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On Hyers–Ulam stability of a class of impulsive Hammerstein integral
equations
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Abstract. The objective of this study is to examine different types of stability results for a class of impulsive
Hammerstein integral equations. We provide adequate conditions for achieving Hyers–Ulam and Hyers–
Ulam–Rassias stability for impulsive Hammerstein integral equations. The consequent different cases of
a finite interval and an infinite interval are studied. Finally, a concrete example is given at the end of this
study for illustrations.

1. Introduction and Preliminaries

The idea of stability for various types of equations has been extensively investigated during the last
six decades. Particular attention has been given to the Hyers–Ulam stability and Hyers–Ulam–Rassias
stability of a wide range of functional equations, differential equations, and integral equations because
of their numerous applications, including those in elasticity, electronic devices, heat conduction, flow of
fluids, scattering theory, chemical reactions, and population dynamics, among other fields (see [1, 3, 4, 5, 6,
7, 9, 10]).

The initial results on this type of stability for functional equations stemmed from a well-known question
posed by S. M. Ulam [18] in 1940 regarding the necessity of some form of closeness between the solution
of a given equation and the solution of an equation that differs slightly from it. D. H. Hyers [13] provided
a partial answer to Ulam’s question for Banach spaces in the case of the additive Cauchy equation [13]. In
1978, T. M. Rassias [22] introduced new directions to stability analysis, leading to what is now known as
Hyers–Ulam–Rassias stability.

Accordingly, the Hammerstein integral equation is stable in the Hyers–Ulam sense if, for every function
that approximately satisfies the Hammerstein integral equation, there exists a solution of the equation
that is close to it. This implies that the stability of the Hammerstein integral equations concerns how the
solutions of the inequality deviate from those of the considered Hammerstein integral equation. Despite
extensive research on several types of equations, there are relatively few studies on these types of stability
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for integral equations; in particular, only a limited number address the stability of Hammerstein integral
equations.

Currently, based on the existing literature, we will summarize a few relevant results related to the con-
tent of this study in the following lines. As a starting point in the relevant literature, the first work on Ulam
stability was introduced in the context of functional equations by S. M. Ulam; see [18]. In 2007, Jung [14]
used the fixed point method to study the uniqueness of the solution and the Hyers–Ulam–Rassias stability
of the Volterra integral equation. Indeed, Jung’s work [14] served as a starting point in the literature for
subsequent studies on Ulam stabilities of integral equations.

In 1993, Guo [10] proved several existence theorems for external solutions to nonlinear impulsive
Volterra integral equations on a finite interval in Banach spaces, considering a finite number of moments of
impulsive effects. He also provided applications to initial value problems for first-order impulsive differen-
tial equations in Banach spaces. Furthermore, the existence of solutions for systems of nonlinear impulsive
Volterra integral equations on an infinite interval, with an infinite number of moments of impulsive effects
in Banach spaces, was studied. These investigations are significant, as many problems in applied mathe-
matics involve systems of differential or integral equations.

K. Balachandran et al. [5] established several important results in Banach spaces for fractional impulsive
integro-differential equations. Recently, the Hyers–Ulam stability of integral equations has gained signif-
icant attention. In 2015, L. Hua et al. [23] studied the Hyers–Ulam stability of certain types of Fredholm
integral equations. Similarly, in 2017, L. P. Castro and A. M. Simoes [24] investigated the Hyers–Ulam and
Hyers–Ulam–Rassias stability of a class of Hammerstein integral equations.

The concept of Hyers–Ulam stability is highly valuable in various fields, including economics, biology,
numerical analysis, and optimization, as it is often challenging to determine exact solutions for such physi-
cal problems. This concept has been extensively applied in the study of differential and integral equations.
For some recent works, see [1, 8, 11, 12, 15, 16, 19–21] and the references therein.

The stability of impulsive Hammerstein integral equations is a topic of significant interest within the
mathematical community due to its connections with nonlinear dynamics, functional analysis, and the
study of systems that exhibit sudden changes or ”impulses.” Impulsive effects frequently arise in vari-
ous real-world scenarios, such as biological systems, control theory, and mechanical systems experiencing
discontinuities or shocks. When these impulsive behaviors are integrated into the framework of the Ham-
merstein integral equation, the problem becomes considerably more complex. The interplay between the
nonlinear integral operator and the impulsive dynamics necessitates advanced mathematical techniques
for stability analysis.

Investigating stability involves analyzing how solutions respond to small perturbations or initial dis-
turbances and determining whether they converge toward equilibrium or exhibit unbounded growth.
Addressing these challenges often requires tools from fixed-point theory, functional analysis, and Lya-
punov’s direct method to establish stability criteria for impulsive systems (see [28], [29]).

Furthermore, several interesting results related to Ulam stability, Lyapunov stability, and other qual-
itative behaviors of solutions for various classes of integrodifferential equations, integral equations, and
related problems have been discussed by Chauhan et al. [30], Deep et al. [31], Gãvru̧ta [32], Graef and Tunç
[33], Hammami and Hnia [34], Murail et al. [35], Alinejad et al. [36], Abdollahpour et al. [37], [38], Aczel
et al. [39], Czerwik [40], and in the books or articles cited in these sources.

In this work, we will focus on analyzing the Hyers–Ulam and Hyers–Ulam–Rassias stability for the
following class of impulsive Hammerstein integral equations:

y(x) = p(x) + f (x, y(x))
∫ x

a
1(x, τ)h(τ, y(τ)) dτ +

∑
a<xk<b

Ik(y(x−k )), (1)

where a and b are fixed real numbers, and p : [a, b] → C, f : [a, b] × C → C, and h : [a, b] × C → C are
continuous functions. The kernel 1 : [a, b] × [a, b] → C is also a continuous function. For all x ∈ [a, b],
Ik : C → C for k = 1, 2, . . . ,m, and y(x−k ) represents the left-hand limit of y(x) at x = xk. This segment
briefly discusses some basic concepts from the literature. For a nonempty set X, we introduce the definition
of generalized metric on X as follows:
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Definition 1.1 ([2]). A mapping d : X × X→ [0,∞] is called a generalized metric on set X if and only if d holds:
(C1) d(x, y) = 0 if and only if x = y;
(C2) d(x, y) = d(y, x) for all x, y ∈ X;
(C3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Next, we recall the main result of J. B. Diaz and B. Margolis [9], with the help of which we will be able to
prove our main results.

Theorem 1.2 ([9]). Let (X, d) be a generalized complete metric space. Assume that T : X→ X is a strictly contractive
operator with L < 1, where L is a Lipschitz constant. If there exists a nonnegative integer k such that d(Tk+1x,Tkx) < ∞
for some x ∈ X, then the following are true:
(a) The sequence Tnx converges to a fixed point x∗ of T;
(b) x∗ is the unique fixed point of T in

X∗ =
{
y ∈ X | d(Tkx, y) < ∞

}
;

(c) If y ∈ X∗, then

d(y, x∗) ≤
1

1 − L
d(Ty, y). (2)

Now, we give the definitions of Hyers–Ulam–Rassias and Hyers–Ulam stability of impulsive Hammerstein
integral equation (1).

Definition 1.3. If for each continuously differentiable function y(x) satisfying∣∣∣∣y(x) − p(x) − f (x, y(x))
∫ x

a
1(x, τ)h(τ, y(τ))dτ −

∑
a<xk<x

Ik(y(x−k )
∣∣∣∣ ≤ σ(x),

for some σ : I → (0,∞), there exists a solution y0(x) of the impulsive Hammerstein integral equation (1) and a
constant K > 0 with ∣∣∣∣y(x) − y0(x)

∣∣∣∣ ≤ Kσ(x),

for all x ∈ I, where K is independent of y(x) and y0(x), then we say that the impulsive Hammerstein integral equation
(1) has the Hyers–Ulam–Rassias stability. If σ(x) is a constant function in the above inequalities, we say that the
impulsive Hammerstein integral equation (1) has the Hyers–Ulam stability.

In the current work, using the idea of Cǎdariu and Radu [22], we will study the Ulam–type stability results
of the impulsive Hammerstein integral equation (1).

2. Hyers–Ulam–Rassias stability in the finite Interval Case

This section presents the necessary conditions for the Hyers–Ulam–Rassias stability of the impulsive
Hammerstein integral equation (1), where x ∈ [a, b], for some fixed real numbers a and b.

We will use the space C([a, b]) of continuous functions on [a,b], provided with the metric ([25])

d(u, v) = sup
x∈[a,b]

|u(x) − v(x)|
σ(x)

, (3)

where σ is a non-decreasing continuous function σ : [a, b] → (0,∞). Recall that (C([a, b]), d) is a complete
metric space (cf., e.g.,([26]), ([27])).
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Theorem 2.1. Let us consider a continuous given function µ: [a, b]→ [0,∞). Moreover, suppose that p : [a, b]→ C
is a continuous function, f : [a, b] × C→ C is a continuous function such that there exists M > 0 so that

M = sup
x∈[a,b]

| f (x, y)|, y ∈ C,

and the kernal 1 : [a, b] × [a, b]→ C is also continuous. In addition, suppose that there is β ∈ [0, 1) such that∫ x

a
|1(x, τ)|µ(τ)σ(τ)dτ ≤ βσ(x)

and h : [a, b] × C→ C is a continuous function which fulfils the condition

|h(x,u(x)) − h(x, v(x))| ≤ µ(x)|u(x) − v(x)|

for all x ∈ [a, b] and u, v ∈ C([a, b]).
Moreover, Ik : C→ C and there exists a constant L > 0 such that

|Ik(u(x)) − Ik(v(x))| ≤ L|u(x) − v(x)|

for all u, v ∈ C([a, b]).
If y ∈ C([a, b]) is such that∣∣∣∣y(x) − p(x) − f (x, y(x))

∫ x

a
1(x, τ)h(τ, y(τ))dτ −

∑
a<xk<x

Ik(y(x−k ))
∣∣∣∣ ≤ σ(x), (4)

for all x ∈ [a, b] and Mβ + L < 1, then there exists a unique function y0 ∈ C([a, b]) such that

yo(x) = p(x) + f (x, yo(x))
∫ x

a
1(x, τ)h(τ, yo(τ))dτ +

∑
a<xk<x

Ik(yo(x−k ))

and

|y(x) − yo(x)| ≤
σ(x)

1 − (Mβ + L)
(5)

for all x ∈ [a, b].
This means that under the above conditions, the impulsive Hammerstein integral equation (1) exhibits Hyers–

Ulam–Rassias stability.

Proof. We will consider the operator Ω : C([a, b])→ C([a, b]), defined by

(Ωu)(x) = p(x) + f (x,u(x))
∫ x

a
1(x, τ)h(τ,u(τ))dτ +

∑
a<xk<x

Ik(u(x−k )),

for all x ∈ [a, b] and u ∈ C([a, b]). Note that for any continuous function u, Ω(u) is also continuous. Indeed,

|(Ωu)(x) − (Ωu)(xo)| =
∣∣∣∣p(x) + f (x,u(x))

∫ x

a
1(x, τ)h(τ,u(τ))dτ +

∑
a<xk<x

Ik(u(x−k )) − p(xo)

− f (xo,u(xo))
∫ xo

a
1(xo, τ)h(τ,u(τ))dτ −

∑
a<x0k<x0

Ik(u(x−0k
))
∣∣∣∣



R. Shah et al. / Filomat 39:7 (2025), 2405–2416 2409

≤

∣∣∣∣p(x) − p(x0)
∣∣∣∣ + ∣∣∣∣ f (x,u(x))

∫ x

a
1(x, τ)h(τ,u(τ))dτ +

∑
a<xk<x

Ik(u(x−k ))

− f (xo,u(xo))
∫ xo

a
1(xo, τ)h(τ,u(τ))dτ −

∑
a<x0k<x0

Ik(u(x−0k
))
∣∣∣∣

≤

∣∣∣∣p(x) − p(xo)
∣∣∣∣ + ∣∣∣∣ f (x,u(x))

∫ x

a
1(x, τ)h(τ,u(τ))dτ

− f (xo,u(xo))
∫ xo

a
1(xo, τ)h(τ,u(τ))dτ

∣∣∣∣
+
∣∣∣∣ ∑

a<xk<x

Ik(u(x−k )) −
∑

a<x0k<x0

Ik(u(x−0k
))
∣∣∣∣

≤

∣∣∣∣p(x) − p(xo)
∣∣∣∣ +M

∣∣∣∣ ∫ x

a
1(x, τ)h(τ,u(τ))dτ −

∫ x0

a
1(x0, τ)h(τ,u(τ))dτ

∣∣∣∣
+
∣∣∣∣ ∑

a<xk<x

Ik(u(x−k )) −
∑

a<x0k<x0

Ik(u(x−0k
))
∣∣∣∣

≤

∣∣∣∣p(x) − p(xo)
∣∣∣∣ +M

∣∣∣∣ ∫ x

a
1(x, τ)h(τ,u(τ))dτ −

∫ x

a
1(xo, τ)h(τ,u(τ))dτ

+

∫ x

a
1(x0, τ)h(τ,u(τ))dτ −

∫ xo

a
1(xo, τ)h(τ,u(τ))dτ

∣∣∣∣
+
∣∣∣∣ ∑

a<xk<x

Ik(u(x−k )) −
∑

a<x0k<x0

Ik(u(x−0k
))
∣∣∣∣

≤ |p(x) − p(xo)| +M
( ∫ x

a
|1(x, τ) − 1(xo, τ)||h(τ,u(τ))|dτ

+
∣∣∣∣ ∫ x

xo

1(xo, τ)h(τ,u(τ))dτ
∣∣∣∣) + ∣∣∣∣ ∑

a<xk<x

Ik(u(x−k )) −
∑

a<x0k<x0

Ik(u(x−0k
))
∣∣∣∣→ 0

when x→ xo.
Based on the present conditions, we can conclude that the operator Ω is strictly contractive (for the

given metric). For all u, v ∈ C([a, b]), we have,

d(Ω(u),Ω(v)) = sup
x∈[a,b]

|(Ω(u))(x) − (Ω(v))(x)|
σ(x)

≤ M sup
x∈[a,b]

∫ x

a |1(x, τ)||h(τ,u(τ)) − h(τ, v(τ))|dτ

σ(x)
+ sup

x∈[a,b]

∑
a<xk<x Ik[u(x−k ) − v(x−k )]

σ(x)

= M sup
x∈[a,b]

∫ x

a |1(x, τ)|µ(τ)σ(τ) |u(τ)−v(τ)|
σ(τ) dτ

σ(x)
+ L sup

x∈[a,b]

|u(x) − v(x)|
σ(x)

≤ M sup
τ∈[a,b]

|u(τ) − v(τ)|
σ(τ)

sup
x∈[a,b]

∫ x

a |1(x, τ)|µ(τ)σ(τ)dτ

σ(x)
+ L sup

x∈[a,b]

|u(x) − v(x)|
σ(x)

≤ (Mβ + L)d(u, v).

Due to the fact that Mβ + L < 1 it follows that Ω is strictly contractive. Using the above mentioned Banach
fixed point theorem, the impulsive Hammerstein integral equation achieves Hyers–Ulam–Rassias stability.
Additionally, (5) follows from (4) and (2).
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3. Hyers–Ulam–Rassias stability in the infinite Interval Case

This subsection focuses on the Hyers–Ulam–Rassias stability of the impulsive Hammerstein integral
equation across infinite intervals. This means that instead of considering, as before, a finite interval [a, b]
(with a, b ∈ R), we will now consider e.g. corresponding intervals [a,∞), for some fixed a ∈ R.

Thus, we will now be dealing with the integral equation

y(x) = p(x) + f (x, y(x))
∫ x

a
1(x, τ)h(τ, y(τ))dτ +

∑
a<xk<x

Ik(y(x−k )), (6)

for all x ∈ [a,∞) where a is a fixed real number, p : [a,∞)→ C and f : [a,∞)×C→ C are bounded continuous
functions, and h : [a,∞)×C→ C and the kernel 1 : [a,∞)× [a,∞)→ C are continuous functions. Moreover,
Ik : C → C, k = 1, 2, . . . ,m and y(x−k ) represents the left limit of y(x) at x = xk. Our technique relies on a
recurrence procedure, as the result for the finite interval situation is already available.

Let us consider a fixed non-decreasing continuous function ϕ : [a,∞)→ (ϵ, η), for some ϵ, η > 0, and the
space Cb([a,∞)) of bounded continuous functions endowed with the weighted metric ([25])

db(u, v) = sup
x∈[a,∞)

|u(x) − v(x)|
ϕ(x)

.

Theorem 3.1. Let us consider a continuous given function µ : [a,∞)→ [0,∞). Further, assume that p : [a,∞)→ C
is a bounded continuous function, f : [a,∞) × C→ C is a continuous function such that there exists M > 0 so that

M = sup
x∈[a,∞)

| f (x, y)|, y ∈ C,

and the kernel 1 : [a,∞)× [a,∞)→ C and h : [a,∞)×C→ C are continuous functions so that
∫ x

a 1(x, τ)h(τ, z(τ))dτ
is a bounded continuous function for any bounded continuous function z.

In addition, suppose that there is β ∈ [0, 1) such that∫ x

a
|1(x, τ)|µ(τ)φ(τ)dτ ≤ βφ(x)

and h : [a,∞) × C→ C is a continuous function which fulfills the condition

|h(x,u(x)) − h(x, v(x))| ≤ µ(x)|u(x) − v(x)|

for all x ∈ [a,∞) and u, v ∈ Cb([a,∞)).
Moreover, Ik : C→ C and there exists a constant L > 0 such that

|Ik(u(x)) − Ik(v(x))| ≤ L|u(x) − v(x)|

for all u, v ∈ Cb([a,∞)).
If y ∈ Cb([a,∞)) is such that∣∣∣∣y(x) − p(x) − f (x, y(x))

∫ x

a
1(x, τ)h(τ, y(τ))dτ −

∑
a<xk<x

Ik(y(x−k ))
∣∣∣∣ ≤ φ(x),

for all x ∈ [a,∞) and Mβ + L < 1, then there exists a unique function yo ∈ Cb([a,∞)) such that

yo(x) = p(x) + f (x, yo(x))
∫ x

a
1(x, τ)h(τ, yo(τ))dτ +

∑
a<xk<x

Ik(yo(x−k )) (7)
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and

|y(x) − yo(x)| ≤
φ(x)

1 − (Mβ + L)
(8)

for all x ∈ [a,∞).
Under the given conditions, the Impulsive Hammerstein integral equation (1) exhibits Hyers–Ulam–Rassias

stability.

Proof. For any n ∈ N, we will define In = [a, a + n]. By Theorem (2.1), there exists a unique bounded
continuous function yo,n : In → C such that

yo,n(x) = p(x) + f (x, yo,n(x))
∫ x

a
1(x, τ)h(τ, yo,n(τ))dτ +

∑
a<xk<x

Ik(yo,n(x−k )) (9)

and

|y(x) − yo,n(x)| ≤
φ(x)

1 − (Mβ + L)
(10)

for all x ∈ In. The uniqueness of yo,n implies that if x ∈ In then

yo,n(x) = yo,n+1(x) = yo,n+2(x) = · · · . (11)

For any x ∈ [a,∞), let us define n(x) ∈N as n(x) = min{n ∈N | x ∈ In}. We also define a function yo : [a,∞)→
C by

yo(x) = yo,n(x)(x). (12)

For any x1 ∈ [a,∞), let n1 = n(x1). Then x1 ∈ IntIn1+1 and there exists an ϵ > 0 such that y0(x) = y0,n1+1(x) for
all x ∈ (x1 − ϵ, x1 + ϵ). By Theorem (2.1), y0,n1+1 is continuous at x1, and so it is y0.

Now, we will prove yo satisfies

yo(x) = p(x) + f (x, yo(x))
∫ x

a
1(x, τ)h(τ, yo(τ))dτ +

∑
a<xk<x

Ik(yo(x−k ))

and

|y(x) − yo(x)| ≤
φ(x)

1 − (Mβ + L)
(13)

for all x ∈ [a,∞). For an arbitrary x ∈ [a,∞) we choose n(x) such that x ∈ In(x). By (9) and (12), we have

yo(x) = yo,n(x)(x) (14)

= p(x) + f (x, yo,n(x)(x))
∫ x

a
1(x, τ)h(τ, yo,n(x)(τ))dτ +

∑
a<xk<x

Ik(yo,n(x)(x−k ))

= p(x) + f (x, yo(x))
∫ x

a
1(x, τ)h(τ, yo(τ))dτ +

∑
a<xk<x

Ik(yo(x−k )).

Note that n(τ) ≤ n(x), for any τ ∈ In(x), and it follows from (11) that yo(τ) = yo,n(τ)(τ) = yo,n(x)(τ), so, the last
equality in (14) holds.

To prove (13), by (12) and (10), we have for all x ∈ [a,∞),

|y(x) − yo(x)| = |y(x) − yo,n(x)(x)| ≤
φ(x)

1 − (Mβ + L)
.



R. Shah et al. / Filomat 39:7 (2025), 2405–2416 2412

Finally, we will prove the uniqueness of yo. Let us consider another bounded continuous function y1 which
satisfies (7) and (8), for all x ∈ [a,∞). By the uniqueness of the solution on In(x) for any n(x) ∈ N we have
that yo|In(x) = yo,n(x) and y1|In(x) satisfies (7) and (8) for all x ∈ In(x), so

yo(x) = yo|In(x) (x) = y1|In(x) (x) = y1(x).

4. Hyers–Ulam stability in the finite interval case

This section provides adequate requirements for the Hyers–Ulam stability of the impulsive Hammerstein
integral equation (1). For a given non-decreasing continuous function σ : [a, b]→ (0,∞), we shall utilize the
same metric (3).

Theorem 4.1. Let us consider a continuous given function µ : [a, b]→ [o,∞).Moreover, assume that p : [a, b]→ C
is a continuous function, f : [a, b] × C→ C is a continuous function such that there exists M > 0 so that

M = sup
x∈[a,b]

| f (x, y)|, y ∈ C,

and the kernel 1 : [a, b] × [a, b]→ C is also continuous. In addition, suppose that there is β ∈ [0, 1) such that∫ x

a
|1(x, τ)|µ(τ)σ(τ)dτ ≤ βσ(x)

and h : [a, b] × C→ C is a continuous function which fulfills the condition

|h(x,u(x)) − h(x, v(x))| ≤ µ(x)|u(x) − v(x)|

for all x ∈ [a, b] and u, v ∈ C([a, b]).
Moreover, Ik : C→ C and there exists a constant L > 0 such that

|Ik(u(x)) − Ik(v(x))| ≤ L|u(x) − v(x)|

for all u, v ∈ C([a, b]).
If y ∈ C([a, b]) is such that∣∣∣∣y(x) − p(x) − f (x, y(x))

∫ x

a
1(x, τ)h(τ, y(τ))dτ −

∑
a<xk<x

Ik(y(x−k ))
∣∣∣∣ ≤ θ, x ∈ [a, b], (15)

where θ ≥ 0 and Mβ + L < 1, then there is a unique function yo ∈ C([a, b]) such that

yo(x) = p(x) + f (x, yo(x))
∫ x

a
1(x, τ)h(τ, yo(τ))dτ +

∑
a<xk<x

Ik(yo(x−k ))

and

|y(x) − yo(x)| ≤
θ

1 − (Mβ + L)
(16)

for all x ∈ [a, b].
This means that under the above conditions, the impulsive Hammerstein integral equation (1) has the Hyers–Ulam

stability.
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Proof. We will consider the operator T : C([a, b])→ C([a, b]), defined by

(Tu)(x) = p(x) + f (x,u(x))
∫ x

a
1(x, τ)h(τ,u(τ))dτ +

∑
a<xk<x

Ik(u(x−k ))

for all x ∈ [a, b] and u ∈ C([a, b]).
T is strictly contractive (with respect to the metric under consideration). Indeed, for all u, v ∈ C([a, b]),

we have,

d(Tu,Tv) = sup
x∈[a,b]

|(Tu)(x) − (Tv)(x)|
σ(x)

≤ M sup
x∈[a,b]

∫ x

a |1(x, τ)||h(τ,u(τ)) − h(τ, v(τ))|dτ

σ(x)
+ sup

x∈[a,b]

∑
a<xk<x Ik|u(x−k ) − v(x−k )|

σ(x)

= M sup
x∈[a,b]

∫ x

a

|1(x, τ)|µ(τ)σ(τ) |u(τ)−v(τ)|
σ(τ) dτ

σ(x)
+ L sup

x∈[a,b]

|u(x) − v(x)|
σ(x)

≤ M sup
τ∈[a,b]

|u(τ) − v(τ)|
σ(τ)

sup
x∈[a,b]

∫ x

a |1(x, τ)|µ(τ)σ(τ)dτ

σ(x)
+ L sup

x∈[a,b]

|u(x) − v(x)|
σ(x)

≤ (Mβ + L)d(u, v).

Due to the fact that Mβ+ L < 1 it follows that T is strictly contractive. Thus, again we can apply the Banach
fixed point theorem, which ensures that we have the Hyers–Ulam stability for the impulsive Hammerstein
integral equation with (16) being obtained by using (2) and (15).

5. Illustrative example

To demonstrate that the conditions described above are attainable, we will provide an example. First,
we will make some considerations about the solution of our equation.

Example 5.1. Let us consider the impulsive integral equation

y(x) = x −
x
2

ln
(x + 1

2

)
+

xy(x)
2

∫ x

1

1
x + τ

y(τ)
τ2 dτ +

∑
1< 5

4<x

|y( 5−
4 )|

3 + |y( 5−
4 )|
, (17)

for any x ∈ [1, 2] and the continuous given function µ : [1, 2] → [0,∞) such that µ(x) = 1
x . We know that the

exact solution of this equation is yo(x) = x.We can see that all the conditions of Theorem (2.1) are satisfied. In fact,
p : [1, 2]→ C such that

p(x) = x −
x
2

ln
(x + 1

2

)
is a continuous function; f : [1, 2] × C → C such that f (x, y(x)) = xy(x)

2 is a continuous function where
supx∈[1,2] | f (x, y(x))| ≤ 2 =M; the kernel 1 : [1, 2] × [1, 2]→ C, given by 1(x, τ) = 1

x+τ , is a continuous; there exists
β ∈ [0, 1) such that ∫ x

1
|1(x, τ)|µ(τ)σ(τ)dτ =

∫ x

1

∣∣∣∣ 1
x + τ

∣∣∣∣1ττdτ = ln
2x

x + 1
≤ ln

4
3

x = βσ(x),
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where σ : [1, 2] → (0,∞) is a non-decreasing continuous function σ(x) = x, and h : [1, 2] × C → C such that
h(τ, y(τ)) = y(τ)

τ2 is a continuous function which fulfills the condition

|h(x,u(x)) − h(x, v(x))| =
∣∣∣∣u(x)

x2 −
v(x)
x2

∣∣∣∣
=

1
x2 |u(x) − v(x)|

≤
1
x
|u(x) − v(x)|

= µ(x)|u(x) − v(x)|,

for all x ∈ [1, 2].
Moreover,

Ik(y(x−k )) = △y |x=xk ,

so that,

∆y |x= 5
4
= Ik(y(

5
4

−

)) =
|y( 5

4
−)|

3 + |y( 5
4
−)|
.

Clearly,

|Ik(u) − Ik(v)| =
∣∣∣∣ u
3 + u

−
v

3 + v

∣∣∣∣
=
∣∣∣∣ (u)(3 + v) − (v)(3 + u)

(3 + u)(3 + v)

∣∣∣∣
=
∣∣∣∣3u + uv − 3v − uv

(3 + u)(3 + v)

∣∣∣∣
=

3|u − v|
(3 + u)(3 + v)

≤
1
3
|u − v|.

Note that L = 1
3 . If we choose y(x) = x

0.3 , it follows,∣∣∣∣y(x) − p(x) − f (x, y(x))
∫ x

a
1(x, τ)h(τ, y(τ))dτ −

∑
a<xk<x

Ik[y(x−k )]
∣∣∣∣

=
∣∣∣∣17

6
−

50
9

ln
x + 1

2
−

1
0.9 + x

∣∣∣∣x
≤

∣∣∣∣17
6
−

50
9

ln
3
2
−

10
29

∣∣∣∣x ≤ x = σ(x), x ∈ [1, 2].

This exhibits the Hyers–Ulam–Rassias stability of the impulsive Hammerstein integral equation (17). In addition,
having in mind the exact solution yo(x) = x and Mβ + L = 2 × ln 4

3 +
1
3 ≈ 0.090869 < 1, we have

|y(x) − yo(x)| =
∣∣∣∣ x
0.3
− x
∣∣∣∣ ≤ σ(x)

1 − (Mβ + L)
=

x
1 − (2 × ln 4

3 +
1
3 )
, x ∈ [1, 2].

6. Conclusion

In this study, the impulsive Hammerstein integral equation was considered. We developed new suffi-
cient criteria for the impulsive Hammerstein integral equation’s for Hyers–Ulam–Rassias stability on finite
and infinite intervals, as well as its Hyers–Ulam stability on finite intervals. An example was provided to
demonstrate the numerical application of the results.
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