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Abstract. Let H be a complex infinite dimensional Hilbert space. For T ∈ B(H), T is said to satisfy
property (UWΠ) if the complement in the approximate point spectrum of the Weyl essential approximate
point spectrum coincides with the poles of T. In this paper, we deeply talk about the property (UWΠ) under
some perturbations and property (UWΠ) for functions of operators. In addition, if T is Drazin invertible,
then property (UWΠ) for functions of T can be transmitted to the functions of its Drazin inverse.

1. Introduction

In 1909, Weyl [10] examined the compact perturbations of some self-adjoint operators and found that
the intersection of their spectrums consisted precisely of those points of the spectrum which were not
isolated eigenvalues of finite multiplicity. Later, the above observation was abstracted into the assertion
“Weyl’s theorem holds”. In recent decades, many scholars pay attention to this theorem and a lot of excel-
lent achievements followed. Also, combining with the relationships between different spectrum subsets,
mathematicians put forward a series of variants. Then many researches emerged, mainly focusing on the
perturbations, the functional calculus, and the operator matrices of Weyl type theorem (cf. [3, 4, 8, 9, 11, 12]).
In [4], Berkani and Kachad introduced the definition of property (UWΠ) by means of the approximate point
spectrum and the poles of some operator. Later, Zariouh gave another variant–property (ZΠa ), using the
Weyl spectrum and the left poles. In [3], the authors have talked about the relationships between those two
properties and mainly talked about the stability of property (UWΠ) under some commuting perturbations
and the preservation of property (UWΠ) under functional calculus. However, we find some errors therein,
Theorem 2.5, Theorem 3.3 and Theorem 4.4, for example. In this paper, we will focus on this topic and put
the matters in [3] right. To begin with, we introduce some terminology and notations.
C,N, D and T denote the set of all complex numbers, the set of all nonnegative integers, the unit disk

and the unit circle, respectively. Let H be a complex infinite dimensional Hilbert space and B(H) be the
algebra of all bounded linear operators onH . Without causing confusion, I denotes the identity mapping
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on some Hilbert space. Let T ∈ B(H). We use N(T), R(T) and σ(T) denote the kernel, the range and the
spectrum of T, respectively. If R(T) is closed and n(T) < ∞, then T is said to be an upper semi-Fredholm
operator; while T is said to be a lower semi-Fredholm operator if d(T) < ∞, where n(T) = dim N(T) and
d(T) = codimR(T). Especially, if T is an upper semi-Fredholm operator with n(T) = 0, then T is called a
bounded below operator. If T is upper semi-Fredholm or lower-Fredholm, then T is called a semi-Fredholm
operator. Now, the index of T is defined by ind(T) = n(T) − d(T). If ind(T) is finite, then T is called a
Fredholm operator. The approximate point spectrum σa(T), the Weyl essential approximate point spectrum
σea(T) and the Weyl spectrum σw(T) are defined by

σa(T) = {λ ∈ C : T − λI is not a bounded below operator},

σea(T) = {λ ∈ C : T − λI is not an upper semi-Fredholm operator with ind(T − λI) ≤ 0},

σw(T) = {λ ∈ C : T − λI is not a Fredholm operator with ind(T − λI) = 0}.

The ascent and descent of T are closely related with the kernel and range of the power of T, which are
defined by

asc(T) = inf{n ∈N : N(Tn) = N(Tn+1)},

des(T) = inf{n ∈N : R(Tn) = R(Tn+1)}.

If the infimum does not exist, then we write asc(T) = ∞ (resp. des(T) = ∞). It is known from [6, Proposition
38.3] that asc(T) = des(T) if they are finite meanwhile. In this case, T is said to be Drazin invertible. If
asc(T) < ∞ and R(Tasc(T)+1) is closed, then T is said to be left Drazin invertible. If T is both Fredholm and
Drazin invertible, then T is called a Browder operator. The Drazin spectrum σD(T), the left Drazin spectrum
σLD(T) and the Browder spectrum σb(T) are defined by

σD(T) = {λ ∈ C : T − λI is not a Drazin invertible operator},

σLD(T) = {λ ∈ C : T − λI is not a left Drazin invertible operator},

σb(T) = {λ ∈ C : T − λI is not a Browder operator}.

Π(T) = σ(T) \ σD(T) andΠa(T) = σa(T) \ σLD(T) are called the set of all poles and the set of all left poles of T,
respectively.

The following property has a fundamental role in local spectral theory. T is said to have single-valued
extension property at λ0 ∈ C (abbr. SVEP at λ0), if for every open neighborhoodU of λ0, the only analytic
function f : U → H which satisfies the equation (T − λI) f (λ) ≡ 0 for all λ ∈ U is the function f ≡ 0. T is
said to have SVEP if it has SVEP at every λ ∈ C. The interested reader could refer [1] for more details.

For a Cauchy domain ([7]) Ω, if all the curves of ∂Ω are regular analytic Jordan curves, we say that Ω
is an analytic Cauchy domain. For T ∈ B(H), if σ is a clopen subset of σ(T), then there exists an analytic
Cauchy domainΩ such that σ ⊆ Ω and [σ(T) \ σ]∩Ω = ∅, whereΩ is the closure ofΩ. We denote by E(σ; T)
the Riesz idempotent of T corresponding to σ, i.e.,

E(σ; T) =
1

2πi

∫
Γ

(λI − T)−1dλ,

where Γ = ∂Ω is positively oriented with respect to Ω in the sense of complex variable theory. In this case,
we have H(σ; T) = R(E(σ; T)). Clearly, if λ ∈ isoσ(T), then {λ} is a clopen subset of σ(T). We write H(λ; T)
instead of H({λ}; T); if in addition, dimH(λ; T) < ∞, then λ ∈ σ0(T), where σ0(T) denotes the set of all
normal eigenvalues of T. It is known to us all that σ0(T) = σ(T) \ σb(T).

Let T ∈ B(H). T is said to satisfy property (UWΠ) and denoted by T ∈ (UWΠ), if

σa(T) \ σea(T) = Π(T).

T is said to satisfy property (ZΠa ) and denoted by T ∈ (ZΠa ), if

σ(T) \ σw(T) = Πa(T).
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2. Property (UWΠ) and property (ZΠa )

In [3, Theorem 2.5], it showed that property (UWΠ) implies property (ZΠa ) and gave a characterization
for the reverse implication in [3, Theorem 2.6]. However, this is not true. We explain it by the following
example.

Let U be the right unilateral shift and P ∈ B(ℓ2) be a projection with n(P) = d(P) = ∞. Put T =
(

U 0
0 P

)
.

Then we have σ(T) = σw(T) = D and σa(T) = σea(T) = {0} ∪ T. Also, Π(T) = ∅ and Πa(T) = {0}. It follows
that T ∈ (UWΠ) but T < (ZΠa ).

Meanwhile, if T ∈ (ZΠa ), we could not get T ∈ (UWΠ).
For example, let V be the left unilateral shift and A ∈ B(ℓ2) be defined by A(x1, x2, x3, · · · ) = (0, 0, x1, x2, x3, x4, · · · ).

Put T =
(

V 0
0 A

)
. Then we have σ(T) = σw(T) = σa(T) = D and σea(T) = T. So, Π(T) = Πa(T) = ∅.

From those examples above, we see that there is no connection between property (UWΠ) and property
(ZΠa ).

For T ∈ B(H), we use T∗ to denote the adjoint of T. Suppose that T∗ has SVEP, then T ∈ (ZΠa ) implies
T ∈ (UWΠ). Besides, if [σa(T) \ σea(T)] ∩ σw(T) = ∅ or σw(T) \ σea(T) = σ(T) \ σa(T), then T ∈ (ZΠa ) implies
T ∈ (UWΠ).

Put σc(T) = {λ ∈ C : R(T − λI) is not closed}. In the following, we give an equivalence for T to satisfy
two properties at the same time.

Theorem 2.1. Let T ∈ B(H). Then the following statements are equivalent.
(1) T ∈ (UWΠ) ∩ (ZΠa );
(2) σb(T) = [{λ ∈ C : n(T − λI) < ∞} ∩ σc(T)] ∪ {λ ∈ σ(T) : n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) >

d(T − λI)} ∪ [{λ ∈ C : n(T − λI) = d(T − λI) = ∞} ∩ [σ(T) \Πa(T)]].

Proof. Necessity. Assume that λ does not belong to the right side in (2). Without loss of generality, suppose
that λ ∈ σ(T). Then we have 0 < n(T − λI) ≤ d(T − λI). Now, we claim that n(T − λI) < ∞. Otherwise, we
could get λ ∈ Πa(T). Combining with T ∈ (ZΠa ) we have T − λI is Weyl, a contradiction. Then λ < σc(T). It
follows that T − λI is upper semi-Fredholm and ind(T − λI) ≤ 0. So, λ ∈ σa(T) \ σea(T). Using the fact that
T ∈ (UWΠ) we obtain λ < σb(T).

Sufficiency. It is obvious that [σa(T) \ σea(T)] ∪ [σ(T) \ σw(T)] ⊆ σ0(T). Suppose that λ ∈ Π(T). Then we
have λ ∈ isoσ(T) and n(T − λI) > 0. It is clear that λ ∈ Πa(T). If n(T − λI) > d(T − λI), then T − λI is lower
semi-Fredholm and ind(T−λI) > 0. Using [5, VII, Proposition 6.9] we obtain T−λI is Weyl, a contradiction.
If n(T−λI) < ∞, then from T−λI is Drazin invertible we get T−λI is Browder. So, λ < σc(T). From what we
have talked above, we have λ < σb(T). Suppose that λ ∈ Πa(T). Using a similar way, we also get λ < σb(T).
Therefore, T ∈ (UWΠ) ∩ (ZΠa ).

Remark 2.2. In Theorem 2.1, the four parts in (2) are essential. We will explain it from the following examples.
(1) Let T be a quasi-nilpotent operator with 0 < n(T) < ∞. Then σ(T) = σw(T) = σa(T) = σea(T) = σD(T) =

σLD(T) = {0}. So, T ∈ (UWΠ) ∩ (ZΠa ). However, σb(T) , {λ ∈ σ(T) : n(T − λI) = 0} ∪ {λ ∈ C : n(T − λI) >
d(T − λI)} ∪ [{λ ∈ C : n(T − λI) = d(T − λI) = ∞} ∩ [σ(T) \Πa(T)]].

(2) Let U be the right unilateral shift. Then σ(U) = σw(U) = D and σa(U) = σea(U) = T. So,Π(U) = Πa(U) = ∅.
Thus, U ∈ (UWΠ)∩(ZΠa ). But, σb(U) , [{λ ∈ C : n(U−λI) < ∞}∩σc(U)]∪{λ ∈ C : n(U−λI) > d(U−λI)}∪[{λ ∈
C : n(U − λI) = d(U − λI) = ∞} ∩ [σ(U) \Πa(U)]].

(3) Let V be the left unilateral shift. It is obvious to check that V ∈ (UWΠ) ∩ (ZΠa ). But, σb(V) , [{λ ∈ C :
n(V − λI) < ∞} ∩ σc(V)] ∪ {λ ∈ σ(V) : n(V − λI) = 0} ∪ [{λ ∈ C : n(V − λI) = d(V − λI) = ∞} ∩ [σ(V) \Πa(V)]].

(4) Let S be a compact operator with infinite nullity. Then σ(S) = σa(S), σw(S) = σea(S) = {0} and Π(S) =
Πa(S) = σ(S) \ {0}. So, S ∈ (UWΠ) ∩ (ZΠa ). However, σb(S) , [{λ ∈ C : n(S − λI) < ∞} ∩ σc(S)] ∪ {λ ∈ σ(S) :
n(S − λI) = 0} ∪ {λ ∈ C : n(S − λI) > d(S − λI)}.

If T satisfies one property, then we give an equivalent characterization for T to satisfy the other property.
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Theorem 2.3. Suppose that T ∈ (UWΠ). Then T ∈ (ZΠa ) if and only if Πa(T) = σ0(T).

Theorem 2.4. Suppose that T ∈ (ZΠa ). Then T ∈ (UWΠ) if and only if σb(T) = σea(T) ∪ [ρa(T) ∩ σ(T)].

3. Property (UWΠ) under perturbations

In this section, we will focus on the stability of property (UWΠ) under commuting perturbations.
We call T ∈ B(H) an a-isoloid operator if isoσa(T) ⊆ σp(T), where σp(T) denotes the point spectrum of T.

For a-isoloid operators, we firstly note the following facts.
(1) Property (UWΠ) is not stable under commuting compact perturbations.
For example, let T be an injective compact operator. Then T is an a-isoloid operator. Also, σ(T) = σa(T),

σea(T) = {0} and Π(T) = σ(T) \ {0}. So, T ∈ (UWΠ). Put K = −T. It is clear that T + K < (UWΠ).
(2) Property (UWΠ) is not stable under commuting finite rank perturbations.

For example, let U be the right unilateral shift and put T =
(

U 0
0 I

)
. Then σ(T) = D and σa(T) =

σea(T) = T. So, T is an a-isoloid operator and Π(T) = ∅. Thus, T ∈ (UWΠ). Let B ∈ B(ℓ2) be defined by

B(x1, x2, x3, · · · ) = (− x1
2 , 0, 0, · · · ) and put F =

(
0 0
0 B

)
. Then F is a finite rank operator and TF = FT. By

direct calculation, we have σ(T + F) = D, σa(T + F) = { 12 } ∪ T and σea(T + F) = T. So, T + F < (UWΠ).
Moreover, this example shows that Theorem 3.3 and Lemma 4.7 in [3] are not true.
(3) Property (UWΠ) is not stable under commuting quasi-nilpotent perturbations.
For example, let T be a quasi-nilpotent operator with 0 < n(T) < ∞. It is trivial to see that T ∈ (UWΠ).

Put Q = −T. Then T +Q < (UWΠ).
(4) Property (UWΠ) is not stable under commuting nilpotent perturbations.
For example, let U be the right unilateral shift. It is elementary to check that U ∈ (UWΠ). Let N ∈ B(ℓ2)

be defined by N(x1, x2, x3, · · · ) = (0,−x1, 0, 0, · · · ). Then N2 = 0 and UN = NU. It can be seen that
0 ∈ σa(U +N) \ σea(U +N) but U +N is not Weyl. So, U +N < (UWΠ).

For quasi-nilpotent operators, we have

Theorem 3.1. Let Q be a quasi-nilpotent operator such that Q ∈ (UWΠ). If KQ = QK and Kn is finite rank for some
n ∈N, then Q + K ∈ (UWΠ).

Proof. It is trivial that σ∗(Q+K) = σ∗(Q), where ∗ ∈ {b, ea, D}. Let λ ∈ σa(Q+K) \ σea(Q+K). Then λ < σea(Q).
It follows that Q−λI is Browder and so is Q+K−λI. Thus, λ ∈ Π(Q+K). For the converse, if λ ∈ Π(Q+K),
then Q − λI is Drazin invertible. Since Q ∈ (UWΠ), it follows that λ , 0. So, Q − λI is Browder and so is
Q + K − λI. Thus, λ ∈ σa(Q + K) \ σea(Q + K).

From Theorem 3.1 we obtain the following corollary.

Corollary 3.2. ([3, Corollary 3.2]) Let Q be a quasi-nilpotent operator such that n(Q) < ∞. If KQ = QK and Kn is
finite rank for some n ∈N, then Q + K ∈ (UWΠ).

If we omit the quasi-nilpotent assumption in Theorem 3.1, we get

Theorem 3.3. Let T ∈ B(H) such that σ(T) = σa(T) and K ∈ B(H) commuting with T such that Kn is finite rank
for some n ∈N. If T ∈ (UWΠ), then T + K ∈ (UWΠ).

Proof. Let λ ∈ σa(T + K) \ σea(T + K). Then λ < σea(T). So, λ ∈ ρa(T) ∪ [σa(T) \ σea(T)]. In both cases, we
could get T + K − λI is Browder. So σa(T + K) \ σea(T + K) ⊆ Π(T + K). Similarly, we can get Π(T + K) ⊆
σa(T + K) \ σea(T + K).
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In the sequel, we talk about the quasi-nilpotent perturbations. For T ∈ B(H), the quasi-nilpotent part
of T is defined by

H0(T) = {x ∈ H : lim
n→∞
∥Tnx∥

1
n = 0}.

It is known that T is quasi-nilpotent if and only if H0(T) = H . Firstly, we have the following lemma.

Lemma 3.4. Let T ∈ B(H). If Q is quasi-nilpotent and TQ = QT, then σ(T +Q) = σ(T) and σa(T +Q) = σa(T).

Proof. Without loss of generality, we show that T + Q is bounded below if T is bounded below. Assume
that T is bounded below. Then H0(T) = {0}. In fact, since T is bounded below, there is some c > 0 such that
∥Tx∥ ≥ c∥x∥, ∀x ∈ H . Let x ∈ H0(T). Then we have lim

n→∞
∥Tnx∥

1
n = 0. However, ∥Tnx∥ ≥ cn

∥x∥. It follows that

c∥x∥
1
n ≤ ∥Tnx∥

1
n . So, x = 0. Since T +Q is upper semi-Fredholm, we only need to show N(T +Q) = {0}. Let

x ∈ N(T + Q). Then Qx = −Tx. So, Qnx = (−1)nTnx. Since Q is quasi-nilpotent, we have H0(Q) = H . So,
lim
n→∞
∥Qnx∥

1
n = 0 and then lim

n→∞
∥Tnx∥

1
n = 0. This means x ∈ H0(T). From what we have shown above, we get

x = 0. So, T +Q is bounded below.
If T is invertible, then T + Q is Weyl. Since T + Q is also bounded below, it follows that T + Q is

invertible.

Recall that T ∈ B(H) is said to be polaroid (resp. a-polaroid) if isoσ(T) ⊆ Π(T) (resp. isoσa(T) ⊆ Π(T)).

Theorem 3.5. Let T ∈ B(H) be a polaroid operator and satisfy property (UWΠ), Q be a quasi-nilpotent operator
such that TQ = QT. Then T +Q ∈ (UWΠ).

Proof. It is known that σ∗(T + Q) = σ∗(T), where ∗ ∈ {ea, b}. If λ ∈ σa(T + Q) \ σea(T + Q), then from Lemma
3.1 we know that λ ∈ σa(T) \ σea(T). It follows that T − λI is Browder since T ∈ (UWΠ). So, T + Q − λI is
Browder. Conversely, let λ ∈ Π(T +Q), then λ ∈ isoσ(T +Q). By using Lemma 3.1 and the polaroidity of T
we get T − λI is Drazin invertible. Then T +Q − λI is Browder again.

From Theorem 3.3 we get the following result.

Corollary 3.6. ([1, Theorem 3.6]) Let T ∈ (UWΠ). If isoσb(T) = ∅ or isoσab(T) = ∅, then T +Q ∈ (UWΠ) for every
quasi-nilpotent Q with TQ = QT.

Proof. From the conditions we can get T is polaroid. Then using Theorem 3.3 we get the conclusion.

If isoσ(T) = ∅, then we have Π(T) = ∅. Besides, suppose that there is an injective quasi-nilpotent Q such
that TQ = QT, then from [3, Lemma 3.7] we obtain σa(T) = σea(T). Thus, T ∈ (UWΠ). Also, from Theorem
3.3 we get T +Q ∈ (UWΠ).

Recall that T ∈ B(H) is said to be finite-isoloid(abbr. f-isoloid) if every isolated point of σ(T) is an
isolated eigenvalue of finite multiplicity of T. If T is f-isoloid and there exists an injective quasi-nilpotent
Q such that TQ = QT, then both T and T +Q satisfy property (UWΠ). In fact, we could obtain isoσ(T) = ∅.
From what we have talked above, we get this result.

If T − λI is Fredholm for every nonzero λ, then T is called a Riesz operator. It is obvious that compact
operators and quasi-nilpotent operators are Riesz operators.

Generally, for the Riesz perturbations, we have

Theorem 3.7. Let T ∈ B(H) be an a-polaroid operator and satisfy property (UWΠ), R be a Riesz operator such that
TR = RT and σa(T + R) = σa(T). Then T +Q ∈ (UWΠ).

Proof. From [2, Theorem 2.77, Corollary 2.81] we get σ∗(T + R) = σ∗(T), where ∗ ∈ {ea, b}. Let λ ∈ σa(T +
R) \ σea(T + R), then we have λ ∈ σa(T) \ σea(T). Then from T ∈ (UWΠ) we get T − λI is Browder and so is
T + R − λI. If λ ∈ Π(T + R), then λ ∈ isoσa(T + R) = isoσa(T). From T is an a-polaroid operator we obtain
T − λI is Drazin invertible. Then we get T + R − λI is Browder again.
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4. Property (UWΠ) for functions of operators

For T ∈ B(H), we use Hol(σ(T)) to denote the set of all analytic functions on some neighbourhood of
σ(T) and are not constant on every component of σ(T).

Generally, there is no relationship between T ∈ (UWΠ) and f (T) ∈ (UWΠ), where f ∈ Hol(σ(T)). We
show this from the following examples. Let U be the right unilateral shift, V be the left unilateral shift and

P ∈ B(ℓ2) be a projection with n(P) = d(P) = ∞. Put T =
(

U + I 0
0 V − I

)
. Then σ(T) = {λ ∈ C : |λ + 1| ≤

1} ∪ {λ ∈ C : |λ − 1| ≤ 1}. So, Π(T) = ∅. Also, σa(T) = σea(T) = {λ ∈ C : |λ + 1| ≤ 1} ∪ {λ ∈ C : |λ − 1| = 1}. It is
obvious that T ∈ (UWΠ). However, T2 < (UWΠ) since T2

− I is Weyl but not Browder.

Put R =
(

U + I 0
0 −P

)
. Then we have σ(R2) = {reiθ : r ≤ 2(1 + cosθ)} is connected and σa(R2) = σea(R2).

So, R2
∈ (UWΠ). However, R + I is Drazin invertible but not semi-Fredholm. Thus, R < (UWΠ).

In this section, we aim to give the characterization for T such that f (T) ∈ (UWΠ) for any f ∈ Hol(σ(T)).
First, for a given operator T and f ∈ Hol(σ(T)), we have the following result.

Theorem 4.1. Let T ∈ B(H) and f ∈ Hol(σ(T)). If f (T) ∈ (UWΠ), then σea( f (T)) = f (σea(T)).

Proof. It is elementary that σea( f (T)) ⊆ f (σea(T)). Let µ < σea( f (T)). Then µ ∈ ρa( f (T)) ∪ [σa( f (T)) \ σea( f (T))].
It follows from f (T) ∈ (UWΠ) that f (T) − µI is bounded below or Browder. Suppose that f (T) − µI =
(T − λ1I)n1 (T − λ2I)n2 · · · (T − λkI)nk1(T), where λi , λi if i , j and 1(T) is invertible. Then T − λiI is bounded
below or Browder. So, λi < σea(T), 1 ≤ i ≤ k. Since µ = f (λi), we get µ < f (σea(T)).

In [3, Theorem 4.4], it showed that for an a-isoloid operator T and f ∈ Hol(σ(T)), if T ∈ (UWΠ), then
f (T) ∈ (UWΠ) is equivalent with σea( f (T)) = f (σea(T)). But this is not true.

For example, let U be right unilateral shift and P ∈ B(ℓ2) be a projection with 0 < n(P) = d(P) < ∞.

Put T =
(

U 0
0 P − 2I

)
. Then we have σ(T) = {−2} ∪D, σa(T) = {−2} ∪ T, σea(T) = T and Π(T) = {−2}. So,

T is a-isoloid and satisfies property (UWΠ). Also, ind(T − λI) ≤ 0, ∀λ ∈ ρSF+ (T). Here, ρSF+ (T) denotes
the upper semi-Fredholm domain of T. Set p(z) = z(z + 2), z ∈ C. Then σea(p(T)) = p(σea(T)). However,
0 ∈ σa(p(T)) \ σea(p(T)) but p(T) is not Weyl. Thus, p(T) < (UWΠ).

If we replace “T is a-isoloid” by “σa(T) = σ(T)”, then we get

Theorem 4.2. Let T ∈ B(H) and f ∈ Hol(σ(T)). If T ∈ (UWΠ) and σa(T) = σ(T), then the following statements
are equivalent.

(1) f (T) ∈ (UWΠ);
(2) σea( f (T)) = f (σea(T)).

Proof. (1)⇒ (2) holds from Theorem 4.1.
(2)⇒ (1) Let µ ∈ σa( f (T)) \ σea( f (T)) and suppose that f (T)−µI = (T−λ1I)n1 (T−λ2I)n2 · · · (T−λkI)nk1(T),

where λi , λi if i , j and 1(T) is invertible. Then λi ∈ ρa(T)∪ [σa(T)\σea(T)], 1 ≤ i ≤ k. Then from T ∈ (UWΠ)
and σa(T) = σ(T) we get T − λiI is Browder. So, f (T) − µI is Browder. If µ ∈ Π( f (T)) and f (T) − µI has the
decomposition as above, then T − λiI is Drazin invertible, 1 ≤ i ≤ k. From T ∈ (UWΠ) we get λi < σea(T). So,
µ = f (λi) < f (σea(T)) = σea( f (T)). Thus, µ ∈ σa( f (T)) \ σea( f (T)).

Generally, we have the following result.

Theorem 4.3. Let T ∈ B(H). Then f (T) ∈ (UWΠ) for any f ∈ Hol(σ(T)) if and only if the following statements
hold:

(1) T ∈ (UWΠ);
(2) σea( f (T)) = f (σea(T)) for any f ∈ Hol(σ(T));
(3) if σ0(T) , ∅, then σa(T) = σ(T).
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Proof. Sufficiency. We divide it into the following two cases.
Case 1. σ0(T) = ∅.
Now, from (1) we have σa(T) = σea(T) and Π(T) = ∅. So, Π( f (T)) = ∅ for any f ∈ Hol(σ(T)). Since σa(T)

satisfies spectral mapping theorem, combining with (2) we get σa( f (T)) = σea( f (T)) for any f ∈ Hol(σ(T)).
So, f (T) ∈ (UWΠ).

Case 2. σ0(T) , ∅.
Now, from (3) we have σa(T) = σ(T). Then from Theorem 4.2 we get f (T) ∈ (UWΠ) for any f ∈ Hol(σ(T)).
Necessity. (1) Take f1(z) = z, z ∈ C. Then T = f1(T) ∈ (UWΠ).
(2) It suffices to show ind(T − λI)ind(T − µI) ≥ 0 for any pair of λ, µ ∈ ρSF+ (T). If not, then there

exist λ, µ ∈ ρSF+ (T) such that ind(T − λI) = m and ind(T − µI) < 0, where m is a positive integer. If
ind(T−µI) = −∞, then put f2(z) = (z−λ)(z−µ), z ∈ C; if ind(T−µI) = −n, where n is a positive integer, then
put f2(z) = (z − λ)n(z − µ)m, z ∈ C. In both cases we could get 0 ∈ σa( f2(T)) \ σea( f2(T)). So, f2(T) is Browder
and then T − λI is Browder, a contradiction.

(3) Assume α ∈ σ0(T). If σa(T) , σ(T), then there is β ∈ σ(T) \ σa(T). Put f3(z) = (z− α)(z− β), z ∈ C. Then
we have 0 ∈ σa( f3(T)) \ σea( f3(T)). So, f3(T) is Browder. It follows that T − βI is Browder and so is invertible,
a contradiction.

If T ∈ B(H) is Drazin invertible with Drazin inverse S, then asc(T) = des(T) = p for some p ∈ N. Now,

R(Tp) is closed and H = N(Tp) ⊕ R(Tp). Under this space decomposition, T =
(

T1 0
0 T2

)
, where T1 is

nilpotent and T2 is invertible. Now, S =
(

0 0
0 T−1

2

)
.

In [3], it has shown that property (UWΠ) is transmitted from Drazin invertible operator to its Drazin
inverse. Moreover, we have

Theorem 4.4. Let T ∈ B(H) be Drazin invertible with Drazin inverse S. Then
(1) T ∈ (ZΠa ) if and only if S ∈ (ZΠa );
(2) f (T) ∈ (UWΠ) if and only if f (S) ∈ (UWΠ) for any f ∈ Hol(σ(T)) ∩Hol(σ(S)).

Proof. (1) If T is invertible, then S = T−1. The conclusion holds clearly. In the following, we assume T is not
invertible.

Let λ ∈ σ(S) \ σw(S). We assume that λ , 0. Then as in the matrix representation of S above, we have
T−1

2 −λI is not invertible but Weyl. So, 1
λ I−T2 is not invertible but Weyl. It follows that 1

λ ∈ σ(T)\σw(T). From
T ∈ (ZΠa ) we get 1

λ I − T is Browder. So, T−1
2 − λI is Browder and then S − λI is Browder. Let λ ∈ Πa(S). We

assume that λ , 0 again. Then asc(S−λI) = p and R((S−λI)p+1) is closed. Now, S−λI =
(
−λI 0

0 T−1
2 − λI

)
.

So, asc(T−1
2 − λI) = p and R((T−1

2 − λI)p+1) is closed. It follows that asc(T2 −
1
λ I) = p and R((T2 −

1
λ I)p+1) is

closed. Since T− 1
λ I =

(
T1 −

1
λ I 0

0 T2 −
1
λ I

)
and T1−

1
λ I is invertible, we get asc(T− 1

λ I) = p and R((T− 1
λ I)p+1)

is closed. So, 1
λ ∈ Πa(T). Combining with T ∈ (ZΠa ) we get T − 1

λ I is Browder. So, S − λI is also Browder.
Therefore, S ∈ (ZΠa ). The reverse implication can be obtained in a similar way.

(2) It is obvious that T ∈ (UWΠ). Then from [3, Theorem 4.10] we get S ∈ (UWΠ). Suppose that σ0(S) , ∅.
Then σ0(T) , ∅. In fact, let λ ∈ σ0(S). If λ = 0, then 0 < dim N(Tp) < ∞. It follows that dim N(T) > 0 and so
T is not invertible. Now, T1 is Browder. Combining with the fact that T2 is invertible we get T is Browder.

So, 0 ∈ σ0(T). Assume that λ , 0. Now, S − λI =
(
−λI 0

0 T−1
2 − λI

)
. It follows that T−1

2 − λI is Browder

but not invertible. Then 1
λ I − T2 is Browder but not invertible. Since 1

λ I − T =
(

1
λ I − T1 0

0 1
λ I − T2

)
and

1
λ I − T1 is invertible, we obtain 1

λ I − T is Browder but not invertible, i.e., 1
λ ∈ σ0(T). Now, from Theorem

4.3 we get σa(T) = σ(T). Using a similar way we get σa(S) = σ(S). Moreover, σea( f (S)) = f (σea(S)) for any
f ∈ Hol(σ(T)) ∩Hol(σ(S)). Using Theorem 4.3 again we obtain f (S) ∈ (UWΠ).
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