6

Proof. Solve each integral I;, I, I3, and I4 using integration by parts, and multiply each of them by (8 — a),

we have
fol (cp((s) - %@(1))/@ (4 =0+ éﬁ)dé

I

= 4f(e@ - Zem)r (e 4f01[\p ] (F52a+ 58)a0
_ 4x6920cp(1)F(3a4+ﬁ) 4><28<I>(1) 4f01 (57) ] 4;6a+25)d6, (11)

L = fl(q>(5)—%q>(1))F'(34;6a gﬁ)dé
0

= 4f(e@ - Zem)F(3 1+65)) fol

 Ax160(1)_(a+B\ 4x44D(1)_(3a+p L wEs)\ (36 145
= 60 F( 2 )+ 60 F( 1 )_4f0( )F(

‘I’(ﬁ_"é)]F(3—5 L1490

o)

L = fol(qn(a)—%@u))/f’(z%sa &ﬁ)dé

_ 4((@(5)_ %@(1)),:(24;60( 2+0,

1‘1’ 2-86 2456
4[ ] 74t ﬁ)dé

i 4x66q)(1)F(a+3ﬂ)+4><24(D(1) (a+ﬁ) 4f1[ (520) ]F 2—5a+2+5ﬁ)d6 13)
0

90 4 90 4 4

and

L = f(@(é)—%@(n)F'(l%sa ﬁﬁ)dé
0

- 4((@(6)_%®(1))F(1;6 3+65)) fol

4 28(13 4 620 (1 3 1
- g S

5 1 YT

\P(%é)]F(l—é 3+6ﬁ)d6

ﬁ) s, (14)

‘V(ﬁTTa(S) 1-6 3456
5 ]F( : YTy

Adding (11) to (14) also by change of variable and multiplying by m, we get the desired identity. The
proof of Lemma 2.1 is completed. O

Theorem 2.2. Assume that F : [ C [0,00) — R be a differentiable on I° = (a, B) such that F’ € Ly [, B], where
a, B € I°. If IF'| is s-convex on [a, B] for some fixed s € (0, 1], then we have the following inequality:

91—0[7F(a)+32F(¥)+12F(a;ﬁ) SZF( ) 7F(ﬁ)]
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ek 50 o)

m

< 1‘2(;(1)[ @(5)-—@(1)( |F’ )IF’(ﬁ)1)
ﬂf 00~ o|((352) F @i (L2 IF @)
ﬂf 00~ o|((352) F @i (2] IF ol)a
+£1(®——®mu )an(??waﬂ%}

Proof. Taking absolute value of Lemma 2.1, we have

L [7F(a)+32F( 4+ﬁ) ( ) (afﬁ)”F(ﬁ)

90
1 3 3
—(‘B a)CD 1) [(3 5) ICDF((X)+ I@F( a+ﬁ) +as3p I@F(a+ﬁ)+/3 I@F(az ﬁ)‘
i’é@g))[ ——q>(1) F'(um ﬁ)‘d&
1
+f0 )~ )| (20 1+6ﬁ)‘

(0) - —‘13(1)

F,(z 5 2+5ﬁ)‘

+£1 :
+j: F’(14;60( 3+65)‘ }

Since |F’| is s-convex on [a, f], we get
L or (@) + 327 (22208 4 10p (A28 4 sor () 4 o
e e e e R e Rl

e o) 5]

Do) - %q)(l)

‘W

s Beo (55 uns e
ﬂ[ @——®mK 2 F @ ( ) F @)
+£1(®——®mK 222 F @i (ﬁr)wa@
ﬂf @——mn« )WWM(;?)P®W4

Hence, the proof of Theorem 2.2 is completed. [
Corollary 2.3. If we replace W (0) = 6 in Theorem 2.2, we get the following Boole’s type inequality:

91—0[7F(a)+32F(¥)+12F(a;ﬁ) 32F( ) 7F(ﬁ)] F(é)dé‘

(ﬁ)
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B-a)x [F @I+ |F @)]
- 16(s + 1)(s + 2)
—47 x 45°*1 — 133 x 135°*! + 1452 + 78°*2 — 90°*2 + 102°*2 + 166“2)}.

{21—2545—5—2 (453+1 (3s+1 + 7 X 4S+1 _ 1)5 _ 19 X 4S+2455+1

Remark 2.4. If we replace W (6) = 6 and s = 1 in Theorem 2.2, we get classical Boole’s type inequality:

l[7F(a)+32F(%T+ﬁ)+1%(a;ﬁ) 32F( 3) 7F(ﬁ)]

239 (B —
= 76480

G- F(é) dé‘

)[|F'< )|+

F (p)]].

Corollary 2.5. If we replace ¥ (6) = r( m)
Riemann—Liouville fractional integrals:

91—0[7F(a)+32F(¥)+12F(“;ﬁ) 32F( ) 7F(ﬁ)]

29°1T (@ + 1) 3a+B\ a+B\  _(a+3p
T Goar [(“*‘*) @)+ Jeny F ( 3 )*(%'F(T)””( 1 )”

(B-a)
64( + 1)(@ + 2)

( 2575145100 1 11 x 3% 5% @+ 12% @ + 14 @ + 9% 2551 — 25+575+1y5l/@

and s = 1 in Theorem 2.2, we get the following Boole’s type inequality for

@+2 @+2 @+d _ 0+2

[|F’ @) {4575 (-31F @(@+1) + 26 x 355 +2x315*145°0(@ + 2)

IA

+12%° +14% +33% (@ + 1) -2 x 357251/21 15+ (@ + 2))
log(540 log(540
480 +2) (m(%) + cosh( o5 >)))}

@+2 @+3 @+2

+|F (ﬁ)) {45_7 (2 X3 o 51/(D (11‘D+1CD +2@+3((D + 2)) +22 % 3m+45 +

m+4 @+2 @+2

(13><3 50+ 12% 0+ 14% 0 +33% @ + 4 x 3% 519115+ — 3535%

+12°% +14% +33% +31% (0 + 1) +2x 3% 59315 (@ + 2)) )}

Theorem 2.6. Assume that F : I C [0, 00) — R be a differentiable on I° such that F’ € Ly [a, B], where o, p € I°. If
IF’|" is s-convex on [a, B] for some fixed s € (0, 1] and q > 1, then we have the following inequality:

‘91—0[7F(a)+32.c(¥)+1%(“;ﬁ) 32F( 3ﬁ)+7F(ﬁ)]

m |:(3a+ﬁ) I(IJF(CY) +(a+/s) Ich(3a4+ﬁ) +(M)I®F(a_+ﬁ) +p- I(DF(OK';:Sﬁ)”

(-9 ( 28 l ) (4 31+S><4—
0
—s _21+s + 31+s)

16D (1) ®©) = 55® M 1+
}[4 (
P (5) - —q>(1)’ dé)

IN

F @+

F @) )
47 (-1 +2'%)

1+s

45 (_21+s + 31+s)

1+s

F (@)l +

(ﬁ)("]l

([
([

1+s

D(6) - —(D(l)’ do IF' ()" +

P47 (-1+2'%) / g
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F @) ) l

47 4 -3 x4
’ 9
— F @l + ———

([

where + =1.

(D((S)——(D(l)’ dé) (

Proof. From Lemma 2.1 and Holder’s inequality, we have
3a+p a+p +3p
% [7F( )+ SZF( 2 ) 12F( > ) 32F( ) +7F (ﬁ)]

w90 ey 17 (7] o (5 o e Zsﬁ)”

p-a ( 01 @(6)—%@(1)|pd6);(£ F (ua+6ﬁ)q )3

<

16® (1) 4

+(folq’(5)—4fq>(1) dé);(fo P2 ﬂﬁ)qdé);
| i

+(fO @(6)—%@(1) ) ( (ZT )qdé)

+(j: @(6)—%@(1) ) ( (14_5 +mﬁ)qd6)}

Since |F’|? is s-convex function on [«, f], we get

O

! [(  ToF (@) + s Iq,F( ‘“ﬁ) Ich( +ﬁ) 51¢F(“+3ﬁ)

B0 () 1
< éq;g)( F'(ﬁ)l"dé)

1

@(5)—§®(1)| dé) (f01(446) IF (e )'qd‘”fol(fz)s
([ ool of ([ v [ (59
([ foor-Boaf w) ([ (35

; )SlF’(a)lqd6+f (2%‘5)
5

F ) dé)q

F ()|’ dé)q

I\)
>~
On

1 VS s 1 s i
+(f0 q>(5)—Qcp(1)pd(5) (fo (17) |F’(a)|qd6+f (3%‘3) F’(ﬁ)|qd6)]
_ 1 +s - —s %
1 ; 45 _21+s 31+s 475 (-1 21+s i
([ oo~ Hoaf [ (2o >|F, s 2C 2 o
1 45 (=1 21+s 45 _21+s 31+s i
(f @(5)—-@(1)’ dé) {%IF’ (@) + ( 1+: >F’ (,8)1‘7]
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Corollary 2.7. If we replace ® (0) = 6 in Theorem 2.6, we get the following Boole’s type of inequality:

91—0[7F(a)+32F(¥)+12F(a;ﬁ) 32F( ) 7F(ﬁ)] (ﬁl ) F(é)dé‘

@) - 2o )| dé) (fs P @+ 25

([

Hence, the proof of Theorem 2.6 is completed. [

F (@)l +

—F (ﬁ))q)

1
(B—a) (45717 (1477 +3117) )" 14 _ gtes 5 45
B 16 1+p 1+s

==

15—1—p (141+p + 111+p) 3 4~ s 21+s + 31+5) . 4-s (_1 + 21+s) ]
F/ I S F/
M 1+p 1+s F(@r + 1+s (ﬁ)’
1 1
15—1—p (141+p + 111+p) P4~ s ~1+ 21+s . 4-s (_21+s + 3l+s) ] q
F F
- 1+p l (@)l + 1+s (ﬁ)’
45717 (14147 + 311+P) 45 3l w4
F ()l + ——— "
- 1+p (1+s| (@)f + 1+s (ﬁ)‘)

Corollary 2.8. If we replace V (0) = 6 and s = 1 in Theorem 2.6, we get the following Boole’s type inequality:
1 3a+8 a+p a+3p 1 fﬁ
‘90 [7F(a)+32F( ) )+12F( 7 ) 32F( +7F (B) G- J. F(&)dé

F <ﬁ>;q]5

(ﬁ . 0() 45-1-p (14l+p + 311+p) 13 7 |F/ (a)|q +
= 16 Ttp % 8

F el

15717 (1414 + 111+P) 5|F (oc)lq +3
+ 1+ y X

15-1-» (141+p + 111+p) v 3IF (Of)|q +5
+ 1+ y X

F (ﬁ)|q]

[45 P (141 + 311+r’)J [|F’ @ +7
+

F @)
1+p 8

Remark 2.9. For different values of V in Theorem 2.6, we can find other results as finding in Theorem 2.2.

Theorem 2.10. Assume that F : I C [0, 0) — R be a differentiable on I° such that F' € Ly [a, B], where a, p € I°. If
IF’|" is s-convex on [a, B] for some fixed s € (0, 1] and q > 1, then we have the following inequality:

1 3a+f a+p a+3p
‘%[7F(a)+32F(—4 )+12F( > )+32F( 1 )+7F(ﬁ)]

“Fe [W)‘I@F @)+ gy o (3a4+ ﬁ) Hegpy o (QTM) e z@F(a o )
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B-a | 2 i
< 16T(1)(f0 @ (5) - 90c1>(1)| )
1 s %
x(fo @(5)-%@(1)( )lF’ ) ds + (D(é)——q)(l)’ F'(5)|”7d5)
1 44 -3
0 - " 4o
+(f0 o (0) - 2o 1) )
1 s 1 %
<[ oo - Gow|C3) Farass [ oo-Heo|(52) Fora)
1 24 -5
+(f0 P(©) - 550 (1) " 15
1 s %
([ oo - Bow|(372) F@ras [ oo Boa| (252 Fer o)
! 62 1\
+(f0 P(©) - 5@ ()|
1 1 H
(f D (5) - @(1)’ |F’(a)|‘7d6+f @(5)--@(1)’ 3“5 F’(ﬁ)r’dé)}

Proof. From Lemma 2.1 and applying the power mean inequality, we get
1 3a+f a+p a+3p
‘%[7F(a)+32F( 1 )+12F( > )+32F( 1 +7F (B)

; Sa+p a+p o+ 38
CB-a)o@) [( )I¢F(a)+(7ﬁ) Iq,F(T) +(M43,;)1¢F(T)+ﬁ1¢F( ; )

1@(;3) (f D (6) - CD(l ) ( @ (5) ——CD(l HF —a+6ﬁ)q );
+(f01 @(5)—%@(1) ) ( ® (5) F(% 1+6[3)qd6)1
+(f1 @(5)_%@(1) dé) ( @ (5) 24 (% 2+65)qd6)

0

1 -, B i
+(f0 cp((s)_Qcp(l) dé) (f @ (5) 62 (14‘S 3+6ﬁ)qd6)]

Since |F’|? is s-convex function on [a, 8], we get
g

1 3a

%[7/:() SZF( ) 12F( )+32F( )+7F(ﬁ)]

ST 0(1)(13(1) [(3 o ToF (@) + o) 1¢F(3“4+5) - Iq,F(“;rﬁ)Jrﬁ_ Iq,F(aZSﬁ)”
_ p-a o

A

< 16(13(1) D(5) - CID(l)‘ dé)
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! %
(f @(5)-%@(1) (4 5) F (o) do + @(5)--@(1)’ F’(ﬁ)|qd6)

0

! 44 |7\ T
(fo (©) - () dé)

1 44 3-6\ ., ! o g
(fo ()~ =@ (1) (T) F (a)|qd5+f0 CD((S)——CD(l) IF ®) d(S)

1 24 1\
(fo P(©) - 550 (1) dé)

1 24 2-9 q )‘1’

5) — == F (@)l db 5) - 24 F’ s

([fpe-Zow|(C) Fara- [ |eo-Ben|() Fel

! 62 1\
(fo P(©) - 5@ (1) dé)

1 1 i
(f @(5)--@(1)‘ |F'(a)|qd5+f0 @(5)--@(1) 3+5 F'(ﬁ)r’dé)].

Hence, the proof of Theorem 2.10 is completed. [

Remark 2.11. By special choices of ¥ in Theorem 2.10, one can obtain new Boole’s type inequalities. These are left
to the readers.

3. Numerical Examples

In this section, we present numerical examples and their graphical analyses to illustrate the behaviour
of the functions and validate the newly proved results.

Example 3.1. Assume that F (£) = %1 is differentiable s-convex function on [1,2] for all s € (0,1], then we have
different cases:

Case-i W (0) =6, s=0.1;

1 3a+p a+p a+3p 1 b
‘%[7/:(&)+32F(T)+12F(T)+32F(T)+7F(ﬁ):| _(ﬁ——O()L‘ F(é)dé‘

4.60394 x 1077 (15)

B-a)x[IF @)+ |F B)]
16(s + 1)(s + 2)

—47 x 45°1 — 133 x 135°"1 4 14°72 4 78°%2 — 90°*2 4+ 1025%2 + 166”2)}

0.0704243. (16)

{21—2545—5—2 (455+1 (3S+1 +7% 4S+1 _ 1) s—19 x 4S+245S+1

From (15) and (16) Case-i is verified.

Case-ii ¥ (0) =

F(j),forall(D—lz s=1.

91—0[7F(a)+32F(¥)+12F(“;’ﬁ) 32F( ) 7F(ﬁ)]

27 T @+ 1) [, 3a+pB a+B) o, [a+3p
T Goar [(%*ﬂ)F”*(”ﬂ)F( 1 )*(“fﬂ)‘F( 2 )”F( 1 )”




M. Toseef, A. Kashuri / Filomat 39:7 (2025), 2367-2383 2378

= 1.74889. (17)
(B-a)

64(@ + 1)(@ + 2)

+2 x 315714520 + 2) — ( 25754145195 1 11 x 3

@t+d _ ©+2

[F (@) {45~ (-31% 0@ + 1) + 26 x 355"

o+d _ @+2 @+2

o5 o @+12° @

@+2

+14°5 @ + 9% 2551 — 25%575+1451/2 1 12 + 14°F +33F (@ + 1)
1 log(540 log(540
—2x307251/2115% (@ + 2)) +480(@ + 2) (Sinh ($) +cosh ($)))}

0+3

+|F (B)| {45~ (2 x 3%

o+4 _ @+2

5104 (110+1(D +26%%(@+2)) +22x 3% 5%

( 13x3% 5% 0+12%0+14% @+33% @ +4x3%5/2115+ - 35+35%°
+12°% +14°5 +33% +31% (0 + 1) +2x 3% 59315 (@ + 2)) ||
= 7.54074. (18)

From (17) and (18) Case-ii is verified.

Remark 3.2. In Example 3.1, we discuss different cases for Theorem 2.2, other Theorems can be verified similarly
and left for the readers.

F
al
3l

[ Left Inequality
2r = Right Inequality
1k

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 S

- 0.2 0.4 0.6 0.8 1.0

Figure 1: Comparative analysis of the inequalities of Theorem 2.2, of Example 3.1: 2-D plot when @ > 0 is fixed and s lies between 0
and 1.
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F
8 =
6L

i Left Inequality
4l —= Right Inequality
5[

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m

1.2 14 16 1.8 2.0

Figure 2: Comparative analysis of the inequalities of Theorem 2.2, of Example 3.1: 2-D plot when @ > 0 and s = 1 is fixed.

s Leftinequality Right inequality

0.1 4.60394 x1077 0.105636
0.3 4.56165x 1077 0.183396
0.5 9.79689 x 1077 0.308539
0.7 4.16966 x 1076 0.527502
0.9 0.00006882 0.917985

Table 1: @ is fixed and s varies

@ Leftinequality Right inequality

1.0  0.000372024 7.30278
1.2 1.74889 7.54074
1.4 3.42718 7.79003
1.6 4.9993 8.03575
1.8 6.44838 8.27106
2.0 7.76903 8.49309

Table 2: s is fixed and @ varies

4. Discussion

This article focuses on generalized fractional integrals and general convex functions. Using Mathematica
13.3.1 for graphical analysis, we present 2D and 3D plots involving the parameters s and @ to illustrate the
newly established results. In Figure 1, we perform a comparative analysis of the inequalities from Theorem
2.2 and Example 3.1, with a fixed @ > 0 and s ranging between 0 and 1. Figure 2, presents a 2D plot for the
same inequalities when @ > 0 and s is fixed at 1. Additionally, Figure 3 displays a 3D plot for Theorem 2.2
and Example 3.1, with @ > 0 and s varying between 0 and 1. These visualizations help to better understand
and compare the behaviors of the inequalities under different conditions.
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B Right Inequality
B Left Inequality

Figure 3: 3-D plot for Theorem 2.2, of Example 3.1, when @ > 0 and s lies between 0 and 1.

5. Application to the quadrature formula

The newly established results derived using generalized fractional integrals apply to the quadrature
formula and have significant applications in various fields requiring precise numerical integration. This
includes improving the accuracy of numerical solutions in computational physics, optimizing complex
systems in engineering, and enhancing financial models for better risk assessment and prediction. The
flexibility of fractional integrals in extending classical integral operators to non-integer orders provides
a robust tool for handling complex systems, offering deeper insights and improved computational tech-
niques. This advancement supports theoretical research and facilitates practical applications in scientific
and engineering domains.

Assume that I,, be the partition given by

Lica=xg<x1<x<...<X,_1<X,=D,

_ Xiv1 — X

h; ,i=0,1,2,...,n-1,

where n must be divisible by 4. Then, we have

b
f F () dx = Sy (I, F) + Ry (In/F),
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where
n-1

Sp(In,F) = % Z (xir1 — xi) [7F (x;) + 32F (x; + h) + 12F (x; + 2h)

+32F (x, +3h) + 7F (xi1)],

and remainder term satisfies the estimation

239 (xz+1 ’ ’
R, (I,,F) < 64802 F )+ Gl

We prove the following Proposition for the error bounds of Boole’s rule.

Proposition 5.1. Suppose that F : [a,b] — R be a differentiable mapping on (a, b) then we have

b
f F(x)dx =S, (I, F) + R, (I, F),

where
n-1

SillnF) = 55 Z (xi41 = %) [7F (xi) + 32F (x; + h) + 12F (x; + 2h)
+32F (xZ +3h) + 7F (xi1)],
I, be the partition given by
Liia=xg<x1 <X <...<X,_1<x,=Db,
h=T TN 20,12, 01,

4
The remainder term satisfies the condition

R (P < o Z st =50 1 ) 1 )],

foralli=0,1,2,...,n—-1.

Proof. Let us set things according to the situation
Xi+1 — Xi
4 7

wherei =0,1,2,...,n — 1. Then we have the following estimation

a=x,b=xi1,h=

‘91—0 (x,-+1 - x,‘) [7F (x,-) + 32F (x,‘ + h) + 12F (xi + 2]/1)

Xit1
32F (x; + 3h) + 7F (xivg)] - f F () dt

239
<
T 6480

After summing and by triangular inequality, we have

. _ .2
((x‘”4 *i) )[|F’ )|+ IF (xis)l], foralli=0,1,2,...,1n—1.

-1
lo 2 Xis1 = Xi) [7F () + 32F (x; + ) + 12F (x; + 2h)
i=0
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+32F (xi + 3h) +7F (x,-+1)] - f F(t) dt
Xi

n—1 2
239§ (i =% e
< Z; = [F ()l + F ()]

6480
Which is the required proof of the Proposition 5.1. [

Remark 5.2. Other propositions can be proved similarly, left for the interested reader.

6. Conclusion

In conclusion, this article has demonstrated the effectiveness of generalized fractional integrals in
establishing new identities and Boole’s type inequalities for differentiable mappings via generalized convex
functions. The newly proven identity is a valuable tool for further research in differential mapping,
providing insights into the behaviour of differentiable functions under fractional integration. Moreover,
the derived Boole’s type inequalities offer practical implications for studying generalized convex functions,
showcasing the utility of fractional calculus in addressing complex mathematical problems. Numerical
examples are provided to validate the newly established results, demonstrating their practical significance.
Fractional calculus extends the traditional concepts of differentiation and integration to non-integer orders,
offering a powerful tool for modelling complex systems in various scientific fields. By applying generalized
fractional integrals, this study reveals new inequalities for convex functions, providing deeper insights and
enhancing the computational techniques available for real-world applications. Researchers are encouraged
to explore the extension of generalized fractional integrals to multi-dimensional spaces and investigate
their applications in optimizing complex systems in applied mathematics and engineering.
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