Filomat 39:7 (2025), 2195-2207
https://doi.org/10.2298/FIL2507195Y

Published by Faculty of Sciences and Mathematics,
University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

g
5

ey
b, ¢
i axs

&
Ipapor®

A study of generalized Gamma-type operators
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Abstract. In this study, we discuss the approximation properties of Gamma operators G, for absolutely
continuous and locally bounded functions by using results of probability theory and some inequalities with
the method of Bojanic-Cheng. And then, metric form Q,,(, 1) is used with asymptotic formula combining to
calculate an convergence rate asymptotically of Gamma operators G, for the bounded functions locally and
also analysis techniques are used with Bojanic-Khan-Cheng’s method to calculate an optimal convergence
rate of Gamma operators G, for the functions which are absolutely continuous. Lastly, the convergence of
the operators to a specific function is illustrated using Maple software.

1. Introduction

Lupas and Miiller [17] introduced Gamma operators which are most commonly used operators in
approximation theory and have been used for calculating a better approximation to the target function.
Zeng [27] studied some convergence properties of Gamma operators, e.g., the optimal convergence rate
and asymptotic convergence rate for absolutely continuous and locally bounded functions, respectively.
Karsli [13] discussed the convergence rate by a new defined Gamma operators for functions which have
derivatives of bounded variation. Gupta [12] considered modified Gamma operators G, which are defined
as:

_ E ai - a—1 —as/u
Ga(é,u)—(u) o fo 52147051 £ (5) fs. (1)

The operators G, preserve the linear functions and they reduce to the following well-known operators in
special cases:

1. If a = n, we obtain the Post-Wider operators [9].
2. If & = nu, we get the Rathore operators [10].
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Chen and Guo [6] discussed approximation properties of the Gamma operators for function with bounded
variation on [0, o). Ozcelik et al.[20] introduced a modified Gamma operators and discussed a weighted
approximation, Voronovskaya theorem, pointwise estimates and convergence rate. Rempulska and Sko-
rupka [21] present new modification of Gamma operators which is defined for differentiable functions of
polynomial weighted spaces and studied the approximation behaviour of these operators which are more
optimal than the classical Gamma operators. Many researchers in the literature have examined the ap-
proximation properties of various Gamma operators (cf. [2-5, 7, 11, 14-16, 18, 22-26, 28]etc.) and reference
therein.

Let & be a continuous function which is defined on [0, o) and follows these condition:
IE() < MeP* (M >0, >0, s — ).

In this study, the point-wise approximation behaviour of modified Gamma operators G, will be calculated
for the spaces of functions which are locally bounded W5 and absolutely continuous Wpp. Then, Wp and
Wpp are defined as:

Wp = {&|€ on every finite subinterval of [0, o0) is bounded.},

Wpp

U
{élé(u) - &(0) = f q(s)ds;u 2 0, g on every finite subinterval of [0, co) is bounded.} .
0

Furthermore, we defined the following metric form for a function £ € Wg :

QuéA) = sup  [&(s) - Eu)l,

s€[u—A,u+A]

where u € [0, o) is fixed, A > 0.
Then, we have

1. Q,(&, A) is monotonic increasing with respect to A.

2. If £ is continuous at the point u, %ir% Q,(&,A) =0.

b
3. If \/(6) denotes the total variation of £ on [a, b] and & is bounded variation on [g, b], then Q,(&, 1) <
a

u+A

V@

u—A

In Section 2, we used quantitative form of the central limit theorem for sign function to calculate an approx-
imation formula asymptotically of Gamma operators G,. After that, the metric form €,,(£, A) combining
with this asymptotic formula is used to calculate the convergence rate for the locally bounded function
& € Wp by Gamma operators G, at the point u where (u+) and &£(u—) exist. The absolute moment of first
order for Gamma operators G,(|s — u/, 1) in Section 3 is evaluated to get

2 u
Galls — ul,u) = 4 E”' < 532" (2)

Estimate (2) is optimal asymptotically and it gives better result than Bojanic and Khan result which is in
([4], Section 3.7) that

Gu(ls — ul,u) = w/%u +0@™). (3)
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And then, analysis techniques combining with the Bojanic-Khan-Cheng’s method and estimate (2) are used
to calculate the convergence rate for absolutely continuous function & € Wpg by Gamma operators G,. The
optimal asymptotic estimation is obtained.

Throughout this paper, a = a(n) be a sequence such that @ = a(n) - ccasn — oo and lim % =leR.

2. Approximation for locally bounded functions

The convergence rate for function £ € W3 by Gamma operators G,, is calculated in this part. We need
some preliminary results to prove Theorem 2.4.

Lemma 2.1. Foru € (0,00),i=0,1,2,---, there holds
. ‘. i
G,(s',u) = m. (4)
al

Proof. By direct computation, we have

ok f —
EoANORST
)

)

Ga (Si+1, u)

ar(la)(g)aﬂﬂ f - pakitl=1 ,t gy
0

xT(a+i+1)

Il
—_ I/ / /

QIR =R :ISQ le 2R

1
r()

O

Lemma 2.2. For u € (0, o), we have

2

Gul(s — ), u) = ”; 6)
VGG =t ) < 6)

VGG < it )
Ga (e, u) < (2e)" for a > 2pu. (8)

Proof. By direct computation and Lemma 2.1, we get

Gal(s—u?u) = %2;

a+6 4

Gu((s - u)4/ u) u-,;

a3
1507 +130a +120 ¢

Ga((s - u)6/ M) CY5
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which satisfy eqs.(5)-(8). On the other side, if a« > 2fu putting s = a:x—u, we have

2Bu
f Sa—lefas/ueZﬁsds
0
f sa—le—(a/uf2ﬁ)sds
0

00 a1
) fo ( %—t2ﬁ>) e ftzm

aﬁ x (a _”2 o )a fo " ety
(

5]
‘ -

Ga(e™, 1)

e R
S

RIR =RIR RIR 2RI 2R

~— — — — —
4
—_
S

—_——~ /N /N /N /

a 1 a
- mx a—Zﬁu) X T(a)
3 a Ot_ Z‘Bu o 261
Bl a—Zﬁu) _(1+a—2ﬁu) < .

O

In Lemma 2.3, we obtained the central limit theorem in the asymptotical form which is defined in probability
theory. It is shown in Feller [[8], pp. 540-542].

Lemma 2.3. Suppose that {C;}°, be a sequence of random variables which are identically distributed and independent
with the expectation EC; = ay, the variance E(Cy —a1)?* = 02 > 0,E(C; —a1)* < o0, and let F,, stand for the distribution
[a]
function of Z(C{ —a1)/0 Va. IfF, is not a lattice distribution, then the following equation holds for all s € (—co, +00) :
i=1
1 " E(G —m)? s 1
Fols) — — e Py = ————= (1 -s*)—
V271 J-oo 60° Vo \V2n
Theorem 2.4. Suppose that a function & € Wg and let &(s) = O(ef*) for some B > 0 as s — oo. If E(u+) and E(u-)
define at a point u € (0, o0), which is a fixed point. So o > 2pu, we get

e 4 o(a”?). 9)

clut) + &u-) | E(ut) - c(u-)

Ga(él T/l) - 2 3 \/2_71

[a]

<2Y Qufuu/ VB + O™, (10)
k=1

where

0 s=1u; (11)

EB) = E(u+), u<s<oo;
fll(t) = 7
&(s)—&u—-), 0<s<u.

Proof. Let & satisfy the condition of Theorem 2.4, then £ can be expressed as

S(u+) + E(u-

g = HEIHE i DS

> > sign(s — u)
rou(9gn - L)) 12)
where sign(s) is sign function, 0,(s) is defined in (11) and
Su(s) = { é : . " Obviously,

Gy (6y,u) =0. (13)
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Let us consider a sequence {(;};, of random variables which are independent for this Gamma distribution
and their probability density functions are

= —as/u
P(s) = { u ¢ >0, where u € (0, o) is a variable. Hence by simple calculation we have

0, s<0,
1/[2
E(G) =u, E(G—-EG) =0"= " (14)
2 3 4
E@G-EQ)' = 25, E(G—EG)* = 90(13 < oo, (15)

[a]

Letn, = Z C; and F, stand for the distribution function of Zgill(C,- — EC;)/0 Y. Then the probability distri-
i=1

bution of the random variable 1, is

a Y Y a-1_—at/u
P(nasy)=(z) @ J, tr-lematiugy,
Thus

(E)QL f+oo Saflefas/uds _ (ﬁ)aL fu Saflefas/uds
ul T(a) Ju ul T(a@) Jo
1—2P(1)y < 1) = 1 — 2F4(0). (16)

Gy (sign(s — u), u)

By Lemma 2.3, combining eqs. (14), (15) with simple computations, we get

3 B —2E(C -m)® 1 “1/2y _ -2 -1
1-2F,(0) = 607 Va o +o(a %) = —3a o +O(a™). 17)

It follows from (12), (13), (16) and (17) that

_é(u+);r€(u—)+5(“;;:/§_7i”_) < [Ga(fuw)l+O(@™). (18)

We need to evaluate |G,(f,, u)|. Let

Ga(& u)

Kao(u,s) = P(a <s) = (%) @f pa-lp—aviug,,
0

Then

Galfu) = [ AuSHKulu). (19)
0
w2
Suppose 0 < v < s < u, then, by Chebyshev inequality and finding that E(1, — En,)? = o we get

2

Ka(u,8) = P(na <8) = P(INa —ul 2 u—s) < (20)

a(u—s)?’

Divide the integration of (19) into four parts as follows:

fo FuS)Kaltt,8) = Ava(f) + Aonlf) + Asalfy) + Aaalf)
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u

Ava(f) = fo T ROKas),  doalfy) = f K 9),

u

Ve
21

Maf) = [ f@dKaws),  Asalfy) = fz Fo(S)AeKa (i, 9).

u
ut =

2200

We will evaluate A1 o (fy), Azo(fu), Az o(fu) and Ay o (fy). First, for A, o(f,), noting that f,,(1) = 0, we have

Ve

(Ana(f)] < f 1)~ MK 9) < Q4o 1/ V)

To calculate |A1 o (fi)| =

u—% u—%
f fu(s)dsKa(u, s)| < f Qu(fu, u = 5)dsKo(u, s).
0 0
Using integration by parts with y = u — \/ia, we get

u

M—W y
f Oulfur t = $)dsKa(t,5) < Ou(fo 11— 1)Koty 1) + f Ka(it, )l fur 1t = 5).
0 0

Using inequality (20) and from (22), we have

uz Yy uz
()l € Qufortt = 1) fo A= (fu 11— ).

a(u—y)? - a(u —s)?

Since

fy ds(=Qu(fu, u = 5)) _ =Qy(fu, 1 — y) + Qu(fu, 1) + fyZQu(fuzu _S)d
0 0

(u—s)? S w-yp u? (u—s)?

from (21), (22) it follows that

1 2 (TN Qufuu—s)
|A1,a(fu)| < aQu(fM' Ll) + 7]{; st

Putting s = u — % for the last integral, we get

=% Qu(fy, 1 —s) 1 [ u
Gl 9o L (Mo fp, L
fo w—sp =22 ), ey

Consequently

IAralf)l < i(nu(fu, )+ f1 ) Qu(fu %)dt).

Using the similar method to evaluate |Az 4 (f,)|, we get

sl = 2t + f1 “of %)dt).

(21)

(22)

(23)

7

(24)

(25)

Finally, using Holder inequality and the inequality (6), by hypothesis that f,(s) < M(ef*) as s — oo, (8), for

a > 2fu we obtain
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—+00

M P d K (1, 5)
2u

+00
%f (s/a — u)?eP’*d K, (u,s)
0

|Ag,a(fu)l

IN

IN

+00 1/2 +00 1/2
< A_/I(f (s/a—u)4dsKa(u,s)) (Mf ezﬁs/“dsKa(M,S))
u2 0 u? 0
Bu
< 4M(§e) . (26)

Equations (21), (24)-(26) derive

IGa(fu, W)l < [Ara(fi)l + 1820 (fu)l + 1Az 0 (fi)l + 1Aga(fu)l
u 2M(2¢)P*
< Qu(furu/\/_ (Qlt(fu/u)+f u(fur E)dt)"' T
5 AM(2¢)P
< = kZ‘ Qulfus ] V) + =" (27)

From (18) and (27), we get the result of Theorem 2.4. [J

Corollary 2.5. Suppose that & be a function which have bounded variation at every subinterval of [0, 00). Suppose
&(s) = O(eF) as s — oo and for some B > 0. Then for u € (0, ) and a > 2pu, we get

Ewh) + &) | S —Eu)| 5§
o

-1
Gal&,u) = = v | S kZ Qu(fu 1/ V) + Oa™)
5 [a] u+u/
< 2 \/ (fu) + O@™). (28)
“ k=14 u/\/lz
Corollary 2.6. From Theorem 2.4, if 3, (f,, A) = o(A), then
Ga(é, M) — é(u+) + é(u_) _ CS(’/H') - é(u_) + O(a—l/Z). (29)

2 3a V21

3. Approximation for absolutely continuous functions

In this part we calculate the convergence rate of Gamma operators G, for function £ € Wpp. We need to
evaluate the absolute moment of first order for the Gamma operators to prove Theorem 3.3: G,(|s — ul, u).
In regards to this research, Bojanic and Khan [4] showed that

Gu(ls —ul,u) = 4/ %u +0(a™). (30)

Here in the section below, we will provide an optimal estimate to G,(|s — ul, u).
Lemma 3.1. For u € (0, o), there holds

2ua‘e™®
Ta+1)

Ga(ls —ul,u) = (31)
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Proof. From Lemma 2.1, using identity that G,(1,u) = 1, G,(s, u) = u, we get

Gu(s —ul,u) = a ai OOIs—uls‘)‘_le_"‘s/“als
a 7 - u r(()() 0

(g)aﬁ( j:(u e A f:o(u - s)s“‘le‘“s/“ds)

g ai ! _ a-1_—as/u
(u) F(a)fo(u s)s“ e ds

2u (M 2u “
— ey - ——— “e~’dv.
@ Jo v* e dv r(a+1)£ve v

But
(X 1 104
f v ey = a% e + = f v "do.
0 a Jo
Thus
Qua®le®  Quafe®
Gu(ls —u|,u) = = )
alls —ulw) = =% T(@+1)
]

Corollary 3.2. For u € (0, ), there holds

[ 2 u
Ga(|S - M|, M) - Eu' < m (32)

The best estimate is in (32), which cannot be asymptotically enhanced.

Proof. By using Stirling’s formula (cf[19]) and Lemma 3.1:

T(a+1) = V2ra(a/e)®e™, (12a+1)7 <c, < (12a)78,

we have

[ 2 ]2 e,
Eu - Ga(|s - ul/ l/l) - (XT(u(l e )/

and a simple calculation derives

u 2 u
N —_— < P —p f) < R
2/m 15032 = anu(l e < 15a3/2 (33)

O

Theorem 3.3. Suppose that & be a function which is belongs in Wpg and suppose &(s) < Mef* as s — oo and for
some 20, M > 0. If h(u+) and h(u—) exists at a point u € (0, co) which is fixed point then for & > 2u and h = &’
as & is absolutely continuous on every closed subinterval of [0, o), we get

(h(u+) = h(u=))u
V2o

W(u+) — h(u=)u + 17M(2e)"

[Va]
Ga(&, u) — E(u) - < %” Y O, ufk) + = , (34)
k=1
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0 S =1u; (35)

h(s) —h(u+), u<s<oo;
1Pu(s) = y
h(s) —h(u—), 0<s<u.

Proof. By direct computation, we get that

Gal1) £ = DG 1 1)~ L) + Raa) + Taaa), 36
where

Lou) = fo ) f " putiondol K, 5),

Rutp) = [ 2”( [ o K, ),

T = [ m( [ o K, ).

Integration by parts gives

Louli) = fo i f " a9

fu Pu(w)dwK,(u, s) ' + fu Ka(u, s)u(s)ds
s 0 0

f Kalit, V) (v)dv
0

( fow/ﬂ f :W)Kaw, V().

Note that K,(u,v) <1 and ¢,(u) = 0, it follows that

u [Va]

[ o s oo, )< 2 o 0. 4)

!
k=1
On the other side, using change of variable v = u — u/w and by inequality (20), we have

u—1u/ \a
f Ko (u, v)u(v)dv
0

dv

IA

uaf*Wﬁcawwu—w
0

o (u —v)?

u

va u [Val
= Ef Q. (Y, u/w)dw < - Z Qu(Yu, u/k).
1 k=1

Thus, it satisfies that

[Va]

Lo < 22 Y 0, /). 37)
k=1

04
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A similar estimation gives

[\F]
Ros)] < 22 Z QW u/k). (38)

At last, using inequality (7) and (8) and assuming that &(s) < Mef*(M > 0, > 0) and s > au, we get

+00
|Ta,u(¢u)| < M eﬁs/adsKa(urs)
2u
< M3 (s/a — u)’eP'*d, K (u, 5)
u 2u
+oo 1/2 +0o 1/2
< B[ era-wrariws) (5 [ ek ws)
u 0 us Jo
17M(2e)P
—an (39)

Theorem 3.3 now follows from (32), (36)-(39) and by a simple computation. The proof of the theorem is
complete.

In the last section, we demonstrate that the Theorem 3.3 estimate is optimal asymptotically. Directly by the
calculation, we get that

|s —ul—|0—ul = f sign(w — u)dw, s € [0, 00).
0

We take &£(s) = |s — ul, then h(s) = sign(s — u), h(u+) — h(u—) = 2,1, = 0 in Theorem 3.3. Therefore, by simple
computation and from(34),(33), we get

o / 2u + 17M(2e)"
2/m 15« 3/2 < —ul, M) ‘ 0(3/2 . (40)

Consequently, (34) cannot be asymptotically improved further. [

Remark 3.4. Theorem 2.4 and Theorem 3.3 satisfies condition a > 2fs because the approximation function & that
follows the growth condition: &(s) < MeP* for some B> 0and M > 0as s — oo is considered in Theorem 2.4 and 3.3.
In case, if p = 0, then & is bounded function on [0, o).

Remark 3.5. Let us consider function & with derivatives of bounded variation i.e & is belongs to Wpp. Hence,
Theorem 3.3 is a special case of the approximation of functions whose derivatives is bounded variation. Theorem 3.3
is superior than a result of [4] in this case. Also, the asymptotically optimal estimation is obtain in Theorem 3.3.

/1
Example 3.6. For a = 10, 15, 20, the convergence of absolutely continuous function &E(u) = { usm (ﬂ)’ u>0,
0, u<0.
1
U cos (—), u>0,
u

0, u <0.

and f(u) = { by Gu(&, u) is shown in Figure 1 and 2, respectively.
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Example 3.7. For a = 10, 15, 20, the convergence of absolutely continuous function &(u) =

by G,(¢&, u) is shown in Figure 3

— Gy é(u)l

Figure 1: Approximation Process

900

800

700

600

500

400

300

200

100

tw|

15— Gy Ew) |

Figure 3: Approximation Process

Figure 2: Approximation Process

1
ut sin(—), u>0,
u

0, u <0.



Example 3.8. For @ = 10,15, 20, the convergence by G, (&, u) for locally bounded function to E(u) =
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(1 +u?)

shown in Figure 4

1.0
0.9-
0.8-
0.7-
0.6-
0.5
0.4 \
03
0.2

0.1

—G G

10 15 Gy — Ew)

Figure 4: Approximation Process
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