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Ulam-Hyers stability of higher dimensional weakly singular Volterra
integral equations

Rahim Shah?®", Earige Tanveer®

?Department of Mathematics, Kohsar University Murree, Murree, Pakistan

Abstract. Using the Gronwall lemma method, we prove the Ulam-Hyers and Ulam-Hyers—Rassias
stability of higher-dimensional weakly singular Volterra integral equations. To highlight the practical use
of the theoretical results, two examples are presented.

1. Introduction And Preliminaries

A functional equation is considered stable if an exact solution can be found that is near each approximate
solution. The notion of stability was first presented by S. M. Ulam [7] in 1940 and subsequently developed
into a central concept in mathematical analysis. The purpose was to determine whether or not there exists
a functional equation with an approximate solution that is as close to the exact solution as is practical. This
difficulty was partially addressed for Banach spaces in 1945 by D. H. Hyers (see [9]), specifically for the
additive Cauchy equation f(x + C) = f(x) + f(C), giving rise to the Ulam-Hyers stability. Th. M. Rassias
[3] built upon Hyers’s work in the 1970s, adding new concepts and establishing the Ulam-Hyers—Rassias
stability. The contributions made by Rassias [4] significantly expanded the field of stability research, leading
to a number of generalizations and applications.

The stability principle developed by Ulam—Hyers has been extended and used to a wide range of math-
ematical disciplines, covering differential equations, differentiation equations, and numerous branches of
analysis. These ideas are widely used in domains such as control theory and mathematical physics, where
they contribute to the stability of physical models (see [2],[10],[11], [13], [15], [16], [17]). It provides a
valuable foundation for understanding how slight changes in input or function may be handled without
affecting the system’s stability. Numerous strategies and techniques are used while trying to find exact
and approximate solutions to mathematical problems, particularly those involving differential and integral
equations (see for example [2], [5], [10], [12]). In this paper, we shall employ the Gronwall lemma. It
demonstrates that an approximate solution converges to a single exact solution. This is crucial in many
stability issues, notably those involving integral or differential equations (see [1], [2], and [8]).
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Motivated by the stability theories (see [1], [2], [8]) this research examine the subsequent higher-
dimensional weakly singular Volterra integral equation.

X1
I, x2xn) = a+ f Vi(x1 = C)Ki(Cr, X2, - Xn) 3 (G, X2, - Xn)ACh
0
X1 X2
+f f Va(x2 — C2)Ka(C1, G2, X3---Xn) I(C1, Cop X300 Xn)AC1, dCo + .. 1)
o Jo

X1 X2 'Xn
+ f f f Vn(Xn - CH)KH(Cl/ CZ/ C3~-Cn)s(c1/ CZ/ C3---Cn)dC1/ dCZ'--anr
0 0 0

where

a>0,b>0,i=1,2.n, D= H[O,bi] and K; € C(D).
i=1
and V;(x; — ;) € C(D), Vx; # (; is the weakly singular part and Pk, > 0 is so that:

|Ki(x)| < Px,,Yx€D,i=1,2,..n.

We also define an operator O : C(D) — C(D) so that

X1
OB)(X1, X2, -Xu) = a+f Vi(x1 = C)Ki(Cr, X2, - Xn) 3(C1, X2, -+ Xn)dCa
0
X1 X2
+f f Va(xz = ©)Ka(Cr, G2 X3--Xn) 3 (G, Co X3 Xn)ACr, dCo + ..
o Jo

X1 X2 Xn
e [ Ve~ GG G G E) T, G e
0 0 0

Weakly singular Volterra integral equations are useful in many scientific and engineering domains because
they can be used in any scenario in which the current state of a system is determined by a range of previous
states or historical impacts [11]. First, we cover the fundamentals of Picard operators theory. Our results are
connected to resent paper (see Lungu [1]). The Gronwall lemmas (Lemma 1.3, Lemma 1.4) will be applied
to determine Ulam-Hyers and Ulam-Hyers—Rassias stability. For each situation, we will present examples
that demonstrate the uses of Ulam-Hyers and Ulam-Hyers—Rassias stability.

Our work is structured as follows: initially, we will go over some formal definitions, basic findings, and
lemmas that aids in the illustration of our findings. We shall demonstrate (1)’s Ulam-Hyers stability in
section 2. For equation (1), the Ulam—Hyers—Rassias stability will be presented in section 3. Section 4 will
include a few illustrative cases that will align with our findings. The conclusion will be given in the end.

We will now present the formal definitions of the stabilities discussed earlier for the higher-dimensional
weakly singular Volterra integral equation. To confirm the Ulam-Hyers and Ulam-Hyers-Rassias stability
of this equation, the following definitions, theorems, and lemmas are crucial.

Definition 1.1. In terms of €, equation (1) is considered Ulam—Hyers stable if a constant Gx > 0 exists with the
condition that, for every solution 3 € C(D) of the inequality

X1
S0t xa ) 0= [ Vil = K k)T M
0
X1 X2
- f f Va(x2 = C)Ka(Cr, Co, X3 Xn) I(Ca, Cop X300 Xn)ACh, AT — ..
0o Jo

X1 X2 Xn
—f f f Vu(tn = Co)Kn(Cr, G2, G5..C0) 3(Gh, G, Gs..Cy)dCa, dCo..dCy | < €
o Jo 0
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For equation (1), there is a solution 3* € C(D) such that

|S(Xer2r'*'X1’l) - S*(XerZr"'XTlN < GK'erVXerZr"-Xn €D.

Definition 1.2. In terms of Y(x1, X2, ..-Xn), equation (1) is considered Ulam—Hyers—Rassias stable if a constant
G > 0 exists with the condition that, for every solution 3 € C(D) of the inequality

X1
‘5()(1,)(2---)(;7) -—a- f Vi(x1 — GQ)Ki(Ci, x2, - Xn) 3G, X2, - Xn)dAC
0
X1 X2
- f f Va(xz2 — C)Ka(Ch, G2 X3--Xn) I(Ca, Qs X3e--Xn)ACe, AT, — ..
0o Jo

X1 X2 "Xn
- f f f Vi(xn — C)Ku(Gr, G, C3...Cn) I(Ca, Co, G318 )d Gy, dGo...dTy | < Y(X1, X20 - Xn)
0 Jo 0
For equation (1), there is a solution 3* € C(D) such that:

301, X2 oXn) = T (1, X2s Xn)| < GrP(X1, X2, - Xn), VX1, X2, ooXin € D

Lemma 1.3. ([18])). Let (Y, —, <) be an ordered L-space and O from Y to itself be an operator. Assume that:
(i) O is picard operator (Fo = {xp});
(ii) O is an increasing operator.

Consequently, we obtain:

@xeYx < O(x) = x <xy

BxeY,x = OX) = x = xp-

Lemma 1.4. ([19])) Let (Y, =, <) be an ordered L-space and O, Oy from Y to itself be two operators. Assume that:
(i) O and O are picard operators;
(ii) O is an increasing operator;
(iii) O < Oq.

Consequently, we obtain:

X <O(X) = x<Xxp S Xo,

Lemma 1.5. ([19]) Let (Y, —, <) be an ordered L-space and O, O, from Y to itself be two operators. Assume that:
(i) O and O are picard operators;
(ii) O is an increasing operator;
(iii) x = O(x) = x < O1(x)
Consequently, we obtain:
X<0() = x < xp,-

Theorem 1.6. ([1]) Let a > 0, K; € C(D,R+), i = 1,2, ...n. subsequently,

(a) 3*(x1, X2, --xn) > 0,Y X1, X2, - Xn € D;
(b) If Ki(x1, X2, ---Xn) increases with regard to xXis1, ..., Xn then, 3* is increasing, where 3* is the only solution for the
equation (1).

2. Ulam-Hyers stability

This section aims to establish the Ulam-Hyers stability of the higher dimensional weakly singular
Volterra integral equation through the use of the Gronwall lemma. We will also include an example for a
particular case to showcase how Theorem 2.1 and Theorem 3.1 can be applied.

Theorem 2.1. Assume that
(1) K; € (C(D), R+), i =1,2,..nand let Px, > 0, so that

IKi(x)| < Px,,Vx€D,i=1,2,..n.
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Subsequently:
(a) The unique solution 3* for equation (1.1) exists within C(D);
(b) For each e >0, if 3 € C(D) is the solution of inequation

X1
|S(X1/X2~-'Xn) —a- f Vi(xa = Q)Ki(Gr, X2, - Xn) B(Ch, X2 o Xn)A G
0
X1 X2
- f f Valta - QKa(Ca, G X3)S(Co, Cay Ko, A
o Jo

X1 X2 'Xn
e [ [ i = K G G IS, G o, ot < €V € D.
0 0 0

Then:
13(x) = 3"(0)I < Gk,

forall x € D, where,
Gk = exp(PKl .C1.b1 + PKZ-Cz-ble + ...+ PK”-Cnble---bn)-

i.e., the equation is Ulam—Hyers stable.

Proof. (a) This result is well established (see [1],[2]).
(b) Let us consider:
1301, x2--xn) = (X1, X2 x0)

X1
1F(x1, x2--x0) = I (X1, X2 Xn)l = ‘S(Xll)(Zan) -—a-— fo Vilx1 — QK& x2, - Xn) I (Ca, X2y oo Xn)AC
X1 X2
—f f Vo(x2 = Q)Ka(Ca, Cop X34 Xn) I (C1, Co, X30--Xn)AC1, ATy
0 0

X1 X2 Xn
u f f f Valitn = K, Ca, G531, Co, G )i, .. C,
0 0 0

From Lemma 1.4 and Lemma 1.5

X1
< ‘S(XerZ---Xn)_a_f Vi(x1 = Q)Ki(Ga, X2, - Xn) (G, X2p o Xn)AC
0
X1 X2
- f f Va(xa = C2)K2(Ca, G2y X34 Xn) I (C1, Cop X3 X ) C1, A Do
0o Jo
X1 X2 'Xn
—f f f Vi(xn — C)Kau(Gr, G, G3...Cn) I(Ca, Co, G3...Ci)d T, AG,...AT,
0o Jo 0

+

X1
f Vit = CKa(Co, X2, )3 C 2 )G
0
X1 X2
+ f f Va(xz = ©)Ka(Cr, G2 X3 Xn) I (Ca, G2 X3 Xn)ACh, AT
0o Jo
X1 X2 'Xn
+... f f Vn()(n - Cn)Kn(Cll CZ; C3-~-Cn)s(C1/ CZ; C3-~-Cn)dC1/ dCZdCrz
0o Jo 0

X
—f Vi(x1 = CQ)K(Cy, X2, X)) B7(C1, X2, - Xn)dCa
0
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X1 X2
—f f Va(x2 = &)Ka(Cr, Co, X3---Xn) I7(Ca, Co, X3 Xn)AC1, ATy
o Jo

X1 X2 Xn
- f f f ViuQtn = CKn(@1, Co, G3.-G) 3G, Co, G- G, oG,
0 0 0

which implies that,
X1
< e+ f K3 (C X2, X0 Va 01 = EOIS @ X2 oettn) = 5°(Cas Xy )y
0
X1 X2
+f f Ko(Cy, Co, x3---Xn) Valx2 — CIT(C, Gy x3e-Xn) — B7(Ch, Co, X3 Xn)lAC AT,
o Jo

X1 X2 n
e f f f Ko(Co, Gy Connl) Vit = CIB(Ct) Cor ConCo) = F(Cry Coy G Cn)AC oG,
0 0 0

using Lemma 1.5 Theorem 1.6 and Gronwall Lemma we get,

X1
< e.exp (f Ki(Ch, x2, - xn)Vilxs = QOIS X2, - Xn) = F°(Ch, X2s - Xn)lAC
0
X1 X2
+f f Ko (C1, Co, X3 Xn) Va(x2 = QIB(Gr, Coy X3--Xn) — B(Ch, Gy X3 Xn)1AC1AL,
0o Jo
X1 X2 'Xn
+f f f K (C1, Co, G5 C) Vi(xn — Co)IB(Gh, G, G3...0) — T7(Ga, G2, CG3...C)|AC1AE,...dT,,)
0o Jo 0
< e exp (PKl-Cl-bl + PKZ-CZ'ble + ---PKn .Cn.blbz...bn)
< E.GK.
where,

Gk = exp (PKI‘Cl'bl + PKZ.Cz.b1b2 + ...+ PK” .Cn.blbz...bn).
Thus, equation (1) demonstrates Ulam-Hyers stability. [

3. Ulam-Hyers—Rassias stability

This section will focus on proving the Ulam-Hyers—Rassias stability of the higher dimensional weakly
singular Volterra integral equation through the application of the Gronwall lemma.

Theorem 3.1. Assume that:

(i)K; € (C(D),R+), i = 1,2, ..n there exists Pg, > 0 so that :

IKi(x)| < Px,, YVx €D, i=1,2,..nand ¢ € (C(D), R+);

(ii)  is a non-decreasing function

Then:
(a) The unique solution 3* for equation (1.1) exists within C(D);
(b) If 3 € C(D) is with the condition that:

X1
‘S(XerZ---Xn) —a- f Vi(x1 — Q)Ki(Gi, x2, - Xn) 3G, X2, - Xn)dC
0
X1 X2
—f f Va(xz2 — CKa(Gh, G2, X34 Xn) I (1, G X30--Xn)ACh, AT,
o Jo

X1 X2 'Xn
- f f f Viu(xXn = C)Ku(C1, Ca, C3.--C) B(Ca, Co, C3.-Cn)dCa, dCo..dTy| < (X1, X2, - Xn), VX € D
0 0 0
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then,
13(x) = I ()1 < Gr-Y(x1, X2, ---Xn), Yx €D.

Where,

Gk = (EXP(PKl .Cl.bl + PKZ-C2~b1b2 + ...PKM.Cn.blbz...bn)
I*(x1, X2---Xn) is the only fixed point of the equation (1); thus, (1) is regarded as Ulam—Hyers—Rassias stable.

Proof. (a) This result is well established (see [1],[2]).
(b)Let us consider:

X1
1B (x1, X2 Xn) = 3 (1, xooxn)l = ‘S(Xlz)(zm)(n) -—a- fo Vilxa — Q)Ki(Ga, X2, - Xn) 37 (G, X2y o Xn)AC
X1 X2
—f f Va(xa — CQ)Ka(C1, Coy X3--Xu) T (Ch, Co, X300 X0)ACa, AL
0 0

X1 X2 ¢
. f f f VaOtn = C)Kn(Cy Coy ConCn) 3ty Coy G, Aoy
0 0 0

From Lemma 1.4, Lemma 1.5 and Theorem 1.6 we have;
< [300 2t =0 [ VA = COK ot a0 S

- ; | " Valts = BIKaCa, Gy 50-d0n)S(Ca, Co ),

-.. fo ! fo " fo V= GG, ©o, G G B(Er, G G GG . A,
| [ Vi = GRG0

al ) | " Vs =~ GIKaCa, Gy 50 0n)SCa, Co ),

... fo ; fo . fo V00— K, o G TS s, o G i, .,
- Vit = QK G )3, o )G

- fo ; fo " Valia - G, Cay )3 (G, G o), s

X1 X2 'Xn
—f f f Viu(xn — CG)Ku(Cy, G, G5...Cn) (G4, Go, C3...C,)d Gy, AC,...dT,
0o Jo 0

which means that,
X1
< P, X2, Xn) f Ki(Ci, x2, - Xxm)Vilxa — Q)A8(G, x2, - xn) — TG, X2, - Xn)lACy
0
X1 X2
+f f Ko (C1, Co, X3 Xn)Va(x2 = C2) 13 (C1, Co, X3---Xn) — T7(Ca, Co) X3 Xn)lAC1 AT,
o Jo

X1 X2 Xn
e f f f Ko(Ca, Coy G ) Vntn = E)IB(Ca, Gy CanCo) = F(Ca, oy Conn oG T,
0 0 0
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By applying Lemma 1.4 and the Gronwall Lemma, we obtain,
X1
< Eb(Xl,Xz,---Xn)-eXP(f Ki(Cy, x2, - xn)Vilxa = Q)13(C, x2, - xn) = 3°(G, X2, - xn)ldG
0
X1 X2
+f f Ka(C1, Co, X3+ Xn) Va(x2 = C2)1B(G1, G, XeXn) = T7(Ca, Coy X3 Xl C1dCo

f f f 1(C1, G2, G C) V(X — C)-1B(Ch, G, Cs...Cn) — T7(G4, Go, G3...8)IACHAG,...AT,,)

l)b()(l,)(z, )(,,) exp (PK1 .Cl.bl + PKZ.CQ.ble + ...+ PK”Cn.blbz...bn)
Y(x1, X2, --Xn)-Gr-

INIA

where,

Gk = exp (PKI-Cl‘bl + PKZ.C2.b1b2 + ...+ P[(n .Cn.blbz...bn).
This indicates that equation (1) is Ulam—-Hyers—Rassias stable. [

4. Illustrative Examples

In this section, we will present several illustrative examples that comply with Theorems 2.1 and 3.1.

Example 4.1. Consider the integral equation presented below. It's easy to confirm for n=1. Next, let’s examine the
case when n=2,

3 X1 1 3 2
I(x1,x2) = §+j; C1(32C TS ) =3(C1, x2)d0y

X1 Xz
f f X2 — Cz 31 Cl ) —3(Cy, O)dGAG, xi # GV i=1,2
2)

We have observed that equation (2) resembles equation (1). By comparing these two equations, we obtain the following
information:

3 1 1
a=5, Viln —C) = ooy Vo(xo - G2) = -G
3 2 1
Ki(Ci, x2), 3G, x2) = (3—2C1 + ﬁ)&)l 59 x2)

3 3 1
Ky(C1, &), 3(C1, &) = (ﬁClB—zCz), ES(CL )
We get,

[K1(C1, x2), 81(Ch, x2) = Ki(Ca, x2), T2(8a, x2)l + IKa(Ca, C2), B1(Ca, &) = Ko (Ca, Co), T2(Gh, G)

= |(3C1 + 22—1 2), l51(@1,)(2) - (EQ + 221)(2) 52(C1,X2)‘

’(31C152 ) 81(C1, &) - <31C152 ) Sz(Cl,Cz)‘

5|51(C1,X2) = 302G, x)l + glsl(ChCZ) = T2(C1, Ol
Pr,131(C1, x2) = 32(Ci, x2)l + Pioy | 31(C, &) — Ba(Gy, G-

IN

IA
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Moreover,

|5(X1/X2)_§_(j:(1 : Cl( DG ), 39, MG

f f (0 3G, M) <

Now, if we choose I(Cy, x2) = 3C1 + 62 and I(Cy, (o) = & — 28, Clearly we have;

3 1 1 3 2 1
|3(X1,X2) --- (fo —Cl(§C1 + —Xz), 5(351 +6)x2)dC;

2 21
X1 X2 1
f [ == 31c1 o), £(C1 - 2a)GadCy)| < €
I(x1, x2) — > (Xlln)(l X1)+£(X11n)(1)
2 N3 21
1 xalnxs X1X2 1, 1 ol
+1242< 3 3 22X 1)(21an+2)(1)(2)” €=3

Hence, based on these assumptions, all requirements of Theorem 2.1 are satisfied. Therefore, we can state that equation
(1) possesses Ulam—Hyers stability. Also forany € > Oi.e. e = % and by considering exact and approximate solutions,
we have:

1
1T (x1, x2) = I (1, x2)l = §~Gk;

where, Gy, is also a constant.

Remark 4.2. If we take Y(x1, x2) = exp (3x1 +2x2), the conditions of Theorem 3.1 hold true. Therefore, equation (1)
is classified as Ulam—Hyers—Rassias stable, which means the difference between the approximate and exact solutions
does not exceed a constant multiplied by a specific function.

5. Conclusion

Higher-dimensional weakly singular Volterra integral equations are frequently employed in mathemat-
ical modeling of physical phenomena, such as diffusion processes in heterogeneous materials, where the
singularity represents the spatial variability of the material properties. In this paper, we studied two types
of stabilities for higher-dimensional weakly singular Volterra integral equations with supporting examples.
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