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Analytical approach for a coupled system of hybrid fractional
integro-differential equations with Atangana-Baleanu—Caputo
derivative

Asmaa Baihi?, Hamid Lmou®”, Khalid Hilal*, Ahmed Kajouni?®

Laboratory of Applied Mathematics and Scientific Computing, Sultan Moulay Slimane University, BP 523, 23000 Beni Mellal, Morocco

Abstract. This paper aims to investigate the existence results for a coupled system of hybrid fractional
integro-differential equations using the Atangana-Baleanu-Caputo operator. Solutions are derived from

the defined hypotheses and the standard fixed point theorem. An example is provided to illustrate the
theoretical results.

1. Introduction

The concept of fractional derivatives dates back to the 17th century when mathematicians like Leibniz
and L'Hopital discussed the possibility of generalizing derivatives to non-integer orders. This early curiosity
laid the groundwork for what we now call fractional calculus. As a result, integer-order derivatives cannot
describe processes with memory, which is the primary advantage of fractional derivatives over classical
derivatives. Fractional differential equations provide a powerful tool for modeling numerous real-life
dynamic processes, as they can describe their behavior more accurately. They have applications in signal
and image processing, atmospheric diffusion of pollution, transmission of ultrasound waves, cellular
diffusion processes, feedback amplifiers, and the effect of speculation on the profitability of stocks in
financial markets, among many others. For more details on this topic, we refer the reader to [4, 7, 21-23, 26—
30].

The Atangana-Baleanu-Caputo (ABC) fractional derivative is a new concept in fractional calculus,
addressing the limitations of traditional derivatives in modeling real-world phenomena with memory and
hereditary properties. Significant progress has been made in applying this derivative to various fields,
including biological models, leading to insights into complex systems and the development of numerical
methods for solving fractional differential equations. [2, 3, 6, 11, 15-17].

Studying hybrid fractional integro-differential equations is crucial for modeling complex real-life phe-
nomena like viscoelastic materials, population dynamics, and finance. These equations offer a deeper
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understanding of systems with memory effects and can capture the long-term behavior of processes. This
enables more accurate predictions and solutions in various scientific and engineering fields. They combine
integral and differential calculus elements with fractional calculus, allowing for more precise and flexible
representations of dynamic systems. Here are a few references: [1, 5, 8, 9, 18, 24, 25, 31, 35].

In their publication referenced as [32], Shah al. explored a specific class of fractional-order evolution
control systems by applying controllability criteria, where the variable ¢ is confined to the interval ] = [0, T].

{?Mm@qMD—¢UJM”]ZAMﬂ+Bﬂﬂ+¢@MG»(%:QSL
u(0) = ug,

where A is the infinite small generator of an analytical semigroup of bounded linear operators on the Hilbert
space say H, x is the control variable function on L?[], H], while B is also a linear bounded operator from H
toHand ¢, ¢:JXR— R.

Bashiri et al. [9] studied the existence of solutions for the system of fractional hybrid differential
equations

Dﬁan—w@em>

u(t, 6(t)) ] =o(t, (), te],

() - 9
Dﬂj%ﬁ%%ﬁ@qzvﬁemxteL0<P<L

0(0)=0, 8(0)=0,

where DP denotes the Riemann-Liouville fractional derivative of order p, | = [0,1], and the functions
u:JXxR—->R\{0},w: ] xR =R, w(0,0)=0and v: ] X R — R satisfy certain conditions.

Inspired by the aforementioned works, we build on their ideas in this paper to examine the existence
results for problems of this form

ﬂBch[X(L) — (1, x(1)

el vy ]ZMLQQ®QW,

w(1, (1))
x(©0) = xo, C(0) = Co,

] = h(, x(1), ® x(v),

wheret e At A=[0,T], T>0and0<g<1, ?BCD? is an ABC operator, the functions w : A x R — R\{0},
@ : A X R — IR satisfy certain conditions and & : A X R x R — R is a specific function.

The terms G (1), ® x(1) provided by:

@ﬂo=ﬁﬁuﬂﬂwnleagmﬂam<wﬂo=ﬁiuwnﬂMJGCQmRm

withQ={(c) eR*:0<c<t<T}, Qo={(c)eR*:0<c<:<T} And also we investigate the
existence result for it special case when w(t, .(1)) = 1, as a second problem.

This research article is organized as follows: The basic properties of ABC derivative are presented in
Section 2. Section 3 deals with the existence of the solutions for the hybrid problem and also for its special
case when w(, .(t)) = 1,. An example is provided in Section 4 to support the analytical results.

2. Preliminaries

This study will revisit some essential definitions of fractional calculus, which form the basis for our
main results. Let’s consider X = C(A, R) as a Banach space, with the norm denoted as || x|| = ma}l\x [x ().
LE
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Definition 2.1. [33] Let x € AC(A, R), be a solution of (1) if the mapping x — " (i()() is completely continuous
for every x € R and x satisfies equation (1), where AC(A,R) = {z| z: A = R} is comp’letely continuous.

Definition 2.2. [34] The Mittag-Leffler function (one parameter) E; is defined as:
E,(z) = kZS T e C, R(g) >0, )

Definition 2.3. [33] Let x € HY(0,T) and q € [0,1]. The ABC fractional derivative for function x of order q is
defined as

B L
0Dl = %)1 fo Eq[ 1 ? q(‘ - g)"]x’(c)dg. )

Here the normalization function is B(q) with B(0) = B(1) = 1.
Definition 2.4. [33] Let x be a function, then the AB fractional integral of order q € (0,1) is defined by

q

AB 79 _r
ot 39

1-g q
() = %X(L) + I x(), 4)

where

q :L L_ q-1
oI = 5 [ (=

Lemma 2.5. [33]If0 < q < 1, then {8 TT(7C D] x (1)) = x(1) — x(0).

Lemma 2.6. [13, 14] Let S be a non-empty, closed, convex, and bounded subset of a Banach algebra X and let
M,N: X - Xand L : S — X be two operators fulfilling the following properties:

(1) Mt and N are Lipschitzians with Lipschitz constants a and f, respectively,

(2) & is completely continuous,

(3) C=MRY +NC, = CeSforall x €S, and

4) llpllllollT < 1, where T = ||€S|| = sup{l|2(Q)l| : C € S}. Then the operator MCLx + R = C has a solution in S.

The following is a fixed-point theorem in Banach spaces, attributed to Burton [12].

Lemma 2.7. [12] Let S be a nonempty, closed, convex, and bounded subset of a Banach space X and let B : X — X
and D : § — X be two operators such that
(i) B isa contraction with constant o < 1,
(ii) D is completely continuous,
(iti) x=Bx+D{= xeSforallC€S.

Then the operator equation By + DC = x has a solution in S.

3. Main results

3.1. Solution of fractional hybrid differential equation

Lemma 3.1. Assume that x, where 0 < g <1, and ®, w € C(A X R, R) such that (0, x(0)) # 0 and ®(0, x(0)) = 0.
Then the unique solution of the following initial value problem:

y(g;cz)q[)((l) - (1, x(1)

b mMm)]zH“

(5)
x(0) = xo,
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1-— L
M0=w@xm)Mg%ﬂ+Bwﬁﬂ0+BW;WLﬂa—QWWﬂQk)+MLMm ©)

Proof. Let x(1) denote a solution of the problem (5) . By applying the operator J* I to both sides of (5), we
obtain

AB T ﬂBCDﬂ[X(L) @, X(‘))] = 7B T
(¢, x(1)) o

So, based on the lemma 2.5, we can conclude that

X — o, x(1) — x(0) — (0, x(0))
w(t, x(1) (0, x(0))

Due to the fact that w(0, x(0)) # 0 and @(0, x(0)) = 0, we have

= MBTTH().

XO-a@x®) __xo 1-q
0@ x®) @x0) " B@)

H(:) +

— )1
B | (- H

ie
+-1
0,x0)  B(q) B(q)F(q)

We direct the readers to [19] for the equivalence reciprocal. [

H(0) +

X0 = ot x(L»( f (o) 11H<g)dg) + i x(0)

Theorem 3.2. Based on Lemma 3.1, our problem (1) can be equated to the following coupled integral equations:

1-¢
oo B e L0 0

f (t—= ) h(c, L), G’)’C(c))ﬂ’@) + (L, x(1),

x(0) = w(, x(t ))(

q
T Br@

(7)
(V) = w(t, C(l))(

-9
0.0 B( )h(l  X(1), Ox(1))

f (L= (e, x(<), @x(c»dc) + o, L),
0

" 8(q>r<q>

For the proof of our main results, we employ the following hypotheses:

(H1) The function’ : A x X x X — X satisfies the following properties:
(@) Y(x,¢c) € Xx X, the function fi(., x, ¢) is strongly measurable.
(b) Vi€ A, the function i(t, .) : X X X — X is continuous.
(c) For any r > 0, there exists a function g € L*(A, R*) such that

sup  lh(, x, Ol <g(), €A,
lixll<r, ICI<j*Tr

and

= supf I(t,c)dc <00, | = supf J(1, ¢)d¢ < 0.
teA JO teA JO
X —a(, x)

(H) The mapping x — o)

is increasing in R almost everywhere.
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(H5) The functions w : A X R — R\{0}, ® : AXR — R, ®(0,0) = 0 are continuous and there exist two
functions p and ¢ with bounds ||p|| and ||gl|, respectively, such that for all x, C € X and ( € A we have

(e, x(1)) = w(t, S < p(Ix () = <),

and

(e, x(1) = @, C)] < ()|x (1) = C(0)].

Definition 3.3. [10] A function Ti satisfies the local Lipshitz condition in x(t), uniformly in t on bounded intervals

if for every ' > 0 and x > 0 there is a constant £(c, ") such that
(e, x1) = (e, x2)llx < €(e, ) llxa = xall,
forall x1,x2 € X,and 1 € A.

Theorem 3.4. Assuming that (H1)-(H3) hold, there exists a solution for the system (1) if

Xo \ ligll )
+|1-g+ == |5=|<1
”NM%mew ( 7 rw)B@
Proof. Set X = C(A, R) and a subset S of X defined by S = {x € X| ||x|| £ N},

N
X

where Wy = max |w(t, 0)), Wy = max |(t, 0)].
LEA LlEA

Xo
(0,x0)

lgl
(1 q+ r(q))B(q))WO +Wo

Xo
@(0,x0)

(1 9+ r(q))zlalﬂ,l))lh?ll ~llel

Sis a closed, convex, and bounded subset of the Banach algebra X.
Let us define two operators 9,9t : X — X and £ : S — X by

My(1) = cu(t, x()

Lx() =

a)(O Co) B0 ) h(t, x(1), © x (1))

fU—QHMQKQ®%©Mc
0

+B@nm
Ry(1) = (1, X(1))-

so from the defined operators the system (1) can be written as

x(0) = My ()LL) + Rx(w),
(1) = ML) Lx (1) + RC(),

Now, we demonstrate that the operators I, £, and R satisfy the conditions of theorem 3.4.

consists of steps.

Step I. M, and R are Lipschitz.
Let x, C € X, by the hypothesis (H3) we have

[Dex (1) = MCO| = lw(, x(1) = @, C1)]
< plx(©) = <)
< llplillx = <ll-

The proof
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Hence, Mt is a Lipshitzien function defined on X with a Lipschitz constant of ||p||. Similarly, R is also a
Lipschitzian function on X with a Lipschitz constant of ||g|l.

Step II. € is completely continuous.
We will show that the operator £ : S — X is both compact and continuous from S into X. First, we establish
the continuity of £ on S. Let x,, be a sequence in S that converges to a point y € S as n — oo. Since we know
that /1 is continuous mappings from (), we can conclude that

h(e, xn(0), ©xn (1)) = (e, x (), Ox 1)

as n — oo. Since [[h(t, xu(1), ®xn(1)) — h(, x1), Ox )l < 2g(c), by the Lebesgue dominated convergence
theorem, for each ¢ € A, we have

Go 1-
00.00) %h@ , Xn(0), O xn(1))

hm(ﬂ){n)(L) = 11 [

q — ﬂ—lh 65/ d
+B(q)F(q) f (1= )T h(c, xa(c), O xu(c))de

) w(goco) B( ? limn 7, 2n(0), & xu(0)
B(q)rw) f (1= )™ Tim (e, xu(S), ' xu())dc

G 1 L .

~ w(0, ) B(q )[ (L x(@), & x ()]

- W fo (1= ) (e, x(), ® x(c))ld

= (L00)

It proves that £ is a continuous operator on S.
From the hypothesis () for any y € Sand 1 € A, we have

1 G
(LX)l —‘ ( )‘ B( )|h(L L, x(), & x ()l
1 ,
Z0) r(q f (=9 (e, x(0), &' x())lde
Co o ]
w(0,C) B(q) 707+ Zorm f (c= ) g(c)lde
Co 1,
(0, Co) B(q) ”.‘7” + B(q)F(q)L llglldc.
It leads to
I(ﬁx)(t)l<’ <0 +(1 g+ )”9” rES LeA. o
~ |w(0, o) T(9) ) B(q)’ ,

Then we can say that £ is uniformly bounded on S.



A. Baihi et al. / Filomat 39:8 (2025), 2681-2694 2687

Now, we show that £(S) is an equicontinuous set in X. Letany xy € Sand 0 < 13 < 1 < T. Then we have

[(€0)(12) = (X))l

1-q , , q
< By e (), /) =l (), 6 ) + s
x f (2 = (e, x(0), & x())de — f (= 0 e, x(0), O (e (10)
0 0

Since h(t, x) is continuous on compact set A X [—R, R], it is uniformly continuous there and hence we have
h(t2, x(12), O x(12)) = h(t1, x(11), &' x() = 0, as |t — 1]l = 0, for every x €. (11)

From the hypothesis (H1),

fo 2(tz — )" 'h(c, x(c), ' x(c))dc — j; 1(L1 — o)1 h(c, x(c), ©' x(c))de
< fo 1 (2= o)™ = (1 = o)1 Ir(c, x(c), & x(c)lds + f Z(Lz — o)1 (e, x(c), ® x(c))lds

< f T2 = o — (4 — &Y lgle)lde + f (12— o g()lde
0 [
< gl + (12 — 1) = 13 + (12 — 12)")
< 2/lgll(t2 = t1)".
Hence

L1

f (12 = (e, x(0), 6 x(C))de - f (1 = e, x(0), & x(@))de| = O, (12)
0 0

as i, — 11l — 0, y€S.

From equations (10), (11) and (12), we obtain that
I(2x)(12) = (€X)(11)l = 0,45 |1z — 1] = 0, for each x € S.

Hence £(S) is an equicontinuous set in X. Since £ is a uniformly bounded and equicontinuous set in X,
from Ascoli-Arzela fixed point theorem, £ is completely continuous.

Step III. Let x € X. For any C € S, consider the equation in the form of operators y = MxLL+ Ryx. Let us
prove that x € S. From the assumptions (H1)-(#3) and from the inequality (9), we have
X0

ATl
(0, x0) +(1 7+ F(q))B(q))

1\ ligll
-0+ 15 )si)

X1 < MxOILTO] + [Rx (o)l
< (lw(t, x(1) = @(1,0) + w(t, 0)]) X (

+ (It x(1) = @(1,0) + (1, 0)])

Xo
(0, xo)

< (llplllx (Wl + Wo) ><(

+ (lalllx ()l + W),
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after taking the supremum over ( on A and considering (#1), it becomes evident that

<
1—<

Step IV. The constants x, C and T of Lemma 2.6 corresponding to the operators M, £ and R defined
before, respectively, are

Xo
w(0,x0)

+(1 g+ r(q)) Il )Wo + T,

lIxll <

7

(1 q+r@)5(q))upu lol

_Xo
w(0,x0)

Therefore, ||x|| < N.

X0

= ,C= and T =
x = llpll, €= lel pORD

+( _ +_)M
" T80

and from inequality (8), it follows that

) Yo 7\ ligll
XCT = ||p||||@||(‘w(0, ol (1 T Tq))%)) <

It is clear from Step I to Step IV that the conditions specified in Lemma 2.6 are satisfied. Therefore, the
equation y = My LC + Ry has a fixed point in S, which serves as a solution to the coupled system (1). This
completes the proof. [

3.2. Special case: Solution for a fractional evolution system

In this section, we suppose that w(t,.(1)) = 1, and we add U which is the infinite small generator of an
analytical semigroup of bounded linear operators in X. Our system (1) becomes a fractional-order evolution
system:

TECDIX ) = @, ()] = Ux(®) = (1, LW, GL(),

A5CIL() - o1, L)~ AL = bt x(0), 6 x(0), =
x(©0)=0, &)=
Based on Theorem 3.2 our solution to the system (13) is as follow
1-
x(0) = o, x(1) + B )[91)((1) +h(t, C(1), ©'C(1)]
q _ -1 A ’
B - ) he o), Bl »

1-
C(1) = o(t, C(1) + m[‘ﬂé(t) +h(, x(1), Ox(1))]

f (L= O UL(E) + (e, x(0), Gx()de
0

q
+
BT ()
Using the same hypothesis in (H3) for @. We also change (H>) by (H’,) and we add (H,) as follow

(H’2) The mapping x — x — @(1, x) is increasing in R almost everywhere.
(Hs) For constants y > 0, we have
RO < ylx(@.

We will now demonstrate the existence theorem for the system. (13).
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Theorem 3.5. Assume that hypotheses (H1), (H'2), (Hs) and (Hy) hold. Then the fractional-order evolution system
(13) has asolution defined on A.

Proof. Set X = C(A,R) and a subset S” of X defined by " = {x € X| [|x|| £ N'},
Clearly, S’ is a closed, convex, and bounded subset of the Banach space X. Let us define two operators
B:X—>XandD:S—>be

_ —1 A PR
B = 00,x(0) + Zol () + e [ = omames

(e, (1), 6 x(0) +

Dx() = f (= (e, x(0), 6 x(C))de.

B( ) B( )T(LI)

so from the defined operators the system (13) can be written as

x(1) = Bx(t) + DC(v),
C(t) = BL(1) + Dx (),

Now, we demonstrate that the operators B and D satisfy the conditions of Lemma 2.7. The proof consists
of steps.

Step 1. B are Lipschitz.
Let x, C € X, by the hypothesis (H’;) and (H3), we have

1Bx(0) = BL(] < (1, x(1) = @(t, ()| + TI‘JIX(O AC(0)]

f (t = o)1 Ax(c) — AC(c)ldc

B(q
< llalllx(e) = )l + (1 q+ I ))B( ))Ix( ) = C(0)l

< oIx(1) = C)l
< lplllx () = Cl,

Y
with ¢(1) = (]| ||+(1 + ) )
= ( ¢ 17 T )B@)
Thus, B is a Lipschitz function defined on X with a Lipschitz constant of ||¢||.

Step II. D is completely continuous.
We will demonstrate that the operator D : S — X is both compact and continuous from S to X.

To prove that D is a continuous operator on S, we use the same steps in Step II. in the proof of Theorem
3.4.

From the hypothesis (H;) for any y € Sand ¢ € A, we have

_1-¢ , q
I(Dx)()| = ( )Ih(t,)((t),(6 x(@)l + BO@)

T _ 9 (T o aod
<1 B(q) lg(g)|+B(Q)r(q)f0(L Q)" g(o)lde

II!JII +

fo (L= e, (&), O (e

gllde.

1
- B(q) B(T'(q)

It leads to

[l
|(DX)(l)|S(l—q+r( ))B() XES, LeA. (15)
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Then we can say that D is uniformly bounded on S.

We show that D is an equicontinuous set in X. (it’s the same as in Step II. in the proof of Theorem 3.4).
Thus, D(S) is an equicontinuous set in X. Since ¥ is both uniformly bounded and equicontinuous in X,

the Ascoli-Arzela fixed point theorem implies that D is completely continuous.

Step III. Let x € X. For any C € S, consider the equation in the form of operators y = Bx + DC. Let us
prove that x € S. From the hypotheses (H3), (H’2), (H3), (Hs) and from (15), we have

X0l < 1Bx ()| + [DC(0)

B 1-9q q
< (001, X(0) - 0(1,0) + @(1,0)) + 5 7 ™M 3

f (= (e, (S, O x()lde

f (L= )" Ay (o)lde

N, X0, 6 (W) +

B( ) B(q F(q)

< llellix ] + Wo + (1 —q+ @)Zﬁig‘;' * (1 —1 r@)zl-,lzﬂ)

after taking the supremum over ( on A and considering (H1), it becomes evident that

7 9| lgl
Wo + (1 BUAS )B(q)
Il < <N.
|\ v
1= lell - (1 7+ Fl(q)) B
which implies that y € S. So, the last assumption of Lemma 2.7 has been proved. Therefore, all the conditions

of Lemma 2.7 are satisfied, hence the operator y = Bx + DC has a coupled fixed point on S. As a result, the
system (13) has a solution defined on A. [J

4. Examples

4.1. Example
Consider the following fractional partial differential equation:

D;[x(t, 9 - ol y»] _ exp(-)
(o, X Y) 10

[ln 1+ C(t, y)| + arctan ( f l élieXP(tc)C(c, y)dc)],
0

o [cu, ¥) - @, &, )
(o, e )

] (16)

1 L1
] =97 L[arctan)((L, y)+In|l+ fo 1 cos(te)x(c, y)dg||,

X(O/ ]/) = C(O/y) =05
with

B L [x(t, ]/)l 1
Wl X6 Y) = 107 e‘(l +Ix(, y)|) 8’

(L/ (L/y))_ T |X(Lr )|+1

we find Wy = max |w(t, 0)] = %, Wo = max |@(t,0)] = 5, and
LlEA LlEA

1,2, 6780, = 50+ 1 arctan [ G exptoncc ]|
0




A. Baihi et al. / Filomat 39:8 (2025), 2681-2694 2691

|

‘1
1+ f ZCOS(lC)X(C, y)dc
0

i, x(Ly), ®x(,y) = 1 L[arctan)((t y)+1In
where x(1) = x(1, v), C(1) = C(1, y), and

1 1
Oxy =7 f cos(to)x(c, y)de, and &'C(1, y) = 7 f exp(16)C(¢, y)de.
0 0
For arbitrary x,C € X and € A, we can obtain,

X([/ y) - C(L/ y)
YDA+ 1S y))

=, y) - Lo ),

\/Ixt, I+1—\/ ICLy)l+1

1 (e y) — Syl
e+l i+
1-t

< ?|X(L, y) = CL ),

(L, x(t, y)) = 0, Lt Y| < ﬁ

_11

(e, x(1, ) — @, T, Y)I < 2

IA

e
2

[$

SO

1-t

pW) = 77, and o) = -, a7)

then conditions (H3) is verified.
Which imply that from (17):
llpll = 0.09 and |lgll ~ 0.34.

Also
(e, x(t, ), O x(1, ) — 1L, 1, v), BT, )

< 31_‘0‘ [HX(C' y) - o y)|| + E Hfol exp(ie)x(c, y) — C(c, y)]df;"]

< o [e-a+ gi-al).

I7a(t, X(Lr Y), Ox(, y) — A, UL y), OCL )

Ixtc, ) - x| + 5 Hf cos(te)x(c, y) - C(C,y)]ch]

9+l

[nx 0+ - c:||]

with 61(1) = () = 11—0 and i* = j* = 7. then we can deduce that [||(¢, x(t, ), Ox(t, I < llgll = 5, which
means that condition (H}).
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Hence knowing B(%) =1.25:

Xo i\ llgll
HPHHQ”(|@(O, 0 + (1 —q+ WJ))%)

1
30.0306($+[1—1+L]x £ =)
1 27 177]" 8Q)

= 0.1256436 < 1.

As a result, we have satisfied condition (8). Therefore, according to Theorem 3.4, a solution for the system
(1) exists on A.

4.2. Example
To prove the result in the section 3.2 we use the same exemple in the exemple 4.1 and we add the term
Wx () = cos(zxl y) exp((t, y) in the first equation and the term AC(1) = COS(_C(LL' z):(;(p((l, L)) in the second

equation of the system (16). We can conclude that

TV 7| llgll
W() + (1 —q+ #ﬂ))%

< 3.

ol =1 =g )
1=l (1 q*F?q))B(q)

Thus N’ > 3. It follows that certain conditions are necessary (H1), (H’2), (H3) and (H,) are satisfied. Thus,
by Theorem 3.5 We affirm that there is a viable solution to the problem at hand.

5. Conclusion

In this paper, we investigated the existence results for a new class of coupled system of hybrid fractional
integro-differential equations involving Atangana-Baleanu-Caputo operator. We established the existence
results for the problem using standard fixed point theorem. A numerical example is presented to clarify

the obtained result. As a direction for future research, we aim to extend these results to study the y-Hilfer
fractional derivative, along with graphical and numerical examples.
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