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Abstract. In this paper, quantum Weddle’s type inequalities for convex functions have been derived, in-
volving the extension of the classical results in the framework of g-calculus. We present new conditions that
describe the behaviour of convex functions using the quantum calculus, which undermines the systematical
theory of the related phenomena in theoretical and applied mathematics. We also investigate some aspects
of these inequalities, such as scaling and translation, and demonstrate how some of the inequalities are con-
nected to other existing inequalities in the intersection of convex analysis and optimization. Furthermore,
numerical and graphical solutions to the inequalities applied to real-life problems are given, along with an
illustration of the computation and the connection to the relevant inequalities. Therefore, the findings of
the present work are also useful in extending the theory of convex functions.

1. Introduction

The literature on convexity dates back ages, with mathematical techniques that are believed to have
originated in Egypt and Babylon. Even as early as the prehistoric era, people have been drawing circles and
triangles, while convexity, though may not be as old as numbers, is quite old. The German mathematician
Karl Hermann Amandus Schwarz was the one who introduced convex functions at the end of the 19th
century, which in his time caused significant changes in the development of the theory of mathematics
and its numerous applications. These functions are used in numerous optimization problems in different
fields, as will be shown later. Business, civil, and software, helping with issues such as asset allocation and
problem-solving with computation. For other works that focus on the background and uses of convexity,
readers are encouraged to consult [9, 10, 16, 24].

In the case of inequalities, convexity is defined as the characteristic for which of every pair of points
on the graph of a function, the line segment joining them lies above and on the same side of the graph
as the function. Hermite-Hadamard inequality was postulated by two French mathematicians namely
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Charles Hermite and Jacques Salomon Hadamard. C. Hermite and J. S. Hadamard did significant work in
Number theory, Complex analysis, and much more. To know about their works, see [20, 23]. If a function
F : [a, B] = Ris convex, then
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In mathematics, there is a correlation between integrals, functions, and convexity. This correlation is
called Jensen’s Inequality.

The Latin name “quanta” means how much it started in the 17th century. Thus, the meaning of the
word quantum can be defined as the general size or amount associated with something. In physics, it is
used frequently to denote the smallest quantity of something. In addition to that, from the mathematical
perspective, the term quantum means the minimal and discrete amount used to describe a quantum system.
It is noteworthy that all the equations relevant to the description of quantum mechanics can be considered
mathematical equations. g-calculus emerged as a translation between mathematics and physics.

At the beginning of the 18th century, g-calculus is defined by Euler (1707-1783) and C. G. Jacobi [18]. The
g-calculus, more popularly referred to as non-standard calculus, is to the standard calculus as calculus using
infinitesimal quantities is to calculus using limits. Thus, g-calculus is a type of calculus that is developed
from differentiation and integration operations without using limits. The Jackson derivative or g-derivative,
whose introduction is credited to Frank Hilton Jackson, was discussed in [17]. It is the opposite operation
of Jackson’s g-integration. It is the inverse of Jackson’s g integration. Other types of g-derivative can be
found in [7]. Jackson integral, or g-integral, was also introduced by F. H. Jackson. g-calculus is used in
quantum mechanics, quantum field theory, number theory, combinatorics, orthogonal polynomials, basic
hypergeometric functions, and other areas of theoretical physics to study and describe quantum systems
and their properties. For more detailed applications of g-calculus, one can see [3, 6, 12, 13, 15, 27, 28].
g-Hermite-Hadamard inequality stated as:

Theorem 1.1. [4] Let F : [a, B] — IR be a convex function and q € (0,1). Then, we have

gF@+F@) 1 (7 qo+p
T+ Zﬁ—afa F(x)ad'btzF(1+q), )
also
F@)+gF) 1 (F a+qp
ey 2 [ e (T v

and for limit g — 17 in last two inequalities, we get (1).

This type of inequality is known under the name of g-calculus; The following literature helps solve the
problems presented in this paper. The first article connected with g integral inequalities in the frame of
g-calculus was published in 2004 by H. Gauchman [14]. H. Budak proves the g-midpoint and trapezoidal
type inequalities in [5]. Quantum Simpson-type inequalities for convex functions: A novel investigation
was proved by Sabah et al. in [19]. Quantum Simpson-like type inequalities for g-differentiable convex
functions were established by Meftah et al. in [22]. Afterwards, some other g-analogues of the classical
inequalities have been proved, some of which are listed here [1, 2, 4, 11, 25].

Inspired by the above literature, new Weddle’s type inequalities in the framework of g-calculus are
established by using the newly established identity. To check the validity of newly proved inequalities, 2D
and 3D plots were constructed using Mathematica 13.3.1.

The remainder of the paper is structured as follows: Section 2 explains the origins of g-calculus and the
basic ideas of convexity. They provide the background information that allows the reader to follow the
remaining discussions and arguments of the paper. Section 3 is devoted to the quantum Weddle’s type
inequalities and their proof, along with an illustration of their importance and use in quantum information
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theory. In Section 4, we present numerical examples and their graphical analysis. Section 5 presents
applications to the quadrature formula and special means of real numbers. In turn, the last section of the
paper is Section 6, with the conclusion that encompasses the authors’ final statements as well as the major
outcomes and implications of the study carried out; additionally, possible directions for further research in
the intriguing area of mathematics and quantum processes have been outlined.

2. Basics of g-calculus and convexity

Definition 2.1 (Convex Set). [8] A set QO C R" is convex, if for any two points a, f € ) the entire segment joining
a and B lies in Q. The points in the segment are of the form:

oa+(1-o), Yo el0,1]. 4)

Definition 2.2 (Convex Function). [8] Let Q) be a convex subset of a real vector space. Function F : Q C R - R
is said to be convex, if

oF (%) + (1 - @)F(y) > F(ox + (1 — @)y) (5)
forall® € [0,1] and »,y € Q.

Proposition 2.3 (Jensen'’s Inequality). [21] Let F be a convex function defined on the real interval QO C R. If
M1, Ko, U3, ., Ry € Qand [y, o, U3, ..., 1o = 0, then

i Hi%i] , (6)
P

Y wiFGa) = F
i=1

where Y1y i = 1.
Definition 2.4 (Quantum Number). Let q € (0,1). A g-natural number [n], is defined as:

_qn
1-

[n], = =1+g+¢+...+q" "

Definition 2.5. [17] For a real function F, the g-derivative of F(») is defined as:

DIF(x) = F—(%}Z :;—f%), (7)

with q € (0,1). The q derivative is also known as the Jackson derivative.

Definition 2.6 (Classical Jackson Integral). [17] The following series expansion defines the classic Jackson inte-
gral of a real function:

e (o)
[ Feua=a-pxY drao, ®)
0 k=0
Definition 2.7. [26] For a continuous function F : [a, f] — Rand q € (0, 1) the q.-derivative of F at » € [a, f] is
defined as:

Fa +q(x — a)) — F(%)
G@-Dx-a) 7

adTF () = ©)



M. Talha Khan et al. / Filomat 39:7 (2025), 2439-2455 2442

for x = a we define ,d"F(a) = lim,_,(,d9F (%)) if it exists and it is finite. Similarly, let gP-derivative of F at
n € [a, B] is defined as [4]:

F(B +q(x —B)) —F(%)
@-Dx-p 7

for x = B, we define PAIF(B) = lim, 5 (PdIF(x)), if it exists and it is finite.

PATF (%) = (10)

Definition 2.8. [26] For a continuous function F : [a,f] — R and q € (0,1), then q,-definite integral of F at
xn € [a, B] is defined as:

f “F@) a0 = (g~ Dia =0 Y ¢F @ + (e~ ) ), € [a 1. (1)
@ k=0

Similarly, the qP-definite integral of F at x € [a, ] is defined as [4]:

ﬁ (o]
[ F@ 10 = - 106c-p) Y (B + - i, € L. (12
x k=0

Remark 2.9. If we choose o = 0 in (11), then we get the classical Jackson g-integral, defined in (8).

1 )
[ F@ruto=a-0Y i
k=0

Similarly, if p = 1and x = a = 0in (12), then

1 )
[ F@ do-a-pY dra-g
0 k=0

3. Main Results

In this section, new identity for g-differentiable functions are established. By using newly established
identity Weddle’s type inequalities for differentiable convex functions are established via g-calculus.

Lemma 3.1. Assume that F : [a, B] — R be a g-differentiable function and F’ € L|a, B], then

Qlap)-1,=" = 2&» (13)
where

Lo [ ) (52 2

o= [ ro-50) o (2520 200

b= [ - 2) o (500 E2a

L = fol(q@_g)m(%@a 29 4,0,
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fo(q‘azo) 6 @t g P
1
14 l1-o 5+m
Lg := fo (qcD 20) DF( a+Tﬁ)dq(D,

2a+p

L = —U FOues [ F(E)wd5+fm F(s dyt

a+32;; Mfﬁ 8
+ f L, F@Ouds f oy F@umdyé + f o F©us dqé}

2

Q(a,p) = 21—0[F(a)+5F(5a6+ﬁ)+F(2a3+‘8)+6F(a;ﬁ)+F(a-;25)+5F(a-;5ﬁ)+F(ﬁ)].

Proof. Taking into account RHS of Eq. (13)

Ls

and

Now, integrate all integrals in the framework of quantum calculus, we have

1
6 6—®
L = f(ca——)aDF( @+ )
! , 197 50) a5 Te ﬁ

- el SR 2

6 —qo qo
( 3 a+ ?ﬁ) adq@

((1 —qo)a+ q@(Sa; i )) ally@

6 1
[
@=0 ﬁ_a 0
fl

( 6 (5a+ﬁ) _F()]_ﬁ_q

- m
= B6a[(”’ (5a+ﬁ) _F( )] Za +1F( M)qu(y))
_ 56a( _% (5a+ﬁ) 20(26 . (a)—%;q’*((l—q")a+q”(5a6+ﬁ))
- 7 (q_%) (5a+ﬁ) G @

niﬂ”F((l qa+q" ( a+ﬁ)) F(y)}

6
S5a+p
6

5
e

F(&)q dgé. (14)

Similarly,
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2a+p
6 |4 _({2a+B\ 16_(5a+p 36 fs
= ,B—Ot [20”:( 3 )+ ZOF( 5 )] (5_a)2 - F(E)S(Hﬁd 5,
1
2 4-o 2+ @
Ly = fo (Qca— %) aDqF(—6 o+ 7 ﬁ)dq(a
at+p

_ 6 18 a+ﬁ 2 2a+ﬁ 36
= ﬁ—a[%F( 5 )+%F( 3 )]_(ﬁ_a)zﬁ“ﬁ F(é)hﬁ-/ﬁdé,

1
18 3—-o 3+
Ly = L(q@—%)QDqF( 5 a+ G ﬁ)dqca
a+2p

_ 6 2 _[(a+2p 18 a+p 36 3
- ﬁ_a[%F( 3 )+20F( 2 ) (‘B_a)Zfa;ﬂ F(é)‘%ﬁdqé/

1
4 - 41+
Ls = f(@ ) DF( o+ )ch
5 0 q 20 6 ﬁ q

= 6 EF a+5p +iF a+2p 36 .
B—a|20 6 20 3

- ngMdg,
(ﬁ—a)zﬁ”ﬁ )
1 14 1-® 5+
L = j;(q@—%) aDqF(—() a+—6 ﬁ)dq(a

_ _6 |6 14 _(a+5B 36 p
- m[%”ﬁ)*#( 6 )] G ﬂwﬂaﬁfﬁdqs.

Adding Eqgs. (14) to (19), we obtain

21—0[F(a)+5F(5a6+ﬁ)+F(2a3+ﬁ)+6F(a;rﬁ) +F(“+32’3) 5F(

5a+p 20 x+/ x+;

L U 6 F(&),4d é+f F(&)sn d cz+f F (&) zur dg&
B—a
<Y+32ﬁ (k+:ﬁ "
+j;+ﬁ F(‘S)a;ﬁdch+j;2ﬁ F<£)l+2ﬁd£+f+ F((f)wsgdé]

- ﬁ;—6[L1+L2+L3+L4+L5+L6],

which is the required result. Hence the proof of Lemma 3.1 is completed. O

and

)]

2444

(15)

(16)

(17)

(18)

(19)

(20)

Theorem 3.2. Let F : [a,f] € R — R be a g-differentiable function on (a, p) with DIF be continuous and

integrable on [a, B]. If |sDF| is convex on [, B], then we have the following inequality:

|Q(a,p) - 1]
< % [laDgF (@)] (A1 (q) + A2 (q) + A3 (9) + As (9) + As (9) + As (9))

+[oDyF (B)] (B1 (4) + B2 (9) + B3 (9) + Ba (q) + B5 (q) + Bs (9))],
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where
) ; 6 ((1+q)6—1 64 q_.
20 1+q T+q " Tvgrg?’
A1 (g) = fo qgo — %‘ (6 - @) oy = (g w6 2% g E((q)e- 1) L <
1+q (1+9)(1+g+q?)  T+g+q?
' y 16 (1+q)5—1)_ 15_q+ 7.
B 20 1+g +q 1+q+q2’
Ay (q) = fo qo = 20 G- ) odso = 10(18)*+59 2(18) _
T+q (1+q)(1+q+q2) T+q+q°
' 2 ((+g)a-1\  4g +
4 ( ).: o 3 (4_@) do= , 20 1+q , 1+q 1+q+q2/
W= 1197 20 afty @ 22) a0 &), o
1+q (1+9)(1+g+g2)  1+q+q°
18 [ (1+9)3-1 3q
oy [ 18] o 4o = W\" T )T T 1+q+q2'
4(q) = ; 90 = 55| B = @) atg® =1 (2,5 ) M B (C) <) JE T
1+q (1+9)(1+q+g2)  1+q+q°
' 4 (149)2-1 20 _q .
as@) = [ lo-2|e-w) wdyo = PN e
sW= )y 1127 %0 S ITE B¢ ) M B 1 (Cer) 5 1> 4
1+q (1+q)(1+g+q?)  1+g+4?
) ” é_g((l;rq)—l)_li 1
+q +q +q+q*’
A = - 1= aldg® = 142
6(q) ﬁ g 20 ( CD) @ Z(E) +q ( ) 9 ((1“7) 1) 14 <g<1,
1+g (l+q)(1+q+q ) T+g+q° 1
and
1 6 % (1}-11) 1+q+q2’0 <q< 20’
By (q) = f 1@ = E‘ (LD) adq(D - 2(76[))3 q 2+,
+ - ’ - q < 1
0 (L) (1+g+g?) — Tea+a® 1+ ey
(1+9)+1
B - [ 16 1+ @) (dyo = % T+q 1q_q 1+'i+ﬂz'0<q<20/
2(q) = AT @) alg® = o(1ey'4g 08 a0 B 6
T+q (149)(1+g+g2) ~ 1+q+q°

1+q T+q 1+q+q2 ’

) ) % ((1+q)2+1) 2
B3(q):=f q@—%(2+(D) dy@ =
0

4(%)"+2 2()’ g _ 5((rg)241),

1+q (1+9) (1+g+4?) + 1+q+¢°

1+q (1+q)(1+q+q2) + 1+q+4

4 [ (1+9)4+1 2 +
20 1+q T+g 1+q+q2’

1
B5(q):=f0 go — |4+ @) dgo =

1+q (1+9)(1+g+q?) — L+g+q?

14 (1+9)5+1 59 q
20 1+q Y 1+q+q2 ’

1
14
Bg (q) = L qo — E (G +d) q d @ = 10(20) +5q (20) 1

8(s)"+49 2()’ . { () E32) P

1+q (1+9)(1+9+4?) + 1+g+4*

1 18 % (1+1q)3+1)_ 13_q preE
+q +q +q+q2’
By (‘7) = ﬁ qo = 20 B+a) "‘d @ = 6( 12 ) +3q + 2(%8 ) q B ((1+9)3+1) ¢

2445
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and Q(a, B) is defined as in Lemma 3.1.

Proof. By Lemma 3.1, absolute property and convexity of |,DF|, we have

IA

IA

2446

Q. p) - 1]
B-a fl 6 (6 @ ) fl 16 (5 ® 1+_(D)
T3 ) qo — 20 aDyF G a+ ﬁ dy@ + qo — 20 aDyF G a+ G Bl ds@
1 2 4-0 2+@ ! 18 3-0  3+@
+](; qa — 2 DF( ¢ G ﬁ)dq@+£ qo — 2 DF( G ﬁ)dqca
1 1
4 2-0  4+0 14 5+fD
+ CD—_aDF(—D(+—)dCD+f @ — DF( )d@]
foq 20"\ 76 6 P4 J 172 20 6 P
U ke 5l552) [ bo-5l(3)
% | J, 112~ 55|75 )DF @ldo+ | lao = 55| ( 7 )l«DoF ()] dy
1 16 (5 @) 1 16| (1+ @
+ ®— — DF(a)ch+f @ — — ( )aDF d,
fo 10 - 55— | | N ST LG leDgF (B)] dy
1 1
4—-o 24+ o
+ @——(—) DF(ac)ch+‘fv cD——( )aDF dy@
1 18 (3 @) 1 18| (3 + @
+ @ - —||— DF(a)ch+f cD——( )aDF d,®
j(; 90 =551\ "5 | | . 11?0\ 76 leDgF (B)] dy
1 4 (2_@) 1 4 4+ o
+ @ — —||—— aDF(oz)da)+f (D——( )aDF dg@
L q 20 6 | q |‘7 0 q 20 6 | q (ﬁ)' q
1 14|(1-a ! 14|(5+@
+](; 19 = 55 (T)|aDqF(a)|dq‘D+f(; ‘q@_% ( 6 )|ﬂDqF(ﬁ)|d4‘D]
B—a fl( _ 6 (6—@) I 16 (5 (D) ' _3(4—@)
56 |DF @I | (j12= 55|75~ )+ o= 55|75~ ) + 72— 26|
@—g(—3_w)+'@—i(—2_(D)+'(D—1—4(—1_°D))dca
1m0\ T )T 20|\ Te )T " 20|\ 76 )%
@ 16| /1+ @ 21(2+@
hoE @) [ (102 (2)+ o - 2] (152) + ho- 5 (252)
(D_E (3+@)+' (D_i (4+(D)+' @__4 (5+®))d(D]
11?20\ 76 19~ 20\"6 19~ 20\"6 )%

52%60( [|aDqF (@)] (A1 (q) + A2 (9) + A3 () + As (q) + As (9) + As (7))
+aDgF (B)| (B1 (9) + B2 (9) + B3 (q) + Ba (9) + Bs (9) + B& (9))] -

Hence, the proof of Theorem 3.2 is completed. [

Corollary 3.3. Assume that |,DF| is bounded, such that |,DF| < M, for M > 0. Then by Theorem 3.2, we have

|Q(a/ﬁ) - Iq'
M(B — @)
216

+(B1(q) + B2(q) + B (9) + Ba(q) + Bs (q) + Be (9))] -

- [(A1(q) + A2(q) + A3 (9) + As () + As (9) + A6 (7))
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Corollary 3.4. If we take limit ¢ — 1 in Theorem 3.2, then we get the error bounds of the classical version of
Weddle’s type inequality for convex functions as follows:

1 B+ 5a B+ 2a B+a
‘%[F(aHSF( G )+F( )+6F( > )

3
+F(2ﬁ¥) 5F( b )+F(ﬁ)]—l
< 13f50 Dl @i+ @],

Theorem 3.5. Let F : [a,f] € R — R be a g-differentiable function on (a, ) with DIF be continuous and
integrable on [a, B]. If |« DIF|" is convex on [a, B] with r > 1, then we have the following inequality:

Q(a, )~ 1|
18 —a(l % 1-1 r r % 1-1 r r %
< 5 (g) [Ikl " (A1 (@) |uDgF @) + By (@) [oaDeF B ) + Ty 7 (A2(9) [2DyF (@)] + Ba (9) | Do B)] )

+K)7 (A3 (9) |oDgF @) + B (9) |uDyF ([3)|7)% +1 7 (A4 (@) |JDyF @) + Bs (9) |DyF (5)|’)%
K (A5 @) | DF @]+ Bs @ | DF @) + K (A5 @) |DF @] + B () [oDyF (ﬁ>|’)%],

where Als and B's for all i = 1,2,3,4,5,6, are provided as in Theorem 3.2, and

]kl::flq@—6 ad@:{ zﬁ—$;0<q<%,
0 201 (%) - mms<a<l
]1(2;=f1q@_§ adq(D={ 2;_0 %7;0<q<%/

o 1 20 (%) &+ -wm=<a<t
]k“:flqcv——adq@:{ 50 << 5

o I 20 (5) H+m-Hd=<a<t
]k45=f1q@—§ad®={ 2%_ﬁ;0<q<%,

0 201 (B) s -mBs<g<t
kS:Zflq@—i adcaz{ 2% %7’0<q<%'

0 2007 (24_0)1%4"'1;_%'%5‘7<1
]ks::fl‘?@—ﬂ adq@:{ 2%_1%;0<q<%'

0 20 (14) 2 L—E'E§q<1

20) T+q T T+q ~ 20”20

Proof. By Lemma 3.1, power mean integral inequality and using convexity of |,DF|", we have

|Q (a,B) - Iq‘

1-1 1
B—a fl 6 'fl 6 (6—@ ca)’ '
< - - - s
< 3 ; 9% = 25 | 9% =55 aDygF G a+ 6ﬁ dy®
1 -1, r g
16 ’ 16 5-o 1+
+(f0 90 = 55| ) (j(; 9% = o5 DF( a+— ﬁ) dqca)
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o[ oo Zfaa) ( DqF(4 % 220y o)
([ bo-Blaa] (f mlhoe (52 50 )
(f— o ([be- < ]
+( )(f 0 (520 222 )

260( @ |.DyF (a )|+—'DF([3)| )

IA
=
R
(o)
R
—
A

r 1+(D

| DoF (B)| ) dg@

L2 pF@] + |DF@r@ﬂ
= |.DF (@) + — | D,F (B)| dqca)

r 5+

L2 pF@ + |DF@)@@]

| |
| b= |
[ o Bz k0 f 22240 o)
| o5l |

| |

11(1‘ ‘qcD— (6 cD)|DF(a(+(D|DF(ﬁ)|r)dq‘D)7

r

(5 @) |oDgF (@)| + (1 + @) [«DyF (B)] ) dg

1) )
( )

18 ((3 ®) [«DgF (@)| + B + @) |aDgF (ﬁ)‘r) dq@

( )

2= @) [eDgF @) + (@ + @) |.DyF (B)]) dg

(4 - @) |oDyF (@) + 2+ @) [oDyF B)| dq@)

4o - o= ((1 @)

«DgF (@) + (5 + @) |.DyF (ﬁ)(r)dqca)] .

After some simple calculations, we get the required result. Hence, the proof of Theorem 3.5 is completed. [J
Corollary 3.6. Assume that |,DF| is bounded, such that |,DF| < M, for M > 0. Then by Theorem 3.5, we have
Q@ p) -1

: Qg%?@(37@TWAuw+Bumﬁ+k§%Aﬂ@+Bﬂ@ﬁ+k?WAﬂ@+Bﬁ@ﬁ
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K, (A @)+ Ba(@)! I (As @)+ Bs @) + Ky (As (@) + Bo ().

Corollary 3.7. If we take limit ¢ — 1 in Theorem 3.5, then we get the error bounds of the classical version of
Weddle’s type inequality for convex functions as follows:

;—O[F(a)+5F(ﬁ +65“)+F(ﬁ ;2“)+6F([%)
2 5
+F( ﬁ;a)+5F( ﬁga)+F(ﬁ)]—Iq

P@WY

IF" (@)l +
2

13(8—a)
225

Theorem 3.8. Let F : [a,f] € R — R be a g-differentiable function on (a, ) with (DIF be continuous and
integrable on [a, B]. If |.DF|" is convex on [a, Bl with r,p > 1 and 1 + rlf =1, then we have the following inequality:

Q) -1
< ) PSR ol + o ol)
(5(1+q) SA+D 1) bl + %Lpﬂﬁ)lr)l
(L o+ 282 |
(M ko M' 20
H(% DF @[ + XG0 o ¢ )l)
w2 horel 2078 o) |
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Proof. By Lemma 3.1, Holder’s inequality and using convexity of |,DF|", we have

P\ 1
E dqca) (f
0

20

|Q(a,p) -1,

S

IN

(D_

aDyF (6_—@04 + Qﬁ)

IN
=
S
(o)}

R
—
—_
5

L

qo — %'p dq@)P (jo‘l(6—Tca (aDqF(Of)r + %7 |aDqF(ﬁ)|r)d )
( T

+( fo 10~ 50 dqca) ( fo 22D @] + 1ta L2 |oF @) )dqca)
+(f01 4o - Epdq@); (fol (4—7@ | DyF ()] + 2J”D| D F(ﬁ)f)d,,m)
+( fo o - % pdq@); ( fo 1 (3‘7‘D l.DJF (@) + “T‘D l.D,F (5)()@@)
+(fo1 g0 - 24—0 pdqm); (fol (Z‘T‘D |DyF (@) + 222 2o F(ﬁ)(r)dq@)
+(j: 4o - %pdqw); (fol (1_7‘3 | DyF ()] + 5J”D| DF B )dqca)

A

1
fo (5= @) |uDyF @) + (1 + @) |aDyF (B)]') dq@)

qcD——‘ (6 - cD)|DF(a( +®|DF(ﬁ)|)dco)

1 1
+k; f((4 @) [«DyF (@) + 2 + @) |oDoF (B)[ d@)

|
|

1 1
+Ik;0(f0 (3= @) |uDyF @) + 3+ @) |uDyF (B)] ) dy

1
fo (@ = @) |uDyF @) + (4 + @) |uDyF (B)] ) dy
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L 1 r r
+k!, ( f (1 = @) |uDgF (@) + 5+ @) |uDyF (B) )dqco)} :
0
After some simple calculations, we get the required result. Hence, the proof of Theorem 3.8 is completed. [
Corollary 3.9. Assume that |,DF| is bounded, such that |,DF| < M, for M > 0. Then by Theorem 3.8, we have

|Q(a,p) -1,
M(@B - a)

< = []k’+]k”+1k”+]k”’+ﬂ<” +Ik"]

Corollary 3.10. If we take limit ¢ — 17 in Theorem 3.8, then we get the error bounds of the classical version of
Weddle’s type inequality for convex functions as follows:

;—O[F(a)+5F(ﬁ +65“)+F(ﬁ 220()+6F(¥)
+F(zﬁ;a)+5F(5ﬁ6+a)+F(ﬁ)]—Iq

2717 x 15717 (1 + 2147 4 314 4 714 4 8l 91+”) IF ()l +
< (f-a 1+p

F )Y
- .

4. Numerical Example and Graphical Analysis

In this section, numerical example with 2D and 3D graphical behavior of newly established inequalities
is presented.

Example 4.1. Assume that a function F : [a, f] = [0, 1] — R is defined as F(x) = #°. Then F is q-differentiable
oDgF (x) = 0DgF (x) = [6],°

aDqF (a) =o DqF 0) =0,
<Dy (B) =0 DyF (1) = [6],
Take LHS of Theorem 3.2, we have

|Q(a.p) -1,

Q(a,p) = [F(oc) 5F( “;ﬁ)+F(2“3+ﬁ)+6F(¥)+F(“J;Zﬁ)+5F(“+655)+F(5)].

Now, take RHS of Theorem 3.2, we have

where

2m[}DFWMMN@+AA@+AA@+AA@+Aﬂm+Aaw>
+[aDgF (B)] (B1 (q) + B2 (4) + B3 (4) + By () + Bs (q) + B (9))]

Remark 4.2. Clearly from Figure 2 and Table 1, when q approaches to zero we get better results as compared to
classical Weddle’s rule for g = 1.
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14 16
— Left Inequality — Left Inequality 14 — Left Inequality
20 Right Inequality Right Inequality 12 Right Inequality
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(@) q € (0,0.1) (b) g €[0.1,02) (©) 7 €[0.2,0.3)

— Left Inequality
Right Inequality

— Left Inequality — Left Inequality
Right Inequality 025 Right Inequality

- N e s o

F 04 05 06 07 + 072 074 076 078 0.80 i 085 0.90 095 1.00

(d) g €(0.3,07] (e) g €[0.7,0.8) (f)q€[0.8,1)

Figure 1: Comparative analysis of the inequalities of Theorem 3.2, of Example 4.1: 2D plots for different
ranges of g between 0 and 1.

g  Leftinequality Right inequality

0.01 0.84712400 1.089180
0.14 0.71712500 1.459240
0.28 0.57722200 1.894720
0.42 0.43846500 2.387400
0.56 0.30485700 2.958900
0.70 0.18404800 3.363297
0.84 0.08410390 4.435550
0.98 0.00878387 5.395010

Table 1: Comparative analysis of inequalities for Theorem 3.2,
when g € (0,1).

5. Applications

Weddle’s type inequalities are extremely useful and efficient in numerical integration and examining
the particular means of real numbers. In the case of quadrature formulas, they provide important error
bounds of the approximations of integrals and the approximations” accuracies. Besides, in the context of
special means, they provide us with complex and binding relations, which are basic in many mathematical
studies. Thus, the type inequalities presented by Weddle help expand various contexts of theoretical and
applied mathematics.

5.1. Quadrature Formula

In this subsection, we discuss the possible use of the inequalities of Weddle’s type is derived above in
quadrature formulas. Therefore, using Weddle’s inequalities increase the efficiency and accuracy of the
quadrature formula in numerical integration. Thus, adding these inequalities will help to optimize the
computations in the quadrature formula and the properties of functions such as convexity. Weddle’s type
inequalities systematically arrange the selection of sampling points and weights used in the quadrature
formula to enhance precision while estimating the definite integrals. It is also the application of the theory
contained in Weddle’s inequalities and a pertinent example of its application in numerical analysis and
computational mathematics.

We prove the following propositions for the error bounds of Weddle’s rule.
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Figure 2: Combine piecewise 2D plot when g lies between 0 and 1.

Proposition 5.1. Suppose that F : [a, B] = R be a g-differentiable function on (a, B), then we have
B-a); =S, (I, F) + R, (I, F),

where

n—1
1
SullnF) = 35 ZO, (Eiv1 = &) [F (&) + 5F (& + 1) + F (& + 21)
+6F (& + 3h) + F (& + 4h) + 5F (&; + 5h) + F (i41)],
and 1, is the partition given by
Iita=& <& <& <. <&a<éi =8

‘5’“6 &i ,i=0,1,2,...,n—1.

The remainder term satisfies the following condition:

I’lii

R, (1, F) Zﬁ&;m [sDoF 0] (A1 (9) + 42 (@) + A3 () + As () + As (4) + As (4)

+[aDgF (Eis1)| (Bu (9) + B2 (4) + B (9) + B4 () + Bs (q) + B (9))].

foralli=0,1,2, ..., n-1, where Als and Bis(i=1,2,3,4,5,6)are defined as in Theorem 3.2.
Proof. Let us set things according to the situation, by Theorem 3.2, we have

51+1 '51

a = gi/ﬁ = éi+l/ - 6

2453
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wherei =0,1,2,...,n — 1. Then, we get the following estimation:
1
o (it = EDIF () + 5F (6410 +F (420
+6F (& +3h) + F (& + 4h) + 5F (&; + 5h) + F (§i41)] — (B — a)Iq|
(S = S 11 Dy ()] (A () + A2 (g) + As (g) + As (0) + A5 (9) + A6 (9))

- 216
+[oDyF (&:41)| (B1 (9) + B2 (9) + B3 (q) + Ba (9) + Bs (9) + Bs ()],

foralli=0,1,2,...,n — 1. After summing and applying triangular inequality, we obtain

1 n-1
55 0, (G = E)IF () + 5F (& + 1) + F (& + 20)
i=0

+6F (&; + 3h) + F (& + 4h) + 5F (& + 5h) + F (£ = (8 — )L,
n—1

<y —(5”121‘651') [|2DgF ()| (A1 (9) + A2 (9) + A3 (q) + As (9) + As (9) + As ()

i=0
+[oDyF (&:41)| (B1 (9) + B2 (9) + B3 (q) + Ba (9) + Bs (9) + Bs ()],

which is the required proof of the Proposition 5.1. [J

Remark 5.2. Other propositions can be similarly verified for different cases and are left to the interested readers.

5.2. Special Means

Special means, including the arithmetic mean, geometric mean, harmonic mean, and others, are funda-
mental in various mathematical applications. Weddle’s type inequalities offer insights into the relationships
and bounds between these means:

e Arithmetic Mean:

Oty t+3t... .+ @y
» .

A ((Dl/ (D21®3/' . -/(Dl’l) :

¢ Generalized Logarithmic Mean:

cDHl—LDH'l lr
Li(@,@)i=|—2—1 | , @& #@, Yo, @ € R reZ\ {-1,0}.
r (@1, @2) 7 D@ —a) 1# @2, Y @1, reZ\{-1,0

Proposition 5.3. Assume that o, € R,0 < a < Band n € N, n > 2. Then, we have

‘11—014 (a", 8"+ jIA” (v, a,a,a,a,B) + 21—0A” (v,a,a,B) + 13—0A” (a,B)
+ A (@ BB, 8) + A" (@ ,,6,6B) ~ L (@)
< n (52160()14 (a”_l, ﬁ”_l) ) (21)

Proof. By applying Theorem 3.2 for f(x) = x" with g — 17, we can obtain the result (21). O

Remark 5.4. Other propositions can be similarly verified for different cases and left to interested readers.
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6. Conclusion

In conclusion, this study provides a significant contribution to the theory of convex functions by ex-
tending classical Weddle’s type inequalities into the quantum calculus framework. The derivation of new
conditions and the algebraic classification of quantum transformations enhance the understanding of the
interplay between convexity and quantum operations, laying the groundwork for further exploration in
both theoretical and applied contexts. The numerical and graphical analysis presented offer practical in-
sights into real-world applications, while the connections drawn to existing inequalities underscore the
broader relevance of the results within convex analysis and optimization. This work not only deepens the
foundational theory of convex functions but also paves the way for future advancements in mathematical
modeling and problem-solving in diverse scientific fields.
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