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Abstract. In this paper we study preserving properties of the e-space under the normal functors Πn, SPn

and expn. We prove that when a topological space X is an e-space, the spaces Xn, SPnX and expnX are also
e-spaces. We also study the behavior of e-continuity of mappings, proving that the functors Πn, SPn and
expn preserve the e-continuity. In addition, we introduce the notions of τ-boundary points, τ-cluster points
and τ-boundary of a set and study many of their properties.

1. Introduction and preliminary notes

Throughout the paper all spaces are assumed to be T1-spaces. The paper [1] introduced and investi-
gated e-spaces and e-continuous mappings. In what follows, we enrich such related studies of e-spaces,
investigating preserving properties of the e-space under some normal functors. We consider the following
functors: Πn, SPn and expn.

For a given finite number n, the operation of raising spaces to the n-th power extended to a covariant
functor in the category of topological spaces and their continuous mappings. This n-th power denoted by
Πn, i.e. Πn(X) = Xn for a topological space X. For a mapping f : X→ Y we obtained the mapping

Πn f : Xn
→ Yn

defined by the formula
Πn f (x1, x2, . . . , xn) = ( f (x1), f (x2), . . . , f (xn)).

The functor Πn is a normal functor in the category of compact spaces and their continuous mappings [9].
It is known that a permutation group is the group of all permutations, that is one-to-one mappings

X→ X. A permutation group of a set X is usually denoted by S(X). Especially, if X = {1, 2, . . . ,n}, then S(X)
is denoted by Sn.

Let Xn be the n-th power of a compact space X. The permutation group Sn of all permutations acts
on the n-th power Xn as permutation of coordinates. The set of all orbits of this action with the quotient
topology is denoted by SPnX. The orbit of (x1, x2, . . . , xn) ∈ Xn is denoted by [(x1, x2, . . . , xn)]. Thus, points
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of the space SPnX are finite subsets (equivalence classes) of the product Xn. The space SPnX is called the
n-permutation degree of the space X. The n-th permutation degree is a quotient of Xn. Therefore, the quotient
mapping is denoted by πs

n : Xn
→ SPnX and defined by the rule

πs
n(x1, x2, . . . , xn) = [(x1, x2, . . . , xn)],

where (x1, x2, . . . , xn) ∈ Xn [2, 3, 5, 6].
Let G be a subgroup of the permutation group Sn. The group G acts on the n-th power of the space

X as permutation of coordinates. The set of all orbits of this action with the quotient topology is denoted
by SPn

GX. The space SPn
GX is called G-permutation degree of the space X. Similar to the above discussion,

the orbit of (x1, x2, . . . , xn) ∈ Xn is denoted by [(x1, x2, . . . , xn)]G and the corresponding quotient mapping is
denoted by πs

n,G : Xn
→ SPn

GX and defined by the rule

πs
n,G(x1, x2, . . . , xn) = [(x1, x2, . . . , xn)]G,

where (x1, x2, . . . , xn) ∈ Xn. Consider any continuous mapping f : X → Y. For an equivalence class
[(x1, x2, . . . , xn)] ∈ SPn

GX we put

SPn
G f [(x1, x2, . . . , xn)] = [( f (x1), f (x2), . . . , f (xn))].

Thereby, a mapping SPn
G f : SPn

GX→ SPn
GY is defined. It is easy to check that the operation SPn

G so constructed
is a normal functor in the category of compact spaces and their continuous mappings. This functor is called
the functor of G-permutation degree [9].

Denote by exp X the set of all nonempty closed subsets of a T1-space X. The family B of all sets in the
form of

O ⟨U1,U2, . . . ,Un⟩ = {F : F ∈ exp X, F ⊂
n
∪
i=1

Ui, F ∩Ui , ∅, i = 1, 2, . . . ,n},

where U1,U2, . . . ,Un is a sequence of open subsets of X, generates the topology on exp X. This topology
is called the Vietoris topology. The set exp X with the Vietoris topology is called the exponential space or the
hyperspace of the space X [10]. Denote by expn X the set of all non-empty closed subsets of X of cardinality
not greater than the natural number n, i.e.

expn X = {F : F ∈ exp X, |F| ≤ n}.

Put
expω X = ∪{expn X : n = 1, 2, . . .}

and
expc X = {F ∈ exp X : F is compact in X}.

It is clear that expn X ⊂ expω X ⊂ expc X ⊂ exp X for any topological T1-space X.
In this paper, we study the properties of e-spaces and e-continuity mappings under the normal functors

Πn, SPn and expn. Also, based on the notion of τ-closure, we insert the new meanings of τ-boundary
points, τ-cluster points and τ-boundary of a set and study many of their properties. Especially, in Section
2, we study the preserving properties of e-spaces under the normal functors Πn, SPn and expn, that is we
prove that if X is an e-space, then the spaces Xn, SPnX and expnX are also e-spaces. In Section 3, we study
the meaning of e-continuity under the view of the above functors, proving that they preserve such kind
of continuity and finally, in Section 4, we introduce and study the notions of τ-boundary points, τ-cluster
points and τ-boundary of a set.

2. Main results on e-spaces

Let X be a topological space and let A be a subset of X. We denote the closure of A in X by clXA or [A].
If there is no confusion with the considered space, we simply write clA. A set G in a topological space X is
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called extremely open (briefly e-open) if G and its closure clXG are open subsets of X. A subset of a topological
space is called e-closed if its complement is an e-open [1]. Clearly every clopen set in a topological space is
an e-open set, but not conversely. For example R\{a} is an e-open subset of R (for each a ∈ R) which is not
a clopen set.

The following lemma showed that the intersection of every two e-open sets is an e-open set.

Lemma 2.1. [1] Suppose that V is an e-open and U is an open subset of a topological space X. Then

clX(V ∩U) = clXV ∩ clXU.

Since the intersection of two e-open sets in a topological space (X, τ) is an e-open set by Lemma 2.1, the
set of all e-open subsets of X forms a base for a topology τe on X. This means that τe is weaker topology
with respect to the original topology τ. Whenever τe coincides with τ (i.e., τ = τe), we call the space X an
e-space.

It is known that every homeomorphic image of an e-space is an e-space (see [1, Proposition 2.11]). We
generalized this proposition as follows.

Proposition 2.2. Let X and Y be topological spaces and let f : X → Y be a clopen and onto mapping. If X is an
e-space, then Y is so.

Proof. Take an arbitrary open subset U of Y. Since f is continuous, f−1(U) is an open subset of X. Since X
is an e-space, f−1(U) can be represented as a union of e-open subsets Ga, a ∈M, of X, i.e.

f−1(U) =
⋃
α∈M

Gα.

(Each Ga and the closures clXGa, a ∈M, are open in X.) Then

U =
⋃
α∈M

f (Gα).

By condition of the proposition f is an open mapping and so all f (Gα) and f (clXGα), a ∈M, are open subsets
of Y. It suffices to prove that clY f (Gα), a ∈ M, are open subsets of Y. Let a ∈ M. Since f is closed mapping
we have

clY f (Gα) = f (clXGα).

This means that Y is an e-space. Proposition 2.2 is proved. □

Example 2.3. In Proposition 2.2 the condition of clopenness of mapping is essential. We consider the mapping
f : Rd → Rst defined by the formula f (x) = x, where Rd is the set of all real numbers with a discrete topology and
Rst is the real line. Clearly, f is a continuous mapping and Rd is an e-space. But Rst is not e-space.

Lemma 2.4. Let X be a topological space and let G1,G2, . . . ,Gn be e-open subsets in X. Then the Cartesian product
G1 × G2 × . . . × Gn is an e-open in Xn.

Proof. Put G = G1 × G2 × . . . × Gn. We show that G and [G] are open subsets in Xn. Since G1,G2, . . . ,Gn
(respectively, [G1], [G2], . . . , [Gn]) are open, the set G (respectively [G1] × [G2] × . . . × [Gn]) is open in Xn too.
It is known that the following equality holds:

[G] = [G1] × [G2] × . . . × [Gn].

It is easy to verify that [G] is an open in Xn. Lemma 2.4 is proved. □

Theorem 2.5. Let (X, τ) be a topological space and let n be a natural number. If X is an e-space, then Xn is an e-space.
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Proof. Let U be an arbitrary nonempty open subset of Xn. For every x = (x1, x2, . . . , xn) ∈ U there exist open
neighborhoods U1(x),U2(x), . . . ,Un(x) of x1, x2, . . . , xn respectively, such that

x ∈ U1(x) ×U2(x) × . . . ×Un(x) ⊂ U.

We have ⋃
x∈U

(U1(x) ×U2(x) × . . . ×Un(x)) = U.

Let B = {Gα : α ∈ M} be a base for the topology τe. Since X is an e-space there is an index subset Mi of M,
such that

Ui(x) =
⋃
αi∈Mi

Gαi

for each i = 1, 2, . . . ,n. By virtue of property of Cartesian product we have

U1(x) ×U2(x) × . . . ×Un(x) =
⋃

αi∈Mi,i=1,...,n

(
Gα1 × Gα2 × . . . × Gαn

)
.

By Lemma 2.4 the set Gα1 × Gα2 × . . . × Gαn is an e-open. Thus U can be represented as a union of e-open
subsets of Xn. Therefore Xn is an e-space. Theorem 2.5 is proved. □

Theorem 2.6. Let X be an e-space and n be a natural number. Then the space of n-permutation degree SPnX is an
e-space.

Proof. Let X be an e-space. Then by Theorem 2.5 the space Xn is also e-space. It is known that the mapping
πs

n : Xn
→ SPnX is clopen, i.e. the image of every open (closed) subset of Xn under the mapping πs

n is open
(respectively closed) in SPnX [8]. By virtue of Proposition 2.2, the space of n-permutation degree SPnX is
an e-space. Theorem 2.6 is proved. □

Corollary 2.7. Let X be an e-space and n be a natural number. Then the space of G-permutation degree SPn
GX is an

e-space.

Lemma 2.8. Let U1,U2, . . . ,Un be e-open subsets of a topological space X. Then the subset O ⟨U1,U2, . . . ,Un⟩ is
e-open in exp X.

Proof. It is enough to show that the subset [O ⟨U1,U2, . . . ,Un⟩] is open in exp X, because by definition of
Vietoris topology the subset O ⟨U1,U2, . . . ,Un⟩ is open in exp X. For every subsets U1,U2, . . . ,Un of X the
following equality is true [7]:

O ⟨[U1], [U2], . . . , [Un]⟩ = [O ⟨U1,U2, . . . ,Un⟩].

Since the subsets U1,U2, . . . ,Un of X are e-open, the subset O ⟨[U1], [U2], . . . , [Un]⟩ is open in exp X. Then
the subset [O ⟨U1,U2, . . . ,Un⟩] is also open in exp X. Lemma 2.8 is proved. □

Theorem 2.9. If a topological space X is an e-space, then the exponential space expω X is an e-space.

Proof. Consider the family

B = {O ⟨V1,V2, . . . ,Vk⟩ : Vi is e-open subset in X for each i = 1, . . . , k and k ∈N}.

By virtue of Lemma 2.8 all elements of B are e-open subsets of expn X. It is sufficient to show that the
family B is a base of expω X. Let U1,U2, . . . ,Uk be open subsets of X. Take an arbitrary point F ∈ expω X of
O ⟨U1,U2, . . . ,Uk⟩. Put

M1 = F ∩U1 = {x11, x12, . . . , x1r1 }

M2 = F ∩U2 = {x21, x22, . . . , x2r2 }



R. B. Beshimov et al. / Filomat 39:8 (2025), 2625–2637 2629

. . .

Mk = F ∩Uk = {xk1, xk2, . . . , xkrk }.

It is clear that F =
k⋃

i=1
Mi. Since X is an e-space there exist e-open subsets V11,V12, . . . ,V1r1 of X such that

x1i ∈ V1i ⊂ U1 for all i = 1, 2, . . . , r1. Put

V1 =

r1⋃
i=1

V1i, V2 =

r2⋃
i=1

V2i, . . . , Vk =

rk⋃
i=1

Vki.

In this case V1,V2, . . . ,Vk are e-open subsets of X as a union of e-open subsets. It is easy to check that
F ∈ O ⟨V1,V2, . . . ,Vk⟩ ⊂ O ⟨U1,U2, . . . ,Uk⟩. Theorem 2.9 is proved. □

Corollary 2.10. If a topological space X is an e-space, then for each n ∈ N the exponential subspace expn X is an
e-space.

3. e-continuity of mappings

Definition 3.1. [1] Let X and Y be topological spaces and f : X → Y be a mapping. We say that f is e-continuous
at a point x ∈ X if for each open set V in Y containing f (x) there exists an e-open set U in X containing x such that
f (U) ⊂ V. A mapping f : X→ Y is called e-continuous if it is e-continuous at each point of X.

Clearly every e-continuous mapping is continuous, but the converse is not necessarily true in general.
In fact if the mapping id : R→ R is the identity, then it is continuous but not e-continuous. Whenever X is
an e-space, then every continuous mapping on X is e-continuous.

Theorem 3.2. Let X and Y be topological spaces and n be a natural number. If a mapping f : X → Y is an
e-continuous, then the mapping Πn f : Xn

→ Yn is e-continuous.

Proof. Let f : X→ Y be an e-continuous mapping. For any point x = (x1, x2, . . . , xn) ∈ Xn we have

Πn f (x) = ( f (x1), f (x2), . . . , f (xn)).

Choose an arbitrary open neighborhood V of ( f (x1), f (x2), . . . , f (xn)) ∈ Yn. In this case there is an open
subset Vi of Y containing of f (xi) such that

V1 × V2 × . . . × Vn ⊂ V.

Since f : X → Y is e-continuous there is an e-open subset Gi of X such that xi ∈ Gi and f (Gi) ⊂ Vi for all
i = 1, 2, . . . ,n. We have

Πn f (G1 × G2 × . . . × Gn) = f (G1 × G2 × . . . × Gn) ⊂ V.

By Lemma 2.4 the set G1 × G2 × . . . × Gn is an e-open in Xn. On the other hand the point x belongs to
G1 × G2 × . . . × Gn. Therefore, Πn f is an e-continuous. Theorem 3.2 is proved. □

Corollary 3.3. The functor Πn preserves the e-continuity of mappings.

Theorem 3.4. Let X and Y be topological spaces and n be a natural number. If a mapping f : X → Y is an
e-continuous, then the mapping SPn f : SPnX→ SPnY is also e-continuous.

Proof. Let f : X→ Y be an e-continuous mapping. For any orbit [x] = [(x1, x2, . . . , xn)] ∈ SPnX we have

SPn f ([x]) = [( f (x1), f (x2), . . . , f (xn))].
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Take an arbitrary open neighborhood V of SPn f ([x]). In this case for each i = 1, . . . ,n there is an open subset
Vi of Y containing of f (xi) such that

[V1 × V2 × . . . × Vn] ⊂ V,

where
[V1 × V2 × . . . × Vn] = {[z] : there exists σ ∈ Sn such that zi ∈ Vσ(i) for all i = 1, . . . ,n}.

By e-continuity of f there exists an e-open subset Gi of X such that xi ∈ Gi and f (Gi) ⊂ Vi for all i = 1, 2, . . . ,n.
Hence

SPn f ([G1 × G2 × . . . × Gn]) = [ f (G1) × f (G2) × . . . × f (Gn)] ⊂ [V1 × V2 × . . . × Vn] ⊂ V.

Clearly, [G1 × G2 × . . . × Gn] is an open neighborhood of [x]. We state that cl([G1 × G2 × . . . × Gn]) is open in
SPnX. Since πs

n is closed mapping we have

cl([G1 × G2 × . . . × Gn]) = cl(πs
n(G1 × G2 × . . . × Gn)) = πs

n(cl(G1 × G2 × . . . × Gn)).

Therefore cl([G1 ×G2 × . . .×Gn]) is an open subset as the image of an open set under the open mapping πs
n.

Theorem 3.4 is proved. □

Corollary 3.5. The functor SPn preserves the e-continuity of mappings.

Theorem 3.6. Let X and Y be topological spaces and n be a natural number. If a mapping f : X → Y is an
e-continuous, then expn f : expn X→ expn Y is an e-continuous mapping.

Proof. Take an arbitrary point F ∈ expn X with F = {x1, x2, . . . , xn}. Let

Φ = expn f (F) = { f (x1), f (x2), . . . , f (xm)} (m ≤ n).

Choose an arbitrary neighborhood O ⟨V1,V2, . . . ,Vk⟩ of Φ, where V1,V2, . . . ,Vk are open subsets of Y.
Consider the following subsets of Y:

M1 = Φ ∩ V1 = { f (x11), f (x12), . . . , f (x1r1 )};

M2 = Φ ∩ V2 = { f (x21), f (x22), . . . , f (x2r2 )};

. . .

Mk = Φ ∩ Vk = { f (xk1), f (xk2), . . . , f (xkrk )},

where
k⋃

i=1
Mi = F. Since f is e-continuous there exits an e-open set U1i in X with {x ∈ F : f (x) = f (x1i)} ⊂ U1i

such that f (U1i) ⊂ V1 for each i = 1, 2, . . . , r1. For the e-open set U1 =
r1⋃

i=1
U1i we have f (U1) ⊂ V1. Similarly,

we will construct e-open sets U2,U3, . . . ,Uk as above such that f (U j) ⊂ V j for all j = 2, 3, . . . , k. By Lemma
2.8 the set O ⟨U1,U2, . . . ,Uk⟩ is e-open in expn X. It is easy to check that F ∈ O ⟨U1,U2, . . . ,Uk⟩. In addition
the following inclusion holds:

expn f (O ⟨U1,U2, . . . ,Uk⟩) ⊂ O ⟨V1,V2, . . . ,Vk⟩ .

Thus the mapping expn f is e-continuous. Theorem 3.6 is proved. □

Corollary 3.7. The functor expn preserves the e-continuity of mappings.
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4. On τ-boundary points of a set

τ-closed sets were introduced by I. Juhasz in 1980 in his book [11]. In 2016, O. Okunev [12] introduced
the concept of τ-closure of a set and connected its properties with τ-continuous mappings introduced by
A. Arkhangelsky in [13]. In 2023, the definitions of τ-open sets and τ-interiors of a set are introduced and
new properties of τ-continuous mappings are studied [2]. In this section we introduce the definitions of
τ-boundary points, τ-cluster points and τ-boundary of a set and study several of their properties.

Definition 4.1. [11] Let X be a topological T1-space. A set F ⊂ X is called τ-closed in X if for each B ⊂ F such that
|B| ≤ τ, the closure of the set B in X lies in F.

It is known that every closed subset of a topological space is τ-closed. But the opposite is not always
true and the following Example 4.2 verifies this claim. Moreover, I. Juhasz in his work [11] proved that the
tightness of a topological space X does not exceed τ if and only if every τ-closed subset is closed.

Example 4.2. [2] On the real line R we will assume that all sets whose complement is countable are open, and we
will also declare the empty set is open, i.e. the set of all real numbers R has the following topology:

θ = {∅} ∪ {U : U ⊂ R, |R\U| ≤ ω}

Since every set whose cardinality of its complement does not exceed ω is open in this topological space, then an
arbitrary countable set B ⊂ X is closed. Let’s choose an arbitrary subset M ⊂ R. Then every subset B ⊂ M, whose
cardinality does not exceed ω, coincides with its closure, which means that clXB ⊂ M for all |B| ≤ ω. From the
arbitrariness of the set M it follows that each subset of this space is ω-closed. In particular, the set of all irrational
numbers in this space is ω-closed, but not closed.

Definition 4.3. [2] A set F ⊂ X is called τ-open in X if its complement X\F is τ-closed. Any τ-open set containing
a point x ∈ X is called a τ-neighborhood of this point.

Definition 4.4. [2] Let X be a topological T1-space. The τ-interior of a subset A of X is the union of all τ-open subsets
of A, i.e.,

IntτA =
⋃
{U : U ⊂ A and U is τ-open}.

It is known that the set IntτA is a τ-open subset. In general, for a subset A of a topological space X
τ-interior of A is not open in X, i.e. IntτA , IntA. We consider the topological space in Example 4.2. As a
subset A we take the set of all rational numbers Q. Then IntωQ = Q, but IntQ = ∅.

Proposition 4.5. [2] Let X be a topological T1-space. Then for every subset A ⊂ X we have the following equality

IntτA = X\[X\A]τ.

Definition 4.6. [2] The τ-closure of a subset A of a T1-space X is defined as follows:

[A]τ =
⋃
{clXB : B ⊂ A, |B| ≤ τ}.

Recall that a subset A is τ-dense in X if [A]τ = X [12]. For any subsets A and B of the space X the following
relation holds: if A ⊂ B, then [A]τ ⊂ [B]τ.

Example 4.7. On the set of real numbers with the natural topology, we choose the set of all rational numbers. Let’s
find its ω-closure

[Q]ω =
⋃
{clRB : B ⊂ Q, |B| ≤ ω}.

As a subset B ⊂ Q, |B| ≤ ω we take the set itself Q, the closure of which coincides with the set of real numbers. This
means [Q]ω = R, and we can conclude that the set of rational numbers on the Euclidean line is ω-dense.
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Definition 4.8. [13] A mapping f : X → Y is called τ-continuous if for every set A ⊂ X such that |A| ≤ τ the
mapping f |A : A→ Y is continuous.

Theorem 4.9. [4] For a mapping f : X→ Y of arbitrary topological T1-spaces X and Y the following statements are
equivalent:

1) f : X→ Y is τ-continuous;
2) For every closed F of Y, the preimage f−1(F) is τ-closed in X;
3) For every τ-closed F of Y, the preimage f−1(F) is τ-closed in X;
4) f ([A]τ) ⊂ [ f (A)]τ, for every A ⊂ X;
5) [ f−1(B)]τ ⊂ f−1([B]τ), for every B ⊂ Y.

Theorem 4.10. Let X be a topological T1-space. The operator of τ-closure has the following properties:

1) [X]τ = X;
2) [∅]τ = ∅;
3) A ⊂ [A]τ;
4) [A ∪ B]τ = [A]τ ∪ [B]τ;
5) [[A]τ]τ = [A]τ.

Proof. Any space X can be covered by its subsets, the cardinality of which does not exceed the cardinal
number τ. This means that every space coincides with its τ-closure. The only subset of the empty set is the
empty set whose closure is equal to itself. And this means that it is equal to its τ-closure. Properties 1) and
2) have been proven.

Property 3) is true, since any set A can be covered by subsets B whose cardinality does not exceed τ, i.e.

A =
⋃
{B : B ⊂ A, |B| ≤ τ} ⊂

⋃
{clXB : B ⊂ A, |B| ≤ τ} = [A]τ.

For property 4), since A ⊂ A ∪ B and B ⊂ A ∪ B, we have [A]τ ⊂ [A ∪ B]τ and [B]τ ⊂ [A ∪ B]τ. It follows
that

[A]τ ∪ [B]τ ⊂ [A ∪ B]τ.

Due to the fact that every set is a subset of its τ-closure, A ⊂ [A]τ, B ⊂ [B]τ (property 3)), we have
A ∪ B ⊂ [A]τ ∪ [B]τ. Thus, [A ∪ B]τ = [A]τ ∪ [B]τ.

Let us prove property 5). Let us represent the τ-closure of the subset A as [A]τ =
⋃
{clXB : B ⊂ A, |B| ≤ τ}

and denote it by M. Then
[[A]τ]τ = [M]τ =

⋃
{clXC : C ⊂M, |C| ≤ τ} .

Any subset C ⊂ M whose cardinality does not exceed a cardinal number τ can be expressed through its
elements, i.e.,

C = {xs : s ∈ S, |S| ≤ τ}.

Since C ⊂
⋃
{clXB : B ⊂ A, |B| ≤ τ}, then from the family {clXB : B ⊂ A, |B| ≤ τ}we can select a subfamily

{clXBs : xs ∈ clXBs, s ∈ S} .

We denote the union of all elements of the family {Bs : xs ∈ clXBs, s ∈ S} by B∗. Since the cardinality of the
set Bs does not exceed the cardinal number τ for each s ∈ S, then the cardinality of B∗ does not exceed
the cardinal number τ. In this case, we have C ⊂ clXB∗. By properties of the closure of a set, we have
clXC ⊂ clXB∗. It means that clXC ⊂ [A]τ for all C ⊂M with |C| ≤ τ. Therefore

[[A]τ]τ ⊂ [A]τ.

The reverse inclusion [A]τ ⊂ [[A]τ]τ follows from property 3). Theorem 4.10 is proved. □
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Theorem 4.11. Let X and Y be topological spaces and A ⊂ X, B ⊂ Y. Then the following equality is valid:

[A × B]τ = [A]τ × [B]τ.

Proof. Let z0 = (x0, y0) ∈ [A × B]τ. Consider the projection mappings prX : X × Y→ X and prY : X × Y→ Y.
Then prX(z0) = x0 ∈ prX([A × B]τ). By virtue of property 4) of Theorem 4.9,

prX([A × B]τ) ⊂ [prX(A × B)]τ = [A]τ.

Hence, x0 ∈ [A]τ. Similarly prY(z0) = y0 ∈ prY([A × B]τ) ⊂ [prY(A × B)]τ = [B]τ. Based on this, z0 ∈ [A]τ× [B]τ
and

[A × B]τ ⊂ [A]τ × [B]τ.

On the other side, let z0 = (x0, y0) ∈ [A]τ × [B]τ. We prove that z0 ∈ [A × B]τ. By definition of τ-closure

(x0, y0) ∈ (
⋃
{clXC : C ⊂ A, |C| ≤ τ}) × (

⋃
{clYD : D ⊂ B, |D| ≤ τ}).

This means that there are sets clXC0 ∈ {clXC : C ⊂ A, |C| ≤ τ}, which contains the element x0, and similarly
clYD0 ∈ {clYD : D ⊂ B, |D| ≤ τ}, which in turn contains y0. Hence, (x0, y0) ∈ clXC0 × clYD0 = clX×Y(C0 ×D0).
Then,

(x0, y0) ∈
⋃
{clX×Y(C ×D) : C ×D ⊂ A × B, |C ×D| ≤ τ},

which coincides with (x0, y0) ∈ [A × B]τ. It follows from this that

[A]τ × [B]τ ⊂ [A × B]τ

and therefore, [A]τ × [B]τ = [A × B]τ. Theorem 4.11 is proved. □

Corollary 4.12. The product of two sets is τ-closed if and only if it’s factors are τ-closed.

Corollary 4.13. The product of two sets is τ-dense if and only if it’s factors are τ-dense.

Definition 4.14. Let X be a topological space. A point x ∈ X is called a τ-cluster of a subset A of X if each
τ-neighborhood of the point x has a non-empty intersection with A.

Theorem 4.15. The set of all τ-cluster points of a subset A of X coincides with the τ-closure of the set A.

Proof. Put
A∗ = {x ∈ X : x is τ-cluster point of A}.

Firstly, we prove the inclusion A∗ ⊂ [A]τ. Assume that there is a τ-cluster point x of A such that x < [A]τ,
i.e., x ∈ X\[A]τ. The set X\[A]τ is τ-open, which means that it is a τ-neighborhood of the point x. But the
set X\[A]τ don’t meet with the set A. This is a contradiction that x is cluster point of A. Therefore, the set
of all τ-cluster points of a set A is a subset of the τ-closure of the set A.

Now we will show [A]τ ⊂ A∗. Let us assume that there is a point x ∈ [A]τ and there exists its τ-
neighborhood Oτ(x) that does not intersect with A. Hence, A ⊂ X\Oτ(x). Since X\Oτ(x) is a τ-closed subset
then X\Oτ(x) = [X\Oτ(x)]τ and x < [X\Oτ(x)]τ. By property 3) of Theorem 4.10 we have [A]τ ⊂ [X\Oτ(x)]τ.
This means that x < [A]τ, which contradicts the choice of point x. Theorem 4.15 is proved. □

Definition 4.16. For a topological space X the τ-density defines the smallest cardinal number of the form |A|, where
A is a τ-dense subset X, i.e.

dτ(X) = min{|A| : A is a τ-dense in X}.

The density of a topological space X does not always coincide with the τ-density of the space X. The
following example verifies this claim.
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Example 4.17. Let X be a set of cardinality of a hypercontinuum on which a countably closed topology is given, i.e.,
let us declare closed all subsets of the set X whose cardinality does not exceed ω. Then the subset A ⊂ X is everywhere
dense in X if and only if |A| > ω, that is d(X) = ω1, while the only ω-dense subset X is itself X, that is, dω(X) = ω2.

Definition 4.18. [14] The largest cardinal number κ ≥ ω such that any family of pairwise disjoint nonempty open
subsets of a space X has cardinality ≤ κ is called the Suslin’s number or the cellularity of the space X and is denoted
by c(X). If c(X) = ω, then we say that the space X has the Suslins property.

Definition 4.19. The largest cardinal number κ ≥ ω such that any family of pairwise disjoint non-empty τ-open
subsets of a space X has cardinality ≤ κ is called the Suslins τ-number or the τ-cellularity of the space X and is
denoted by cτ(X).

The Suslin’s number does not coincide with the Suslin’s τ-number, in general. The following example
verifies this claim.

Example 4.20. Let X be a set with |X| = ω1. Let us define a topology on this set by declaring closed all subsets
of the set X whose cardinality does not exceed ω. Let us choose a system γ = {Uα : α ∈ A} of pairwise disjoint
non-empty open subsets of the space X. Let us also assume that the cardinality of the indexed set A is ω1. Then
there are elements such as α ∈ A and β ∈ A with Uα ∩ Uβ = ∅ and X\(Uα ∩ Uβ) = X. But due to De Morgan’s
laws X\(Uα ∩ Uβ) = (X\Uα) ∪ (X\Uβ). According to the condition of taking the topology, the cardinality of the
sets X\Uα and X\Uβ is at most countable, and hence their union (X\Uα) ∪ (X\Uβ) does not exceed ω. Then
|X| = |X\(Uα ∩Uβ)| = |(X\Uα) ∪ (X\Uβ)| = ω, which contradicts the condition. The last means that c(X) = ω.

Let’s check the Suslin’s ω-number of this space. As a system of ω-open disjoint subsets, we choose all single-point
sets of the space X. The last means that cω(X) = ω1.

Definition 4.21. We say that a point x ∈ X is τ-boundary point of a subset A, if any τ-open neighborhood of x has a
non-empty intersection with both the set A and its complement X\A. The set of all τ-boundary points of a set A ⊂ X
is called the τ-boundary of a set A and denoted by FrτA.

The following result derived easily by Definition 4.21.

Proposition 4.22. The τ-boundary of a set A ⊂ X is the intersection of the τ-closure of the set and τ-closure of its
complement, i.e.,

FrτA = [A]τ ∩ [X\A]τ.

Theorem 4.23. The operator Frτ has the following properties:

1) IntτA = A\FrτA;
2) [A]τ = A ∪ FrτA;
3) Frτ(A ∪ B) ⊂ FrτA ∪ FrτB;
4) Frτ(A ∩ B) ⊂ FrτA ∩ FrτB;
5) Frτ(X\A) = FrτA;
6) X = IntτA ∪ FrτA ∪ Intτ(X\A);
7) Frτ[A]τ ⊂ FrτA;
8) FrτIntτA ⊂ FrτA;
9) FrτA = [A]τ\IntτA;

10) A is τ-open if and only if FrτA = [A]τ\A;
11) A is τ-closed if and only if FrτA = A\IntτA;
12) A is τ-open-closed if and only if FrτA = ∅.

Proof. 1) To prove property 1) we express the set A\FrτA as

A\FrτA = A\([A]τ ∩ [X\A]τ)
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by definition of the τ-boundary of a set. Then, by virtue of De Morgan’s laws,

A\FrτA = (A\[A]τ) ∪ (A\[X\A]τ).

Since A ⊂ [A]τ, then the difference A\[A]τ is empty, which means that A\FrτA = A\[X\A]τ. By Proposition
4.5, A\FrτA = IntτA. Property 1) has been proven.

2) Using Proposition 4.22, we write the equality

A ∪ FrτA = A ∪ ([A]τ ∩ [X\A]τ).

Let us apply the law of distributivity of a union of sets to the second part of the equality and obtain

A ∪ FrτA = A ∪ ([A]τ ∩ [X\A]τ) = ([A]τ ∪ A) ∩ (A ∪ [X\A]τ),

i.e.,
A ∪ FrτA = ([A]τ ∪ A) ∩ (A ∪ [X\A]τ).

Due to property 3) of Theorem 4.10 A ⊂ [A]τ and X\A ⊂ [X\A]τ. Therefore, [A]τ∪A = [A]τ and A∪ [X\A]τ =
X. This means, A ∪ FrτA = [A]τ ∩ X which in turn is equal to [A]τ. Property 2) has been proven.

3) Let us express the τ-boundary of the set A ∪ B in the following way:

Frτ(A ∪ B) = [A ∪ B]τ ∩ [X\(A ∪ B)]τ.

By virtue of De Morgan’s laws and Property 4) of Theorem 4.10, we obtain

[A ∪ B]τ ∩ [X\(A ∪ B)]τ = ([A]τ ∪ [B]τ) ∩ [(X\A) ∩ (X\B)]τ

or
Frτ(A ∪ B) = ([A]τ ∪ [B]τ) ∩ [(X\A) ∩ (X\B)]τ.

According to property 3) of Theorem 4.10

([A]τ ∪ [B]τ) ∩ [(X\A) ∩ (X\B)]τ ⊂ ([A]τ ∪ [B]τ) ∩ ([X\A]τ ∩ [X\B]τ) .

The set ([A]τ ∪ [B]τ) ∩ ([X\A]τ ∩ [X\B]τ), in turn, is equal to the set ([A]τ ∩ [X\A]τ) ∪ ([B]τ ∩ [X\B]τ), which
by definition coincides with the set FrτA ∪ FrτB, that is Frτ(A ∪ B) ⊂ FrτA ∪ FrτB. Property 3) has been
proven.

4) We have Frτ(A ∩ B) = [A ∩ B]τ ∩ [X\(A ∩ B)]τ. Using De Morgan’s laws and property 4) of Theorem
4.10 we obtain

Frτ(A ∩ B) = [A ∩ B]τ ∩ [X\(A ∩ B)]τ = [A ∩ B]τ ∩
(
[(X\A)]τ ∪ [(X\B)]τ

)
.

Also,
[A ∩ B]τ ∩

(
[(X\A)]τ ∪ [(X\B)]τ

)
⊂ ([A]τ ∩ [B]τ) ∩ ([X\A]τ ∪ [X\B]τ).

The set ([A]τ∩ [B]τ)∩ ([X\A]τ∪ [X\B]τ), in turn, is equal to the set ([A]τ∩ [X\A]τ)∩ ([B]τ∩ [X\B]τ), which by
definition coincides with the set FrτA∩ FrτB, that is Frτ(A∩ B) ⊂ FrτA∩ FrτB. Property 4) has been proven.

5) To prove property 5), we express Frτ(X\A) as

Frτ(X\A) = [X\A]τ ∩ [X\(X\A)]τ.

Then
Frτ(X\A) = [X\A]τ ∩ [X\(X\A)]τ = [X\A]τ ∩ [A]τ = FrτA.

The property 5) has been proven.
6) By the above property 1) we have

IntτA ∪ FrτA ∪ Intτ(X\A) = (A\FrτA) ∪ FrτA ∪ ((X\A)\Frτ(X\A)).
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By the above property 5) we have

(A\FrτA) ∪ FrτA ∪ ((X\A)\Frτ(X\A)) = A ∪ FrτA ∪ (X\A) = X.

Property 6) has been proven.
7) Let x ∈ Frτ[A]τ. Then, as a consequence x ∈ [[A]τ]τ ∩ [[X\A]τ]τ. By virtue of Proposition 4.22 and the

property 5) of Theorem 4.10

[[A]τ]τ ∩ [[X\A]τ]τ = [A]τ ∩ [X\A]τ = FrτA.

The last means that x ∈ FrτA and thus, Frτ[A]τ ⊂ FrτA. Property 7) has been proven.
8) We have

FrτIntτA = [IntτA]τ ∩ [X\IntτA]τ.

According to Proposition 4.5,

[IntτA]τ ∩ [X\IntτA]τ = [IntτA]τ ∩ [[X\A]τ]τ.

By property 5) of Theorem 4.10,

[IntτA]τ ∩ [[X\A]τ]τ = [IntτA]τ ∩ [X\A]τ.

Since IntτA ⊂ A, then
[IntτA]τ ∩ [X\A]τ ⊂ [A]τ ∩ [X\A]τ,

that in turns [A]τ ∩ [X\A]τ = FrτA. Thus, FrτIntτA ⊂ FrτA. Property 8) has been proven.
9) Let x ∈ FrτA. Then by Proposition 4.22 x ∈ [A]τ and x ∈ [X\A]τor, in other words, x ∈ [A]τ and

x < X\[X\A]τ. The last means that x ∈ [A]τ\(X\[X\A]τ). According to Proposition 4.5 IntτA = X\[X\A]τ.
Therefore, x ∈ [A]τ\IntτA and hence

FrτA ⊂ [A]τ\IntτA.

Let’s select an arbitrary element x from [A]τ\IntτA. Then by Proposition 4.5 x ∈ [A]τ\(X\[X\A]τ). Therefore,
x ∈ [A]τ and x ∈ [X\A]τ. Then x ∈ FrτA. Property 9) has been proven.

10) Necessity: Let A be a τ-open subset of X. Then IntτA = A. Since FrτA = [A]τ\IntτA, then

FrτA = [A]τ\A.

Sufficiency: Let A ⊂ X and FrτA = [A]τ\A. Then, by property 9), [A]τ\A = [A]τ\IntτA and A = IntτA.
Hence, A is τ-open set. Property 10) has been proven.

11) Necessity: Let A be a τ-closed subset of X. Then [A]τ = A. Since FrτA = [A]τ\IntτA, then

FrτA = A\IntτA.

Sufficiency: Let A ⊂ X and FrτA = A\IntτA. Then, by property 9), [A]τ\IntτA = A\IntτA and A = [A]τ.
Therefore, A is a τ-closed set. Property 11) has been proven.

12) Necessity: Let A be a τ-open-closed subset of X. Then [A]τ = A and IntτA = A. Since FrτA =
[A]τ\IntτA, then FrτA = ∅.

Sufficiency: Let A ⊂ X and FrτA = ∅. Then, by property 9), [A]τ\IntτA = ∅ and IntτA = [A]τ. Therefore,
A is τ-open-closed set. Property 12) has been proven. Finally, Theorem 4.23 is proved. □
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