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Abstract. In this study, we introduce a new notion of pointwise hemi bi-slant Riemannian submersions,
a profound generalization encompassing various established submersion types like anti-invariant, slant,
semi-slant, pointwise slant, pointwise semi-slant, and bi-slant submersions, all within the framework of
almost product manifolds. After presenting a unique illustrative example, our investigation delves into the
integrability conditions and geodesics governing this novel submersion concept. Furthermore, we unravel
the complexities ofϕ−pluriharmonicity andϕ−invariance within this context, revealing the subtle interplay
between pointwise hemi bi-slant submersions’ fibers and their classification as either geodesic or mixed
geodesic. This in-depth analysis provides valuable insights into the intricate geometric properties of these
fascinating mappings, offering a comprehensive understanding of their underlying principles and paving
the way for future research and application.

1. Introduction

The concept of submanifolds in Differential Geometry proves highly valuable, extending the notions of
curves and surfaces into higher dimensions. This framework plays a pivotal role in representing config-
uration spaces of physical systems, enabling the efficient depiction of intricate shapes and motion paths
in robotics and computer science. In essence, submanifolds offer a versatile approach to comprehending
complex geometries and their inherent characteristics. By delving into the structure of spaces, they provide
profound insights and applications spanning diverse fields, establishing them as a fundamental concept in
contemporary mathematics and its myriad applications. Recognizing the pivotal role of submanifolds, ge-
ometers have dedicated efforts to define and scrutinize specific instances of these mathematical structures.
One approach to establishing a submanifold involves working with submersions, with the Riemannian
Submersion being the most extensively studied. The concept of Riemannian submersion was initially in-
troduced by O’Neill [11] and carried profound implications in physics, particularly in exploring gauge and
field theories. In the context of fiber bundles, Riemannian submersions frequently come into play when
projecting a higher-dimensional physical space onto a lower-dimensional base manifold. This projection
preserves crucial geometric and metric properties, rendering it an invaluable tool for precise modeling
and understanding of physical phenomena, including gauge field theories and the broader geometry of
spacetime in general relativity. Moreover, Riemannian submersions find practical applications in optimal
control theory, offering valuable insights into the dynamics and symmetries of physical systems.
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In this context, we present a groundbreaking submersion concept ”pointwise hemi bi-slant Riemannian.”
This innovative approach serves as a substantial expansion of previously explored submersions in the
existing literature, offering valuable contributions and paving the way for new avenues of exploration in
various contexts. This newly introduced submersion not only encapsulates but also extends the principles
outlined in earlier studies, including pointwise hemi-slant [2], pointwise slant [22], bi-slant [17], slant [19]
and other related submersions, enriching the field with its comprehensive scope. The structure can be
outlined as follows:

The Preliminaries section covers the basics of Riemannian submersion and almost product Riemannian
manifolds. In Section 3, our primary focus is on pointwise hemi bi-slant Riemannian submersion. This section
begins by establishing the framework for these submersions, presenting an original example, and highlight-
ing the significance of our work. This importance is substantiated through Table 1, various decompositions,
and specific results essential throughout the paper. In the initial subsection, efforts are directed toward
finding solutions for the integrability conditions of the distributions outlined in the definition of these
submersions. The following subsection focuses on totally geodesic structures and concludes by expressing
the fibers as local products of the integral manifolds of the distributions. In the third subsection, a novel
approach named ϕ−pluriharmonicity of the submersion π is explored, especially in cases where the fibers
exhibit either totally geodesic or mixed geodesic properties. This innovative approach provides a path-
way for exploring the harmonicity of a submersion. The final subsection is dedicated to investigating the
ϕ−invariance of the submersion, establishing specific conditions under which pointwise slant angles are
implicated.

2. Preliminaries

2.1. Riemannian submersions
This section is devoted to the basics of Riemannian submersions.
Let (M, 1) and (N, 1̄) be Riemannian manifolds. A surjective mapping π : (M, 1) → (N, 1̄) is called a

Riemannian submersion [11] if

i) π has maximal rank;

ii) the restriction of the differential map π∗ on (kerπ∗)⊥ is a linear isometry.

In this case, we recall the following observations and concepts;

• For each q ∈ N, π−1(q) is a k-dimensional submanifold of M and called a fiber, where k = dim(M) −
dim(N).

• A vector field on M is called vertical (resp. horizontal) if it is always tangent (resp. orthogonal) to
fibers.

• We will denote by V and H the projections on the vertical distribution kerπ∗ and the horizontal
distribution kerπ⊥∗ , respectively.

• The manifold (M, 1) is called total manifold and the manifold (N, 1̄) is called base manifold of the
submersion π : (M, 1)→ (N, 1̄).

• A vector field X on M is called basic if X is horizontal and π-related to a vector field X∗ on N, i.e.,

π∗Xp = X∗π(p), ∀p ∈M.

The last fact given above yields the following Lemma [11], which explains the preservation of brackets,
inner products, and covariant derivatives;

Lemma 2.1. Let π : (M, 1) → (N, 1̄) be a Riemannian submersion between Riemannian manifolds. If X and Y are
basic vector fields, then
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• 1(X,Y) = 1̄(X∗,Y∗) ◦ π,

• the horizontal partH[X,Y] of [X,Y] is a basic vector field corresponding to [X∗,Y∗],

• the horizontal partH(∇M
X Y) of ∇M

X Y is the basic vector field corresponding to ∇N
X∗

Y∗,

• [U,X] is vertical for any vector field U of kerπ∗.

The geometry of Riemannian submersions is characterized by O’Neill’s tensorsT andA, defined as follows:

TEG =V∇VEHG +H∇VEVG, (1)

AEG =V∇HEHG +H∇HEVG (2)

for any vector fields E and F on M, where ∇ is the Levi-Civita connection of 1. One can see that a
Riemannian submersion π has totally geodesic fibers if and only if T vanishes. On the other side, A
acts on the horizontal distribution and measures of the obstruction to the integrability of this distribution.
Moreover, TE andAE are skew-symmetric operators on the tangent bundle of M reversing the vertical and
the horizontal distributions.
Now we give the properties of the tensor fields T andA.

Let V,W be vertical and X,Y be horizontal vector fields on M, then we have

TVW = TWV, (3)

AXY = −AYX =
1
2
V[X,Y]. (4)

On the other hand, from (1) and (2), we obtain

∇VW = TVW + ∇̂VW, (5)

∇VX = TVX +H∇VX, (6)

∇XV = AXV +V∇XV, (7)

∇XY = H∇XY +AXY, (8)

where ∇̂VW =V∇VW. If X is basic

H∇VX = AXV.

Remark 2.2. In this paper, we will assume all horizontal vector fields as basic vector fields.

For more details, we refer to O’Neill’s paper [11] and the book [7].
LetΨ be a C∞-map from a Riemannian manifold (M1, 11) to a Riemannian manifold

(
M2, 12

)
. The second

fundamental form ofΨ is given by

(∇Ψ∗) (X,Y) = ∇ΨXΨ∗Y −Ψ∗ (∇XY) for X,Y ∈ Γ(TM1), (9)

where ∇Ψ is the pullback connection and we denote conveniently by ∇ the Levi-Civita connections of the
metrics 11 and 12, [3].

If (∇Ψ∗)(X,Y) = 0 for any X,Y ∈ Γ(TM),Ψ is called a totally geodesic map. In particular, if (∇Ψ∗)(X,Y) = 0,
X,Y ∈ Γ(D) for any subset D of TM,Ψ is called a D−totally geodesic map, [3].
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2.2. Almost product Riemannian and locally product Riemannian manifolds
An m-dimensional manifold M is called almost product manifold with almost product structure ϕ which is

a tensor field of type (1,1) satisfying

ϕ2 = id, (ϕ , ±id) , (10)

denoted by (M, ϕ). Also for E,G ∈ Γ(TM), (M, ϕ) admits a Riemannian metric 1 satisfying

1(ϕE, ϕG) = 1(E,G), (11)

then M is said to be an almost product Riemannian manifold.
Let ∇ be the Riemannian connection with respect to the metric 1 on M. Then M is called a locally product
Riemannian manifold (briefly, l.p.R.) if ϕ is parallel with respect to the connection, i.e. [28]

∇ϕ = 0. (12)

3. Pointwise hemi bi-slant submersions

This section is the main part of our work. We define and study pointwise hemi bi-slant Riemannian
submersion.

Definition 3.1. Let (M, 1, ϕ) be an almost product Riemannian manifold and (N, 1̄) be a Riemannian manifold. A
Riemannian submersion π : (M, 1, ϕ) → (N, 1̄) is called a pointwise hemi bi-slant Riemannian submersion if the
vertical distribution kerπ∗ of ϕ decomposes into three orthogonal complementary anti-invariant distribution D⊥,
(pointwise slant) distributionsDθ1 andDθ2 .
In this case, we have the decomposition

kerπ∗ = D⊥ ⊕Dθ1 ⊕D
θ2 , (13)

where D⊥ is an anti-invariant distribution, Dθi is a pointwise slant distribution and the angle θi between ϕU and
the space (Dθi )q , (∀q ∈M), is independent of the choice of nonzero vector U ∈ Γ(Dθi )q, which is called slant function
of the pointwise bi-slant Riemannian submersion, for i = 1, 2.

Remark 3.2. Given concept pointwise hemi bi-slant submersion in this work is a special version of generalized
skew-semi-invariant submersions, [18]. The goal of this work is obtaining results in case of the existence of only
anti-invariant distribution and two pointwise distributions.

We give an example to show the existence of such submersions.

Example 3.3. Consider the standard Euclidean space R10 with the standard metric 1. One can see that

ϕ1(x1, x2, ..., x8, x9, x10) = (−x3, x4,−x1, x2,−x7, x8,−x5, x6, x9, x10)

and

ϕ2(x1, x2, ..., x8, x9, x10) = (x2, x1, x4, x3, x6, x5, x8, x7, x9, x10)

are almost product Riemannian structures on R8, where ϕ1ϕ2 = −ϕ2ϕ1. For any smooth function π : R10
→ R5,

we can define a new almost product Riemannian structure such that

ϕ1,2 = fϕ1 + 1ϕ2,

where f and 1 defined by

f : R10
− {−1} → R

f (x1, x2, ..., x8, x9, x10) = −
x1√

(x1)2 + 1
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1 : R10
→ R

1(x1, x2, ..., x8, x9, x10) =
1√

(x1)2 + 1
.

Therefore, (R10, ϕ1,2, 1) is an almost product Riemannian manifold.
Now, let π be a map between R10 and R5 defined by

π(x1, x2, ..., x8, x9, x10) =
(x1 − x3
√

2
,

x2 − x4
√

2
,

x5 + x8
√

2
,
−x6 + x7
√

2
, x9

)
.

The following decomposition of kerπ∗

kerπ∗ = D⊥ ⊕Dθ1 ⊕Dθ2 ,

where

D⊥ = span
{
∂
∂x10

}
Dθ1 = span

{
∂
∂x1
+
∂
∂x3
,
∂
∂x2
+
∂
∂x4

}
,

Dθ2 = span
{
∂
∂x5
−
∂
∂x8
,−
∂
∂x6
+
∂
∂x7

}
shows that π is a pointwise bi-slant submersion with the slant functions

θ1 = cos−1(1), and θ2 = cos−1(− f ).

Remark 3.4. The following table, which gives some exceptional cases of our work, explains the significance of it and
how generic concept it is.

Table 1: Subclasses of a pointwise hemi bi-slant Riemannian submersion

dim D⊥ dim Dθ1 dim Dθ2 Submersion Reference
, 0 0 0 anti-invariant [9],[14]
0 , 0 (θ1 constant) , 0 (θ2 constant) bi-slant [17]
0 , 0 (θ1 = 0) , 0 (θ2 > 0 function) pointwise semi-slant [16]
, 0 , 0 (θ1 > 0 constant) 0 hemi-slant [23]
, 0 , 0 (θ1 > 0 function) 0 pointwise hemi-slant [2]
0 , 0 (θ1 > 0 constant) 0 slant [15]
0 , 0 (θ1 > 0 function) 0 pointwise slant [10]

Let π be a pointwise hemi bi-slant Riemannian submersion from a locally product Riemannian (l.p.R.)
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄).We may set the following projections:

• For any U ∈ Γ(kerπ∗),

ϕU = PU +NU, (14)

where PU ∈ Γ(kerπ∗), NU ∈ Γ(kerπ⊥∗ ).

• For any ξ ∈ Γ(kerπ⊥∗ ),

ϕξ = δξ + ωξ, (15)

where δξ ∈ Γ(kerπ∗), ωξ ∈ Γ(kerπ⊥∗ ).
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One can see that the pointwise slant distributions given in Definition 3.1 are P-invariant, i.e.

PDθ1 ⊆ Dθ1 , PDθ2 ⊆ Dθ2 .

In this case, the horizontal distribution kerπ⊥∗ can be decomposed as

kerπ⊥∗ = ϕD⊥ ⊕NDθ1 ⊕NDθ2 ⊕ µ, (16)

where µ is the orthogonal complementary distribution of ϕD⊥ ⊕ NDθ1 ⊕ NDθ2 in kerπ⊥∗ . Moreover, µ is
ϕ-invariant. If µ = {0},we will call the submersion Lagrangian pointwise bi-slant submersion.
The decompositions given above yield us the following facts;

(P2 + δN)U = U, NPU = −ωNU, ∀U ∈ Γ(kerπ∗), (17)

(Pδ + δω)ξ = 0, (Nδ + ω2)ξ = ξ, ∀ξ ∈ Γ(kerπ⊥∗ ). (18)

If we consider (13) with (17), we have

δNU = U, ∀U ∈ Γ(D⊥), (19)

P2U = cos2 θi U,∀U ∈ Γ(Dθi ), i = 1, 2, (20)

δNU = sin2 θi U,∀U ∈ Γ(Dθi ), i = 1, 2. (21)

In this paper, we will work in the case of the endomorphism ϕ is parallel, in other words, with locally
product Riemannian manifolds. Thus we have the following relations

Lemma 3.5. Let π be a pointwise hemi bi-slant Riemannian submersion from a locally product Riemannian (l.p.R.)
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄). Then, for any X,Y ∈ Γ(kerπ∗) and ξ, β ∈ Γ(kerπ⊥∗ ), we have
the followings

TXPY + ANYX = ωTXY +N∇̂XY, (22)
∇̂XPY + TXNY = δTXY + P∇̂XY, (23)

TXδξ + AωξX = NTXξ + ωAξX, (24)
∇̂Xδξ + TXωξ = PTXξ + δAξX, (25)

AξPX +H∇ξNX = ωAξX +NV∇ξX, (26)
V∇ξPX + AξNX = δAξX + PV∇ξX, (27)

Aξδβ +H∇ξωβ = ωH∇ξβ +NAξβ (28)
V∇ξδβ + Aξωβ = δH∇ξβ + PAξβ (29)

Proof. The fact ∇ϕ = 0 completes the proof.

Lemma 3.6. Let π be a pointwise hemi bi-slant Riemannian submersion from a locally product Riemannian (l.p.R.)
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄). Then, we have, for any X,Y ∈ Γ(D⊥), U,V ∈ Γ(Dθi ), and
Z ∈ Γ(D j), i , j, i = 1, 2,

i) 1(∇XY,U) is equivalent to the followings;

− csc2 θi 1(TYNPU + ANYNU,X), (30)

sec2 θi 1(TPUNY + TYNPU,X). (31)

ii) 1(∇UV,X) is equivalent to the followings;

csc2 θi 1(TXNPV + ANXNV,U), (32)

sec2 θi 1(TPVNX − TXNPV,U). (33)
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iii) 1(∇UV,Z) is equivalent to the followings;

csc2 θ j

(
1(TUV,NPZ) + 1(TUPV + ANVU,NZ)

)
, (34)

sec2 θ j

(
1(∇̂UPV + TUNV,PZ) + 1(TUV, ωNZ)

)
. (35)

Proof. Let X,Y ∈ Γ(D⊥) and U,V ∈ Γ(Dθi ), and Z ∈ Γ(D j), i , j, i = 1, 2.
i) The identities (11), (12), and (14) yield us

1(∇XY,U) = 1(∇XϕY,PU) + 1(∇XϕY,NU). (36)

The first expression on the right side of (36), with the help of (5), (17), (20) and the symmetry of ϕ on the
Riemannian metric takes form

1(∇XϕY,PU) = cos2 θi1(∇XY,U) + 1(TXY,NPU),

which makes (36) with (6)

1(∇XY,U) = − csc2 θi 1(TYNPU + ANYNU,X).

On the other side, the second expression on the right side of (36) with the help of (5), (17), (21) and the
symmetry of ϕ on the Riemannian metric takes form

1(∇XϕY,NU) = sin2 θi1(∇XY,U) + 1(∇XY, ωNU),

which makes (36) with (6)

1(∇XY,U) = sec2 θi 1(TPVNX + TXNPV,U),

completes the proof of i).
ii) The identities (11), (12), and (14) gives us

1(∇UV,X) = 1(∇UPV,NX) + 1(∇UNV,NX). (37)

The first expression on the right side of (37), with the help of (5), (17), (20) and the symmetry of ϕ on the
Riemannian metric takes form

1(∇UPV,NX) = cos2 θi1(∇UV,X) + 1(TXNPV,U),

which makes (37) with (6)

1(∇UV,X) = − csc2 θi 1(TYNPU + ANYNU,X).

On the other side, the second expression on the right side of (37) with the help of (5), (18), (21) and the
symmetry of ϕ on the Riemannian metric takes form

1(∇UNV,NX) = − sin2 θi1(∇UX,V) + 1(TXωNV,U),

which makes (37) with (5)

1(∇UV,X) = sec2 θi 1(TPVNX − TXNPV,U)

completes the proof of ii).
iii) The equations (11) and (14) give us

1(∇UV,Z) = 1(ϕ∇UV,PZ) + 1(ϕ∇UV,NZ). (38)
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The first expression on the right side of (38), with the help of (12), (14), (20), and the symmetry of ϕ on the
Riemannian metric takes form

1(ϕ∇UV,PZ) = cos2 θ j 1(∇UV,Z) + 1(∇UV,NPZ),

which makes (38) with (12), (5), (6), and the symmetry of ϕ on the Riemannian metric

1(∇UV,Z) = csc2 θ j

(
1(TUV,NPZ) + 1(TUPV + ANVU,NZ)

)
.

On the other hand, the second expression on the right side of (38) with the help of (5), (11), (14), (15), (21),
and the symmetry of ϕ takes form

1(ϕ∇UV,NZ) = sin2 θ j 1(∇UV,Z) + 1(TUV, ωNZ),

which makes (38) with (5)

1(∇UV,Z) csc2 θ j

(
1(TUV,NPZ) + 1(TUPV + ANVU,NZ)

)
,

which completes the proof.

3.1. Integrability
Since certain distributions appear in our work, a natural question is the integrability of the given distri-

butions, i.e. under what conditions we can find an integral manifolds for the corresponding distributions? In this
section, we investigate the integrability of the given distributions in the definition of a pointwise hemi
bi-slant submersion.

Before we discuss the conditions for the integrability, we present a useful lemma.

Lemma 3.7. Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1) onto a
Riemannian manifold (N, 1̄). Then, we have, for any X,Y ∈ Γ(D⊥) and U ∈ Γ(Dθ1 ⊕Dθ2 ),

1(ANXNU,Y) = −1(ANYNU,X), (39)

1(TPUNY,X) = −1(TPUNX,Y). (40)

Proof. Let X,Y ∈ Γ(D⊥) and U ∈ Γ(Dθ1 ⊕Dθ2 ). By the symmetry of ϕ, (8), and the skew-symmetry of A, we
obtain

1(ANXNU,Y) = −1(ANUNX,Y) = −1(∇NUNX,Y) = −1(∇NUϕX,Y)
= 1(∇NUϕY,X) = 1(ANUNY,X) = −1(ANYNU,X),

which proves (39). On the other side, by the symmetry of ϕ, (6), and the skew-symmetry of T, we obtain

1(TPUNY,X) = −1(TPUX,NY) = −1(∇PUNY,X)
= −1(∇PUϕX,Y) = −1(TPUNX,Y),

which completes the proof.

Now, we start with the integrability of the anti-invariant distribution D⊥.

Theorem 3.8. Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1) onto a
Riemannian manifold (N, 1̄). Then, the followings are equivalent to each other;

i) The anti-invariant distribution D⊥ is integrable,

ii) 1(AϕYNU,X) = 0,

iii) 1(TϕUNY,X) = 0,
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where X,Y ∈ Γ(D⊥), U ∈ Γ(Dθ1 ⊕Dθ2 ).

Proof. Let X,Y ∈ Γ(D⊥), and U ∈ Γ(Dθi ), i = 1, 2. From the properties of O’Neill tensor T, (30), and Lemma
3.7, we have

1([X,Y],U) = − csc2 θi 1(TYNPU + ANYNU,X)
+ csc2 θi 1(TXNPU + ANXNU,Y)

= 2 csc2 θi 1(ANXNU,Y).

On the other side, from the properties of O’Neill tensor T, (31) and Lemma 3.7, we have

1([X,Y],U) = sec2 θi 1(TPUNY + TYNPU,X)
− sec2 θi 1(TPUNX + TXNPU,Y)

= 2 sec2 θi 1(TPUNY,X),

which completes the proof.

The next theorem is related to the integrability of the pointwise slant distributions Dθ1 and Dθ2 .

Theorem 3.9. Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1) onto a
Riemannian manifold (N, 1̄). Then, the followings are equivalent to each other;

i) The pointwise distribution Dθi is integrable,

ii)
1(TVNPU − TUNPV,X) = 1(ANUV − ANVU,NX),

and

1(TUPV − TVPU,NZ) = 1(ANUV − ANVU,NZ)

iii)
1(TPUV − TPVU,NX) = 1(TVNPU − TUNPV,X),

and

1(∇̂UPV − ∇̂VPU,Z) = 1(TVNU − TUNV,Z),

where X ∈ Γ(D⊥), U,V ∈ Γ(Dθi ), Z ∈ Γ(Dθ j ), i , j, i, j = 1, 2.

Proof. Let X ∈ Γ(D⊥), U,V ∈ Γ(Dθi ), and Z ∈ Γ(Dθ j ), i , j, i, j = 1, 2. The pointwise distribution Dθi is
integrable if and only if [U,V] ∈ Dθi i.e. [U,V] ⊥ D⊥ and [U,V] ⊥ Dθ j .With the help of (32), we have

1([U,V],X) = csc2 θi 1(TXNPV + ANXNV,U)
− csc2 θi 1(TXNPU + ANXNU,V),

which proves 1(TVNPU − TUNPV,X) = 1(ANUV − ANVU,NX).
On the other side, by (34), we get

1([U,V],Z) = csc2 θ j

(
1(TUV,NPZ) + 1(TUPV + ANVU,NZ)

)
− csc2 θ j

(
1(TVU,NPZ) + 1(TVPU + ANUV,NZ)

)
,

which proves 1(TUPV − TVPU,NZ) = 1(ANUV − ANVU,NZ) and shows i)⇔ ii).
To show i)⇔ iii), the equation (33) leads us to see

1([U,V],X) = sec2 θi 1(TPVNX − TXNPV,U)
− sec2 θi 1(TPUNX − TXNPU,V),
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which proves 1(TPUV − TPVU,NX) = 1(TVNPU − TUNPV,X).
On the other hand, (35) leads us to get

1([U,V],Z) = sec2 θ j

(
1(∇̂UPV + TUNV,PZ) + 1(TUV, ωNZ)

)
− sec2 θ j

(
1(∇̂VPU + TVNVU,PZ) + 1(TVU, ωNZ)

)
,

which proves 1(∇̂UPV − ∇̂VPU,Z) = 1(TVNU − TUNV,Z), and completes the proof.

3.2. Totally Geodesic Foliations

Another key feature for the submersions is geodesics. In this direction, the current section is devoted to
the geodesics of the distributions mentioned in the definition of a pointwise hemi bi-slant submersion.

Now, we give some conditions for the geodesics of the anti-invariant distribution D⊥.

Theorem 3.10. Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1) onto a
Riemannian manifold (N, 1̄). Then, the followings are equivalent to each other;

i) The distributionD⊥ defines totally geodesic foliations on M,

ii) 1(TPUNY − ANYNU,X) = 0,

iii) 1(TXNY,PU) = 1̄((∇π∗)(X, ϕY), π∗(NU)),

where X,Y ∈ Γ(D⊥) and U ∈ Γ(Dθ1 ⊕Dθ2 ).

Proof. Let X,Y ∈ Γ(D⊥) and U ∈ Γ(Dθ1⊕Dθ2 ). To prove the distributionD⊥ defines totally geodesic foliations
on M, we need to show that ∇̂XY ∈ D⊥, i.e. ∇̂XY ⊥ Dθ1 ⊕Dθ2 . By (30), we have

1(∇̂XY,U) = 1(∇XY,U)
= − csc2 θi 1(TYNPU + ANYNU,X).

On the other hand, by (31), we get

1(∇̂XY,U) = 1(∇XY,U)
= sec2 θi 1(TPUNY + TYNPU,X).

With the last two expression of 1(∇̂XY,U), we prove i)⇔ ii).
Using (11), (5), (14), and Lemma 2.1, we have

1(∇̂XY,U) = 1(∇XY,U)
= 1(∇XNY,PU) + 1(∇XNY,NU)
= 1(TXNY,PU) + 1(H∇XNY,NU)
= 1(TXNY,PU) − 1̄((∇π∗)(X, ϕY), π∗(NU)),

which gives i)⇔ iii), and completes the proof.

The following theorem gives some conditions for the geodesics of the pointwise slant distributions Dθ1 and
Dθ2 .

Theorem 3.11. Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1) onto a
Riemannian manifold (N, 1̄). Then, the followings are equivalent to each other;

i) The distributionDθi defines totally geodesic foliations on M,
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ii)
1(TXNPV + ANXNV,U) = 0

and

1(TUV,NPZ) + 1(TUPV + ANVU,NZ) = 0.

iii)
1(TPVNX − TXNPV,U) = 0,

and

1(∇̂UPV + TUNV,PZ) + 1(TUV, ωNZ) = 0.

iv)
1(ANVU,NX) = 1̄((∇π∗)(U,PV),NX)

and

1(∇̂UPV,PZ) + 1(ANVU,NZ) = 1̄((∇π∗)(U,PV), π∗(NZ))
−1̄((∇π∗)(U,PZ), π∗(NV)),

where X ∈ Γ(D⊥), U,V ∈ Γ(Dθi ), Z ∈ Γ(Dθ j ), i , j, i, j = 1, 2.

Proof. Let U,V ∈ Γ(Dθi ).The distributionDθi defines totally geodesic foliations on M if and only if ∇̂UV ∈ Dθi ,
i.e. ∇̂UV ⊥ D⊥ ⊕Dθ j , i , j, i, j = 1, 2.

The relation i) ⇔ ii) can be proved by (32) and (34). Moreover, we can prove the relation i) ⇔ iii) by
using (33) and (35).

Now, let X ∈ Γ(D⊥), U,V ∈ Γ(Dθi ), Z ∈ Γ(Dθ j ), i , j, i, j = 1, 2. Then, by using (11), (5), (6), (14), and (15),
we have

1(∇̂UV,X) = 1(∇UV,X)
= 1(∇UPV,NX) + 1(∇UNV,NX)
= −1̄((∇π∗)(U,PV),NX) + 1(ANVU,NX)

and

1(∇̂UV,Z) = 1(∇UV,Z)
= 1(ϕ∇UV,PZ) + 1(ϕ∇UV,NZ)

= 1(∇̂UV,PZ) − 1(∇UPZ,NV) − 1̄((∇π∗)(U,PV), π∗(NZ))
+1(ANVU,NZ)

= 1(∇̂UV,PZ) + 1(ANVU,NZ) − 1̄((∇π∗)(U,PV), π∗(NZ))
+1̄((∇π∗)(U,PZ), π∗(NV)),

which proves i)⇔ iv), and completes the proof.

Corollary 3.12. Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1) onto a
Riemannian manifold (N, 1̄). Then, the integral manifold of kerπ∗ is a locally product

MD⊥ ×MDθ1 ×MDθ2

if and only if at least one of the conditions in Theorem 3.10 and one in Theorem 3.11 are satisfied, where MD⊥ , MDθ1 ,
and MDθ2 are integral manifolds of the distributions D⊥, Dθ1 , and Dθ2 , respectively.
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3.3. ϕ−pluriharmonicity of π

This section is devoted to some interesting results for the ϕ−pluriharmonicity of π. First, we give the
definition of this concept.

Definition 3.13. [2] Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1)
onto a Riemannian manifold (N, 1̄).
π is called

• D⊥ − ϕ−pluriharmonic if for any X,Y ∈ Γ(D⊥),

• Dθi − ϕ−pluriharmonic if for any X,Y ∈ Γ(Dθi ), i = 1, 2,

• (D⊥ −Dθi ) − ϕ−pluriharmonic if for any X ∈ Γ(D⊥), Y ∈ Γ(Dθi ), i = 1, 2,

• (kerπ∗ − kerπ⊥∗ ) − ϕ−pluriharmonic if for any X ∈ Γ(kerπ∗), Y ∈ Γ(kerπ⊥∗ ),

(∇π∗)(X,Y) + (∇π∗)(ϕX, ϕY) = 0. (41)

The following theorem gives a relation for the totally geodesics of the fibers of the submersion π under the
D⊥ − ϕ−pluriharmonicity assumption.

Theorem 3.14. Let π be a D⊥ − ϕ−pluriharmonic pointwise hemi bi-slant Riemannian submersion from an l.p.R.
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄). Then, the map π is a ND⊥−geodesic map if and only if the
fibres define totally geodesic foliations in M.

Proof. Since π is D⊥ − ϕ−pluriharmonic, for any X,Y ∈ Γ(D⊥), we have

0 = (∇π∗)(X,Y) + (∇π∗)(ϕX, ϕY),

which gives with (5) and (14)

0 = −π∗(TXY) + (∇π∗)(NX,NY).

The last expression shows thatπ is a ND⊥−geodesic map if and only if T = 0,which completes the proof.

The next theorem gives a result under the Dθi − ϕ−pluriharmonicity assumption, for i = 1, 2.

Theorem 3.15. Let π be a Dθi − ϕ−pluriharmonic pointwise hemi bi-slant Riemannian submersion from an l.p.R.
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄), (i = 1, 2). Then, the map π is a NDθi−geodesic map if and
only if

TPUPV + ANVPU + ANUPV + TUV = 0,

where U,V ∈ Γ(Dθi ), i = 1, 2.

Proof. Since π is Dθi − ϕ−pluriharmonic, for any U,V ∈ Γ(Dθi ), i = 1, 2, we have

0 = (∇π∗)(U,V) + (∇π∗)(ϕU, ϕV),

which gives with (5), (9), and (14)

(∇π∗)(NU,NV) = π∗(TPUPV + ANVPU + ANUPV + TUV)

completes the proof.

We recall the definition of mixed geodesic. For given two distributions D1 and D2 defined on the fibers of a
Riemannian submersion π, the fibers are called D1

−D2
− mixed geodesic if TD1 D2 = 0.

(D⊥ −Dθi ) − ϕ−pluriharmonicity of the pointwise hemi bi-slant submersion gives the following result.
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Theorem 3.16. Let ϕ be a (D⊥ − Dθi ) − ϕ−pluriharmonic pointwise hemi bi-slant Riemannian submersion from
an l.p.R. manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄), (i = 1, 2). Then, the fibers are (D⊥ − Dθi )− mixed
geodesic if and only if

∇
N
π∗(NX)π∗(NU) = π∗(ωANXU +NV∇NXU),

where X ∈ Γ(D⊥), U ∈ Γ(Dθi ).

Proof. The assumption π is (D⊥ − Dθi ) − ϕ−pluriharmonic, with the help of (5), (9), (14), and (15), for any
X ∈ Γ(D⊥), U ∈ Γ(Dθi ), we have

0 = (∇π∗)(X,U) + (∇π∗)(ϕX, ϕU)
= −π∗(∇XU) + ∇πϕXπ∗(ϕU) − π∗(∇ϕXϕU)

= −π∗(∇XU) + ∇N
ϕ∗(NX)π∗(NU) − π∗(ϕ∇NXU)

= −π∗(∇XU) + ∇N
ϕ∗(NX)π∗(NU)

−π∗(ωANXU +NV∇NXU),

which completes the proof.

Now, we consider the case π is (kerπ∗ − kerπ⊥) − ϕ−pluriharmonic. The following theorem gives a
condition for the fibers being mixed geodesics.

Theorem 3.17. Letπ be a (kerπ∗−kerπ∗⊥)−ϕ− pluriharmonic pointwise hemi bi-slant Riemannian submersion from
an l.p.R. manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄), (i = 1, 2). Then, the fibers are (kerπ∗ − kerπ⊥)-mixed
geodesic if and only if

(∇π∗)(ωξ,NX) = π∗(TδξPX + ANXδξ + AωξPX),

where X ∈ Γ(kerπ∗), ξ ∈ Γ(kerπ⊥∗ ).

Proof. The assumption π is (kerπ∗ − kerπ∗⊥) − ϕ− pluriharmonic, with the help of (5), (6), (9), (14), and (15),
yields

0 = (∇π∗)(ξ,X) + (∇π∗)(ϕξ, ϕX)
= −π∗(∇ξX) + (∇π∗)(δξ,PX) + (∇π∗)(δξ,NX)
+(∇π∗)(ωξ,PX) + (∇π∗)(ωξ,NX)

= −π∗(∇ξX) − π∗(∇δξPX + ∇δξNX + ∇ωξPX)
+(∇π∗)(ωξ,NX)

= −π∗(∇ξX) − π∗(TδξPX + ANXδξ + AωξPX)
+(∇π∗)(ωξ,NX),

which completes the proof.

3.4. ϕ−invariant and totally geodesics

In this section, we find some conditions for the map to be the ϕ−invariant of the distributions on the
total space.

We give the following concept, which helps to provide new conditions for some other concepts studied
before.

Definition 3.18. [2] Let π be a pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold (M, ϕ, 1)
onto a Riemannian manifold (N, 1̄).
π is called

• D⊥ − ϕ−invariant if for any X,Y ∈ Γ(D⊥),
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• Dθi − ϕ−invariant if for any X,Y ∈ Γ(Dθi ),

• (D⊥ −Dθi ) − ϕ−invariant if for any X ∈ Γ(D⊥), Y ∈ Γ(Dθi ),

• (kerπ∗ − kerπ⊥∗ ) − ϕ−invariant if for any X ∈ Γ(kerπ∗), Y ∈ Γ(kerπ⊥∗ ),

(∇π∗)(X,Y) = (∇π∗)(ϕX, ϕY). (42)

The following theorem gives a condition anti-invariant distribution D⊥ to define totally geodesic foliations
in M.

Theorem 3.19. Let π be a D⊥ − ϕ−invariant pointwise hemi bi-slant Riemannian submersion from an l.p.R.
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄). Then, the anti-invariant distribution D⊥ defines totally
geodesic foliations on M if and only if

∇
N
π∗(ϕX)π∗(ϕY) = π∗(ωANX +NV∇XV),

where X,Y ∈ Γ(D⊥).

Proof. Let π be a D⊥ − ϕ−invariant, i.e.

(∇π∗)(X,Y) = (∇π∗)(ϕX, ϕY), ∀X,Y ∈ Γ(D⊥),

which gives with (7), (8), and (9),

−π∗(∇XY) = ∇N
π∗(ϕX)π∗(ϕY) − π∗(ωANX +NV∇XV),

completes the proof.

The following theorem gives a condition for Dθi , i = 1, 2, to define totally geodesic foliations in M.

Theorem 3.20. Letπ be a Dθi−ϕ−invariant pointwise hemi bi-slant Riemannian submersion from an l.p.R. manifold
(M, ϕ, 1) onto a Riemannian manifold (N, 1̄), for i = 1, 2. Then, the pointwise slant distributions Dθi define totally
geodesic foliations on M if and only if

(∇π∗)(NU,NV) = N
(
− sin(2θi)NU(θi)V + cos2(θi)V∇NUV + ANUNPV

+ sin(2θi)PU(θi)V + sin2(θi)∇̂PUV + TPUωNV
)

+ ω
(

cos2(θi)ANUV +H∇NUNPV + sin2(θi)TPUV

+ AωNVPU
)
,

where U,V ∈ Γ(Dθi ), i = 1, 2.

Proof. Since π is Dθi − ϕ−invariant, for any U,V ∈ Γ(Dθi ), i = 1, 2,we have

(∇π∗)(U,V) = (∇π∗)(ϕU, ϕV),

which gives with (9)

−π∗(∇UV) = (∇π∗)(NU,NV) + (∇π∗)(NU,PV) + (∇π∗)(PU,NV)
= (∇π∗)(NU,NV) − π∗(∇NUPV) − π∗(∇PUNV). (43)

Now, by using (5) ∼ (8),(9), (14), and (15), we compute the second term on the right side of (43);

−π∗(∇NUPV) = −π∗(ϕ∇NUP2V) − π∗(ϕ∇NUNPV)
= −π∗(ϕ∇NU(cos2 θi)V) − π∗(ϕ∇NUNPV)

= −π∗

(
− sin(2θi)NU(θi)NV + cos2(θi)ωANUV

+ cos2(θi)NV∇NUV + ωH∇NUNPV +NANUNPV
)
,
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the third term on the right side of (43);

−π∗(∇PUNV) = −π∗(ϕ∇PUδNV) − π∗(ϕ∇PUωNV)
= −π∗(ϕ∇PU(sin2(θi))V) − π∗(ϕ∇PUωNV)

= −π∗

(
sin(2θi)PU(θi)NV + sin2(θi)ωTPUV

sin2(θi)N∇̂PUV +NTPUωNV + ωAωNVPU
)
.

Thus, we obtain

−π∗(∇UV) = π∗

(
−N
(
− sin(2θi)NU(θi)V + cos2(θi)V∇NUV + ANUNPV

+ sin(2θi)PU(θi)V + sin2(θi)∇̂PUV + TPUωNV
)

− ω
(

cos2(θi)ANUV +H∇NUNPV + sin2(θi)TPUV

+ AωNVPU
))
+ (∇π∗)(NU,NV),

which completes the proof.

We give a relation between (D⊥ − Dθi ) − ϕ−invariance of the submersion and mixed geodesics of the
fibers.

Theorem 3.21. Let π be a (D⊥ −Dθi )−ϕ−invariant pointwise hemi bi-slant Riemannian submersion from an l.p.R.
manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄), for i = 1, 2. Then, the fibers are (D⊥ −Dθi )− mixed geodesic
if and only if

∇
N
π∗(ϕX)π∗(NU) = π∗(ωAϕXU +NV∇ϕXU),

where X ∈ Γ(D⊥) and U ∈ Γ(Dθi ), i = 1, 2.

Proof. By the assumption, for any X ∈ Γ(D⊥), U ∈ Γ(Dθi ), i = 1, 2,we have

(∇π∗)(X,U) = (∇π∗)(ϕX, ϕU), (44)

which is with the help of (6), (9), (14) and (15)

−π∗(∇X,U) = ∇N
π∗(ϕX)π∗(NU) − π∗(ωAϕXU +NV∇ϕXU)

completes the proof.

Now, we give a result for the relation between (kerπ∗ − kerπ⊥∗ )− mixed geodesics of the fiber and (kerπ∗ −
kerπ⊥∗ ) − ϕ− invariance of the submersion.

Theorem 3.22. Let π be a (kerπ∗ − kerπ⊥∗ )−ϕ− invariant pointwise hemi bi-slant Riemannian submersion from an
l.p.R. manifold (M, ϕ, 1) onto a Riemannian manifold (N, 1̄). Then, the fibers are (kerπ∗ − kerπ⊥∗ )− mixed geodesics
if and only if for any X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ⊥∗ ),

(∇π∗)(NX, ωξ) = π∗(ω(TPXωξ + ANXδξ) +N(AωξPX +V∇NXδξ)).

Proof. The assumption (kerπ∗ − kerπ⊥∗ ) − ϕ− invariant yields

(∇π∗)(X, ξ) = (∇π∗)(ϕX, ϕξ),

which gives with (6), (7), (9), (14), and (15)

−π∗(∇Xξ) = (∇π∗)(NX, ωξ) − π∗(ω(TPXωξ + ANXδξ)
+N(AωξPX +V∇NXδξ)),

which completes the proof.
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