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Ulam type stabilities for (k,i)-fractional order quadratic integral
equations

Rahim Shah?”, Earige Tanveer?

?Department of Mathematics, Kohsar University Murree, Murree, Pakistan

Abstract. The primary objective of this paper is to comprehensively establish the Hyers-Ulam, generalized
Hyers-Ulam, Hyers-Ulam-Rassias, and generalized Hyers-Ulam stability properties for (k, y)-fractional
order quadratic integral equations. These stability concepts play a crucial role in understanding the persis-
tence, resilience, and response of solutions to small perturbations, providing insight into the behavior and
reliability of solutions within complex systems. Our analysis is grounded in the application of Gronwall’s
lemma, an essential tool that we adapt specifically for the unique structure of (k, i)-fractional order systems.
This approach not only enriches the theoretical understanding of stability within these fractional order inte-
gral equations but also broadens the applicability of Gronwall’s lemma to new contexts.To substantiate our
findings, we provide two illustrative examples, carefully chosen to demonstrate the stability characteristics
across a range of conditions and parameter settings. These examples are further supplemented by detailed
2D and 3D graphical representations generated in MATLAB, allowing for a visual examination of stability
and solution dynamics. These visualizations not only complement the analytical proofs but also offer an
intuitive validation of the stability results. Through this integrated approach the paper aims to present a
well-rounded and thorough assessment of stability in (k, i)-fractional order quadratic integral equations.

1. Introduction And Preliminaries

Fractional calculus is an extension of classical calculus that investigates derivatives and integrals of
any (non-integer) order. Fractional integro-differential equations extend traditional calculus by allowing
non-integer derivatives and integrals, making them suitable for capturing memory and heredity effects
in dynamic systems. These equations are effective in capturing non-Newtonian properties in blood flow
dynamics and accurately predicting viscoelastic behavior in polymer rheology ([1], [3]). Fractional equations
are useful in electrodynamics for complex media, control theory for system stability, and signal processing
for filtering complicated frequency patterns. They provide a flexible framework that outperforms standard
models [20].

Fractional calculus allows for the definition of non-integer (fractional) order derivatives and integrals,
such as half-derivatives, quarter-integrals, and so on, whereas classical calculus focuses on integer-order
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derivatives and integrals, such as first, second, and third derivatives. It allows for more flexible explanations
of complex processes by expanding the standard idea of differentiation and integration to non-integer orders
([11], [12]. It has a wide range of applications, including signal processing, control theory, engineering,
and physics. The theory’s ability to model memory-rich, non-local systems in the real world makes it both
sophisticated and versatile.

S. M. Ulam [13] introduced the concept of stability in 1940, and it has since become a key topic in
mathematical analysis. The goal was to find a functional equation with an approximation as close to the
exact solution as possible. D. H. Hyers (see [14]) addressed this issue for Banach spaces in 1945, focusing on
the additive Cauchy equation f(x + y) = f(x) + f(y), resulting in the Hyers—Ulam stability. Th. M. Rassias
[18] expanded on Hyers” work in the 1970s, introducing additional concepts and building the Hyers-Ulam-
Rassias stability. Rassias’ contributions [19] greatly enlarged the area of stability research, resulting in
various generalizations and applications see([15], [21], [22]).

Nonlinear integral equations are a foundation of mathematical analysis, with substantial research in
a variety of contexts due to their theoretical importance and practical applications. Nonlinear quadratic
integral equations are commonly employed to describe complicated events in domains like as physics,
biology, and engineering (see [8], [9]). These equations, however complex due to their nonlinearity, give
a solid framework for expressing intricate real-world interactions. The Gronwall lemma, highlighted
in works like as( [2], [7], and [10]), is an invaluable tool in this domain, especially for determining the
stability of integral equations. This lemma enables a systematic approach to bounded solutions, as well as
a clear method to achieving stability in nonlinear systems. Its efficiency in ensuring Hyers-Ulam stability
highlights its critical role in the study of nonlinear integral equations.

The investigation of Hyers—Ulam stability, generalized Hyers—Ulam stability, Hyers—Ulam—Rassias and
generalized Hyers-Ulam-Rassias stability using Gronwall lemma for(k,1)-fractional order qudratic integral
equation remains relatively unexplored. The previously mentioned works encouraged us to continue on
the same path. As a result, we have considered the following (k,i)-fractional order quadratic integral
equation:

Y OWE) - pE)-
% k1T, (C1)

£ P O)PE) — pO) 7
% kaTy,(C1)

Bi _
i fé YUBWi(E) - vi(d)5
= Js kiTk: (B:)

where A = [£,&¢],0 < & < & < 00, 9, ¢, i : A — R are increasing functions with 1'(&), ¢’ (&), Pi(E) #
0véeA,i=1,..., me Nand ; € (0,k1),C € (0,k2), B € (0,k), i =1,...m. Also Ny, Ny and Ri;i=1,...m
are continuous functions.
These equations have substantial applications in a variety of domains [5]. In population dynamics, for
example, they describe biological population development by altering the rate of increase in response to
both current population levels and previous events, representing genetic or memory influences. They
are used in physics and control theory to represent systems with nonlinear feedback and time-varying
processes, such as viscoelastic materials or diffusion processes. Quadratic fractional integral equations are
useful for modeling systems like nonlinear filtering and memory-influenced signal recovery. For further
information, we recommend ([6], [16]).

We now offer the formal definition of the aforementioned stabilities for the nonlinear (k,i)-fractional
quadratic integral equation.
To verify the Hyers-Ulam, generalized Hyes-Ulam, Hyers-Ulam-Rassias and generalized Hyers-Ulam-
Rassias stability of the (k,i)-fractional order quadratic integral equation, the definitions given are quite
important.

x(&) R1(6, x(9))do

N2(6, x(0))dd 1)

Ri(0, x(9))dd, & € A,
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Definition 1.1. In term of ¢, equation (1) is considered Hyers—Ulam stable if a constant ¥ > 0 exists such that, for
every solution x(&) € C(A, R) of the inequality

w O)(E) — YL

‘ (&) - k1Ti, (Ch) M0, xoNd0 "’
3 (O - (0 %_1
E ' )(q;c(fr)k ( f); DY o, x(@)dd
bi 4
O)(Wi(&) — Pi(d)F
‘Z AT k(r)k ﬁlP) i(9)) Ri(3, x(3)dd| < e,

For equation (1), there is a solution x°(&) € C(A, R) such that:
IX(€) - x° () <¥e VEEA.

Definition 1.2. The equation (1) is generalized Hyers-Ulam stable if there exists M € C(IR+,R+), M(0) = 0, such
that for each solution x(&) € C(A, R) of the inequality

w O)(E) — )
k1T, (C1)

£ P O)PE) — PO) =
% k2T, (Ch)

'“ f P E)(E) — i)
&o k;rki ﬁ)

‘ () N1(6, x(9))do ©)

R2(0, x(6))d0

Ri(0, x(9))dd| < ¢,

There exists a solution x°(&) € C(A, R) of the equation (1) with
IX(&) = X°(E)] < M(e)¥, VE € A =[&, <]

Definition 1.3. In term of C)(&), equation (1) is considered Hyers—Ulam—Rassias stable if a constant ¥ > 0 exists
such that, for every solution x(&) € C(A, R) of the inequality

1# O)(E) - )
k1T (Ch)
£ P ONDE) - pE)E
% k2Tx, (C1)

Bi
£ PO)(WilE) — Pi(d))E
—Z f o Ri(0, X(0))dd| < Q(&),

‘ (©) - N1(6, x(9))do (4)

R2(6, x(9))d6

For equation (1), there is a solution x°(&) € C(A, R) such that:
IX(&) = X°(E) < ¥.Q(E),VE€A.

Definition 1.4. The equation (1) is generalized Hyers-Ulam-Rassias stable with Q(&), if there exists ¥ > 0 such that
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for each solution x(&) € C(A, R) of the inequality

£ W @) WE) — Y@L
[ OGO 5

. k1T (Ch)

£ P ONDE) - pE)E
% k2T'x, (C1)

_ijfwww@—wmﬁl
i—1 Y& k:rk; B

there exists a solution x°(&) € C(A, R) with:
IX(&) = X° () < ¥.Q(E).e, YE € A =[&, <]

In this article, the (k,i)-fractional order quadratic integral equation (NFQIE) is systematically examined.
A focus on significant stability results such as the Hyers-Ulam and Hyers-Ulam-Rassias stabilities, which
are supported by Gronwall’s lemma, the main findings are described in depth in sections 2, 3, 4, and 5.
Within the fractional framework, each component offers a foundation for comprehending the stability and
robustness of NFQIE. Illustrative examples and graphs are included in Section 6 to graphically illustrate
the precision, efficacy, and relevance of these findings. These visual aids validate the suggested approaches
within the specified domain by elucidating the theory and connecting the mathematical findings with
practical interpretations.

‘X(E) -

R2(0, x(9))d6

Ri(0, x(0))do| < Q(&).¢,

2. Hyers-Ulam Stability Of (k,1p)-fractional order quadratic integral equation

Hyers-Ulam stability result for (k,i)-fractional order quadratic integral equation (1) in Theorem 2.1 in
the finite interval case is presented in this section.

Theorem 2.1. We suppose that:
(i) N1, 8o and R;; i = 1,...m are continuous functions.
(ii) A positive constant L1, 1, and L; fori =1,---m such that:

|N1(£/ 61) - N1(5/ 62)' < L1|61 - 62|/ V6l/ 62 € IR/
|N2(5/ 61) - 82(5/ 62)| < L2|61 - 62'/ val/ 62 € IR/

and

IRi(&,01) — Ri(&, 02)l < Lild1 — 8o, V81,02 € R.

then,
(a) The equation (1) has in C(A, R) a unique solution x°;
(b) For each € > 0, if x € C(A, R) is a solution of inequility

jQW®mma—w®ﬂ*

‘X(E) ~ fTe () N1(3, x(0))dd
E 47 :;2_1
HO)HE) - $0)
&o kzrk2 (Cl) N2(6/ X(é))dé

_i £ PUBYWH(E) - (@)
i=1 Y& kT (Bi)

Ri(0, x(0))dd| < e,V E €A,
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Then

X&) —x (€l <¥e VEEA,

where; ¥ = exp(b1.iy X Lo lip + Lily) fori=1,---m
i.e. equation (1) is Hyers—Ulam stable.

Proof. (a) It is simple to prove the theorem (see [2]). As a result, we will not provide the proof of this
theorem,

(b) Consider
X(&) - x°(O)
O - @ = ‘ ©-[ ¥ 6)(‘11‘?]{1 (C”f)(é”z_lxl(a,x%a))da
) gl (frk;(gf ;6 (o7 @)
_ Z; f‘g wg(é)(lp}fr)k:(;;i(a))g_l Ri(3, x°(3))dd
< ’ ©) - lp 6)%?,“(@#1})(6))3_181(6,x(6))d6
I 0 P10 (‘f{(frkz s D xod
_2 ; I#i(é)(']b;c(;?k:(ﬁzb)i(é))zj_l R,(0, X(0))d0
5 qb/(é)(i(z?k;g;é»%_l 8o (0, X(0)do
Y[ Al “Pk(‘?k ﬁ‘/’) O R(8, 1(8))d0
_ é Y <6>(i(fr)kl‘(gf)(6”h N @)D
; ¢I(6)(ii?k;§§6))%_l Na(3, x°(8))d0
Z f 0 wk(ér)k /f> o R, x°<6))d6’
< e+ fé O l’b(é)(i(l?kl_(gf)(é))kl_l N1(3, x°(0))Id0
x fé ‘5 ¢’(6)(¢;<(2€r)k2—( 51);()'3))2_1 806, ()G
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bi_q
(&) —i(0)"

Z f T Ri(0, X°(9))ld
< ex f | ‘V(é)(i(l‘?kl"(gf)(é))“_l\.Lﬂx(a)—x°(6)|d6
o AL I
. Z [ wg(w}fr)k;ﬁ?(é))ﬁ_l Lx(©) - @0

Using Gronwall lemma (see [10])

e (o —pE)h
< s.exp(h L PO r©) - x*@1ad
o' — o)
ty [T EO o) - oo
g1
m 6 5 16 ki
Z f llb( )(ll}k(r (ﬁl)b)( )) |X(6)_X0(6)|d6)
—1 it K \Pi
< p(}_th X Lz.hz + L,i’_ll)

X(E) = x°(E) <e¥ VEeA,

where;

¥= exp(Ll.hl Xty + L,i’—ll)

which means that equation (1) is Hyers—Ulam stable. [

3. Generalized Hyers-Ulam stability of (k,ip)-fractional order quadratic integral equation

2462

Here, we provide the Hyers—Ulam stability conclusion for the (k,i)-fractional order quadratic integral

equation (1) in the infinite interval case of Theorem 3.1.

Theorem 3.1. We suppose that:
(i) N1, Np and R;; i = 1,...m are continuous functions.
(ii) A positive constant L1, 1, and L; such that:

|N1(£/ 61) - x1(5/ 62)| < L1|61 - 62'/ val/ 62 € R/

|NZ(5/ 61) - 82(5/ 62)| < L2|61 - 62'/ V61, 62 € IR/
and

Ri(£,01) = Ri(&,02) < Lild1 — 82, Y01, 02 € R

then,
(a) The equation (1) has in C([&o, 00), R) a unique solution x°;
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(b) For each € > 0, if x € C([£o, 0),R) is a solution of inequality

£ P @)E) - PE)F

‘(@ a0 )
£ Q' (0) (&) — P(d) )k"1
% k2T'x, (C1) R2(0, x(0))d0
3) o)t

—2: ke w;i/i(” Ri(0, X(ONS| < &,¥ & € [£0,0),
Then
(&) = x° (&) < ¥M(e), Y & € [&y, ),
where;

¥ = exp(L1.is X Lofip + Li.1i;) ie. equation (1) is generalized Hyers—Ulam stable.

Proof. (a) The theorem is easy to prove. Therefore, the proof of this theorem will not be presented here (see

[4],[2]).

(b) Consider
(&) - x° @)
Sl (3 — 0 9
S€+£Iﬂxﬁ%éy) N1(6, x°(9))Ido
£/ O)((E) — o) B ) 0
XL) Kl (C) IN2(0, X(3)) = N2(0, x°(9))ldd
Bi
v ( — @)~
- Ri(8, x°(0))|dd
+;L; kT (B) ) = Ri(8, x*(©))

Using Gronwall lemma (see [10])

PO W(E) - YT

< e.exp (L1 L PSoN® - xX°(0)|dd
& ©O)DE) - )7 .
XZL) e CORPRCT
S)Wi(E a3)f!
+th e ix®) - O

< & exp(L1 .hl X Lz.hz + L,‘.h,‘),

X(€) = x°(E) < e¥ V€ [&, )

where;

¥= exp(L1 .hl X I’_Q.Flg + Llhl)

which means that equation (1) is generalized Hyers—Ulam stable.
O
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4. Hyers-Ulam-Rassias stability Of (k,1p)-fractional order quadratic integral equation

This section gives the Hyers—Ulam stability result for the (k,1))-fractional order quadratic integral equa-
tion (1) in Theorem 4.1 in the finite interval case.

Theorem 4.1. We suppose that:
(i) N1, 8o and R;; i = 1,...m are continuous functions.
(ii) A positive constant L1, 1, and ; such that:

|81(é/ 61) - Nl(é/ 62)| S Lllél - 62'/ v61/ 62 € ]R/
|N2(£/ 61) - NZ(‘S/ 62)| S ]:—‘2'61 - 62'/ v61/ 62 € ]R/
and

IRi(&,01) — Ri(E, 62) < Lil61 — 02|, Y01, 0, € R.

(iii) Q(&) is a non—decreasing function.

then,

(a) The equation (1) has in C(A, R) a unique solution x°;
(b) If x € C(A, R) is such that

£ Y OW(E) - pE)F

‘ ) - ki Ty (C1) M0 2O
5 0))
j”ﬂxﬁigg N2 (6, ()
G a)k !
3 Zf 1/} ( )(laljk(*i)k ;[})( ) Ri(0, x(8))dd| < Q&), Y &£ €A,

Then

X&) = X* (I < ¥UE YV E €A,

where;
¥= exp (Ll.hl X Lz.hz + Li.h,-).
i.e. equation (1) is Hyers—Ulam—Rassias stable.

Proof. (a) It is well known result (see [2]).

(b)Consider
Ix(&) = x|
@ = YO - p(E)7 ! )
max@N—x@\f CETLULEN
P (0)(P(E) — P(d) )7 )
& P R

Ri(9, x°(9))do

_i Y E)PHE) - pi @)
' kT (Bi)
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< x©- g ll),(é)(i(l?kl_(gf)(é))gl N1(0, x(9))dd
L¢©iigywkﬁﬂwﬁ
‘Z tuagizfﬁ*xﬁﬂwﬁ
W@%EETNHM@MW%
5%&ﬁ1£@ﬁ*M@M®%
*ii?ﬂwﬁi%?wgkﬁw@m
_:W@%izfﬁw&@f@m
jwwﬁiﬁﬁﬁ4&@f@m
) if f": wg(é)(¢;é?k;ﬁii(6))%_l Ri(3, )(°(6))d6‘
< Q@+ L lP'<5>(f((léF)kl—(Crzlf)(GS))2_1 IN1(0, X(3)) — N1(8, X°(9)ldd
Lﬁwaﬂiﬁwmwu&@ﬂw—&@fﬁmm
Zﬁw@%iﬁf%{m@mwmmmw%
< Q@)+l;’Pmmﬁ%iff”ﬁ4inww»—x%®wm
fso o q?ci?kz(gsé))k_l Eax(0) - x*(0)Id0
+§L#wwﬁayamhmwx®Wa

Using Gronwall lemma (see [10])

3
<Q(E).exp (L1 f
&o

P E)E) - YT
k1l (C1)

1x(8) — x*(0)ldo

2465
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f & @)HE) — )=
Lo 6 kT, (C1)

/(0) <¢ <cf> i) !

+;Lf T (B

< Q(E).exp (b1 X Ep.lip + L11;)

1x(®) - x*(0)ldo

1x(0) - X°(6)Id6)

X(E) = x°(E) < Q&)Y VEeA

where;

¥= exp (Ll.h1 X Lz.hz + Li.hi), Vi= 1, ceem

which means that equation (1) is Hyers-Ulam-Rassias stable. [

2466

5. Generalized Hyers-Ulam-Rassias Stability Of (k,1p)-fractional order quadratic integral equation

This section gives the Hyers—Ulam stability result for the (k,i’)-fractional order quadratic integral equa-

tion (1) in Theorem 5.1 in the infinite interval case.

Theorem 5.1. We suppose that:
(i) N1, 8o and R;; i = 1,...m are continuous functions.
(ii) A positive constant L1, L, and L; such that:

|N1(£1 61) - Nl(é/ 62)' < Lllél - 62|/ V61162 € ]RI
IN2(E,01) = Ra(&,02)| < E2|01 — 0], V01,0, € R,
and

IRi(&,01) — Ri(&,02)l < Lilog — 8,, V01,0, € R.

(iii) Q(&) is a non—decreasing function.

then,

(a) The equation (1) has in C([&, 00), R) a unique solution x°;
(b) If x € C([&, ), R) is such that

w OWE) - pE)~

‘ (© - = <c1> Ni(0, x(0))d0
(3 — (S Bl
é g )(i(fr)k : C‘f; D 8, x(@)dd
Bi
< PO)WiE) — Pi(0)"
OO O o] < a0, v

Then

IX(€) =X (O < ¥.eQE) Y £ € A = [&, ),
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where;

¥= exp (Ll.h] X to.lip + Llh,)

i.e. equation (1) is generalized Hyers—Ulam—Rassias stable.

Proof. (a) It is a well known result (see [10]).

(b)Consider
X(©) - x°()
qy(é)(iﬁ?&fﬁé)’%ﬂ N0 O
-2 : wg(é)(lp;fgér)k;(ﬁﬁi(é))ﬁ_l R0, X°(6))d6‘

Using Gronwall lemma (see [10])

< Q()e.exp (Ll f
&o

P EE) - Y

1x(0) — x°(0)Ido

k1T, (C1)
| @@E) - @)=
e e L ORPROL
)
1x(®) = x°(0)|dd
;Lf kﬂﬁJ Iﬂ)x(ﬂ)

< Q(&)e.exp (Ly.7in X Loy + L 1y)
<Q()e¥ V&€ [&, ),

X(E) = X < QE)e¥. VE € [&, ),

where;

¥= exp (Ll.}"—ll X ¥, Fr + Li.hi), Vi=1,---m
which means that equation (1) is generalized Hyers-Ulam-Rassias stable.

6. Illustrative Examples

In this section, we present two examples to illustrate the results obtained earlier.

Example 6.1. Let us consider the following NQFIE:

(T E- 3)57' 1 fE-0)it
X&) = o 5Ts(1) 20 X(0)dd % o 5T5(2) 30 x(0)dd
(E-0)+ ~ 6)k
+Zf S 401 x(3)dd, £ A=1[0,1],

O

2467
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30 Surface Plot of Solution z = & /0.7 with Custom Colormap 3D Surface Plot of Solution & with Custom Colormap

n

E4DT (Z-axis)

el

Solution Value z

0a

0a ; 0E
o 0.4

0.4

£ (V-axiz) 00 ¥ pleavis) & (¥-axis) voo £ (Caxis)

Figure 1: In the interval [0, 1], the 3D charts offer a thorough and complete perspective of the approximate
solution £ and the exact solution &y for equation (6). The plots successfully show how each solution changes
in connection to two independent variables by displaying & and ¢ in three dimensions. This enables a
close investigation of their relationship and interaction. This method provides a clear grasp of how well the
approximate solution £ matches the exact solution & over the interval by highlighting both the similarities
and differences in their trajectories. Finally, by offering important insights on the precision and efficacy
of the approximation over the designated range, this visualization improves our understanding of the
dynamic relationship between the exact and approximate solution.

The form of equation (6) is (1), as we have observed. Thus, we have obtained the following information by
comparing equation (1) with equation (6):

P& =) =¢i(&) =<
P(0) = ¢(0) = ¢;(0) = O wherei=1,2.
and their respective derivatives are:
V'(8),¢'(E), Y] (€) 0,
YO =¢'(0)=y;(0) =1,
alsok1 = k2 = ki* = 5,‘81 = 3,ﬁ2 = 4,C1 = 1,C2 =2

we now check all the conditions of theorem 2.1, for any & € [0, 1] and for 81, 82 € R we have,

IN1(&,01) = R1(&,02) £ E'él 32|, ¥01,0: € R,

|N2(é/ 61) - 82(6/ 62)' < %'61 - 62'/ Vél/ 62 € R/

and

1
Ri(¢,01) = Ri(&, 02)| < 752101 = B, V1,02 € R.
Moreover if we choose approximate solution x(&) = 0‘5—7, it follows,

:i_( TS ox [(ETL
0

5r5(1) 20° o 505(2) 30° x(@)dd

<eVEeA=]0,1],

(5 5)k
+Z KT (@) 401 (6)d6)



R. Shah, E. Tanveer / Filomat 39:7 (2025), 2457-2473 2469

6 7 7
_|& _ 1[5 +588 | x 1 (=588 + 5¢s (7)
0.7 70\ 6 105\ 7 2
8 8 9 9
1 (-5&5  5&5 1 (-5&  5&3) 9
— + - + <Z=¢VEeA=10,1].
280\ 7 3 1680\ 9 4 4
Compatison of the Expression and Constant Value \frac{9)4} Compatison of the Expression | Mrac{i}0.7}- \xi | and e2-1.51 \cdot frac{S}4}
25 T T T T T T T T T 07 T T T T T T T T T
: : 0B
2r Expression Valug :
“\frac{a){4} (1.5 [ e i i e e e e e s e
15 [ B SRR e e e S e B e g UA ......... ...................................
£ .
1} 1 T
: : [ S .....................................
05k ......... — :
: 5 ; : : e ] e O R TR - -
: 3 | Mracad 0.7} - Y |
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Figure 2: On the left side, 2D plot of the inequality (7) illustrating a comparison between the two functions:
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denoted by a green line. This plot illustrates the comparison of the functions by showcasing their relative
magnitudes and behavior within the specified domain.

On the right side, 2D plot of the inequality (8) illustrating a comparison between the two functions: ‘ 37— ¢

denoted by a blue line, and ¢7'%.3 denoted by a green line, examining these comparisons offers a deeper
understanding of how each function interacts with the others within the given interval.

denoted by a blue line, and ¢ = 3,

7

This demonstrate the Hyers—Ulam Stability of equation (6). Furthermore, considering the exact solution x°(&) = &
we have;

<

IX(&) = x° ()] = ‘ﬁ -&| < e‘1'5.491, ¥ &el0,1]. ®)

Example 6.2. Let us consider the following NQFIE:

B 526(52 62)7_1 1 526(52 62)7_1 1
X(©) = fo o T fo B 5 (O ©)

-1

20(8 - ) k 1
Zf ka(ﬁ) 53;:X(0)d3, £ A=[0,1],



R. Shah, E. Tanveer / Filomat 39:7 (2025), 24572473 2470

30 Plot of Wrac{vi®2 + 110.9] for i \in [0,1]

30 Plot of &2 +1 for £ € [0,1)

D5 e

Walue of Mracfuit2 + 1)0.9} (Z-axis)
“alue of };2 + 1 [Z-axis)

05 06

0.4 0.4
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Figure 3: The 3D plots offer a detailed and insightful visualization of both the exact solution &, and
the approximate solution ¢ for equation (6), over the interval [0,1]. These illustrations make it easier to
comprehend how each solution behaves and changes inside the specified domain. The charts effectively
illustrate the evolution of these solutions in connection to two independent variables by presenting &y and
& in three-dimensional space. This method captures the parallels and discrepancies in the development of
the exact and approximate solutions, enabling us to closely analyze their relationship and interaction. In
the end, this comprehensive depiction improves our comprehension of the dynamic interplay between the
exact and approximate answers, illuminating the approximation’s efficacy within the designated range.

The form of equation (6) is (1), as we have observed. Thus, we have obtained the following information by
comparing equation (1) with equation (6):

(&) = p(&) = Yi() = &,
P(@) = (@) = (D) = 5% wherei =1,2.

and their respective derivatives are:
P9, ¢'(E), 97 (&) # 0,

V'(0) = ¢'(3) = ¢} (8) = 20,
alsoky =ky =ki =7,1=3,2=4,0=1,,=2.

we now check all the conditions of theorem 4.1, for any & € [0, 1] and for 81,02 € R we have,
1
IN1(&,01) = NR1(&,02) £ ﬁ|51 - 0|, ¥01,02 € R,
1
IN2(&,01) = Ra(&,02)] < E|61 -0y, V01,0, € R,
and

1
|%i(é/ 61) - %i(é/ 62)' < 2_31|61 - 62|/ Vél/ 62 eR.
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Figure 4: On the left side, 2D plot of the inequality (10) illustrating a comparison between the two functions:
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denoted by a black line, and Q(&) = 1 + ¢%, denoted by a green line. This plot illustrates the comparison of

the functions by showcasing their relative magnitudes and behavior within the specified domain.

On the right side, 2D plot of the inequality (11) illustrating a comparison between the two functions:

‘S%l - &+ 1|, denoted by a black line, and = (1 + ¢°).e™%° denoted by a green line, examining these

comparisons offers a deeper understanding of how each function interacts with the others within the given
interval.

Moreover if we choose approximate solution x(&) = %, it follows,

_|e+1 < 28(82 - 02771 1 £ 2582 -0%)71 1
0.9 (fo 7r,(1) 11 xX(B)dd fo 7T,2) 15 x(©)dd

& 26(52 62);_1
Z f kTR L (Bi) 23i° (6)d6)

&o

<146 =QE),YEeA=]0,1],

(10)

41 1 . 7E7 6 1 (787 7E7 787

09 69.3(75 )X 4_( 2 )

1 @ 787 . 77 1 797 7E% 7%
289.8\ 3 10 3 4

<146 =Q),VEeA=]0,1].

This demonstrate the Hyers—Ulam—Rassias Stability of equation (9). Furthermore, considering the exact solution
xX°(&) = & + 1 we have;

241

2
_241
A

X&) - x* ()l = ’ < (1+e)e, ¥V Ee[0,1]. (11)
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7. Conclusion

The examination of the stability of the (k,i’)-Fractional Order Quadratic Integral Equation (NFQIE) has

advanced significantly with this work. The Ulam-Hyers, Generalized Ulam-Hyers, Ulam-Hyers-Rassias,
and Generalized Ulam-Hyers-Rassias stability criteria have been systematically applied to these equations

for

the first time. By applying these well-established stability ideas to fractional-order integral equations, a

new method is presented that advances our knowledge of how these equations behave under perturbations.
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