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Abstract. If F is a nonempty set of graphs that contain H as a subgraph, then the rainbow number
rb(F ,H) is the least t ∈ N such that every t-coloring of F ∈ F that uses all t colors contains a rainbow
subgraph isomorphic to H. In this paper, we consider rainbow numbers when F = {F} where F is a
wheel, a sunflower, or a double-hubbed wheel. Several exact evaluations are determined for various small
subgraphs. Implications involving the case where F consists of all plane triangulations of order n are also
discussed.

1. Introduction

Graphs are assumed to be finite, simple (no loops or multiedges), and undirected throughout this article.
Readers are referred to [3] for basic terminology and definitions. For any set S, we denote the cardinality of
S by |S|. If G = (V(G),E(G)) is a graph, then its order is |V(G)| and its size is |E(G)|. For any vertex x ∈ V(G),
the (open) neighborhood of x is the set

NG(x) := {y ∈ V(G) | xy ∈ E(G)}

and the degree of x is dG(x) := |NG(x)|. The closed neighborhood of x is given by NG(x) := NG(x) ∪ {x}. The
minimum degree of G is given by

δ(G) := min{dG(x) | x ∈ V(G)}.

For any subset S ⊆ V(G), the subgraph of G induced by S, denoted G[S], has vertex set S and edge set

E(G[S]) := {xy | x, y ∈ S and xy ∈ E(G)}.

If n ∈N, we write [n] := {1, 2, . . . ,n}.
The graphs at the focus of this paper are all planar in that they can be drawn in the plane without

overlapping edges. A plane triangulation is a planar graph with a plane graph depiction in which every face
is a triangle. For example, a plane triangulation of order 8 is given in Figure 1.

2020 Mathematics Subject Classification. Primary 05C55, 05C15; Secondary 05C70.
Keywords. Planar graphs, anti-Ramsey numbers, theta graph, plane triangulation.
Received: 10 September 2024; Accepted: 03 Januar 2025
Communicated by Paola Bonacini
* Corresponding author: Mark Budden
Email addresses: Jagjeet@cuh.ac.in (Jagjeet Jakhar), mrbudden@email.wcu.edu (Mark Budden), monu211936@cuh.ac.in (Monu

Moun)
ORCID iDs: https://orcid.org/0000-0003-2520-5590 (Jagjeet Jakhar), https://orcid.org/0000-0002-4065-6317 (Mark

Budden), https://orcid.org/0000-0001-8169-4080 (Monu Moun)



J. Jakhar et al. / Filomat 39:8 (2025), 2695–2710 2696

Figure 1: A plane triangulation of order 8.

Denote by Tn the collection of all plane triangulations of order n ≥ 3. If T ∈ Tn, then Euler’s formula
implies that |E(T)| = 3n − 6.

A complete graph of order n, a path of order n, and a cycle of order n are denoted by Kn, Pn, and Cn,
respectively. The disjoint union of m copies of a graph G will be denoted by mG. If G and H are any two
graphs, then the join G +H has vertex set V(G +H) = V(G) ∪ V(H) and edge set

E(G +H) = E(G) ∪ E(H) ∪ {xy | x ∈ V(G) and y ∈ V(H)}.

For n ≥ 3, the wheel is then defined by Wn := K1 + Cn. The single vertex in the K1 of the wheel is called the
hub of the wheel. (for example, the first image in Figure 2 is the wheel graph W5).

Figure 2: The wheel W5, the double-hubbed wheel W∗5, and the sunflower SF5.

Thus, |V(Wn)| = n + 1 and |E(Wn)| = 2n (note that some authors define the wheel Wn to have order n).
Define the double-hubbed wheel W∗

n := 2K1 + Cn (for example, the second image in Figure 2 shows W∗

5).
The two vertices that make up the 2K1-subgraph are called the hubs of W∗

n. Note that a double-hubbed
wheel is a plane triangulation of order n+ 2 and has size 3n. Let SFn represent the sunflower of order 2n+ 1,
formed by combining a wheel Wn, with hub x and n-vertex cycle v1v2 · · · vnv1, and n additional vertices
w1,w2, . . . ,wn such that each vertex wi is connected by edges to both vi and vi+1 (where i = 1, 2, . . . ,n, and
i + 1 is reduced modulo n). The hub of the Wn-subgraph is called the hub of SFn. The sunflower SF5 is
shown in the third image in Figure 2.

For n ≥ 4, the theta graph θn consists of the cycle Cn, along with a single edge joining two nonadjacent
vertices in the cycle. For example, the theta graphs θ4 and θ5 are shown in the first two images in Figure 3,
respectively.

We will also consider the graph θ+4 , formed by joining a pendant edge to one of the vertices in θ4 of
degree 3 (see the third image in Figure 3), and the graph C+3 , formed by joining a pendant edge to one of
the vertices in C3 (see the fourth image in Figure 3). In general, for any k ≥ 3, the graph C+k consists of the
cycle Ck with a pendant edge joined to one of its vertices.
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Figure 3: The graphs θ4, θ5, θ+4 , and C+3 .

A t-coloring of a graph G is a map ψ : E(G) −→ [t]. We say that ψ is an exact t-coloring if it is surjective. A
subgraph H of G is a rainbow subgraph for a t-coloring ψ if

|{ψ(e) | e ∈ E(H)}| = |E(H)|.

In other words, the edges of a rainbow subgraph receive distinct colors under the map ψ.
Let F denote a nonempty set of graphs that all contain a graph H as a subgraph. Then the rainbow

number of H in F , denoted rb(F ,H), is defined to be the least t ∈ N such that every exact t-coloring of a
graph F ∈ F contains a rainbow subgraph isomorphic to H. The graphs in F are called the host graphs for
rb(F ,H). Note that if H′ is a subgraph of H and H is a subgraph of every element in F , then

rb(F ,H′) ≤ rb(F ,H). (1)

When F contains only one graph F, we use the simpler notation rb(F,H) in place of rb({F},H).
In 1975, Erdős, Simonovits, and Sós [7] introduced the anti-Ramsey number f (n,H), representing the

maximum t such that there exists an exact t-coloring of Kn that lacks a rainbow subgraph isomorphic to H.
From this definition, it is clear that

rb(Kn,H) = f (n,H) + 1.

Anti-Ramsey numbers (or the equivalent rainbow numbers) for various classes for graphs have been
extensively investigated in the literature [1, 6, 7, 9, 12, 15, 16, 17, 20, 27, 32]. Additional work has been
carried out when the host graphs are bipartite [2, 26], planar [13, 14, 19, 21, 22, 23, 24, 25, 29, 30, 31], and
Kneser graphs [18], among others. The analogous problem has also been considered within the setting of
r-uniform hypergraphs [4, 8, 11, 28]. For an overview of such problems, readers are encouraged to consult
the dynamic survey by Fujita, Magnant, Mao, and Ozeki [10].

Jendrol’, Schiermeyer, and Tu [14] were the first to consider rainbow numbers in plane triangulations,
focusing on matchings. Letting Mk denote a matching of size k, the rainbow number rb(Tn,Mk) was
evaluated for all k ≥ 3 and n ≥ 9k + 3 (see [5, 14, 29, 30]). In the case of cycles in plane triangulations,
Horňák, Jendrol’, Schiermeyer, and Soták [13] proved that

rb(Tn,C3) =
⌊3n

2

⌋
− 2, for all n ≥ 4. (2)

For general rb(Tn,Ck), they also offered lower bounds for all 4 ≤ k ≤ n and upper bounds when k ∈ {4, 5}.
Lan, Shi, and Song [24] improved upon these lower bounds when k ≥ 5 and n ≥ k2

− k, and determined
upper bounds when k ∈ {6, 7}, framing their work in terms of planar Turán numbers. Applying Proposition
1.1 of [24] and Theorem 2.2 of [23], it follows that

rb(Tn, θ4) ≤
12(n − 2)

5
+ 1 =

12n − 19
5

, for all n ≥ 4. (3)
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In the case of wheel host graphs, Qin, Lei, and Li [31] proved that rb(Wn,C3) = n + 1 and Horňák, Jendrol’,
Schiermeyer, and Soták [13] proved that

rb(Wn,C4) =
⌊4n

3

⌋
+ 1. (4)

Our investigation begins in Section 2, where we show that

rb(Wn, θ4) =
⌊3n

2

⌋
+ 1, for all n ≥ 3,

rb(Wn, θ
+
4 ) =

⌊3n
2

⌋
+ 1, for all n ≥ 6, and

rb(Wn, θ5) =
⌊3n

2

⌋
+ 1, for all n ≥ 5.

In Section 3, we turn our attention to rainbow numbers in sunflower graphs. We show that

rb(SFn,C3) =
{

7 if n = 3
2n + 2 if n ≥ 4,

rb(SF3,C+3 ) = 7,
rb(SFn,C+3 ) = 2n + 2, for n ∈ {4, 5},
rb(SF3,C4) = 9,
rb(SF4,C4) = 13,

rb(SFn, θ4) =
⌊7n

2

⌋
+ 1, for all n ≥ 3, and

3n + 2 ≤ rb(SFn,C4) ≤ 3n + 1 +
⌊n

4

⌋
, for all n ≥ 5.

In particular, it follows that

rb(SF5,C4) = 17, rb(SF6,C4) = 20, and rb(SF7,C4) = 23.

Finally, in Section 4, we consider rainbow numbers for double-hubbed wheels, proving that for all n ≥ 3,

rb(W∗

n,C3) =
⌊3n

2

⌋
+ 1,⌊4n

3

⌋
+ 2 ≤ rb(W∗

n,C4) ≤ 2n + 1, and

rb(W∗

n, θ4) ≥
{

2n if n is odd
2n + 1 if n is even and rb(W∗

n, θ4) <
7n
3
.

When n = 3k for some k ∈ N, it is also shown that rb(W∗
n, θ4) ≤ 2n + 2. As W∗

n is a plane triangulation,
implications of our work on rainbow numbers of the form rb(Tn,H) is also considered. We conclude by
discussing some directions for future work on this topic.

2. Rainbow Numbers in Wheels

Let Wn be a wheel graph with hub x and n-vertex-cycle v1v2 · · · vnv1. The edges si = xvi are called the
spokes and the edges ri = vivi+1 are called rim edges, where i ∈ {1, 2, . . . ,n} and the indices are reduced modulo
n. A subgraph of Wn is called central if it includes the hub x.

In the following theorem, we determine the value of rb(Wn, θ4). Our proof of the upper bound follows
the approach used in Lemma 3 of [13].
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Theorem 2.1. For all n ≥ 3, rb(Wn, θ4) =
⌊

3n
2

⌋
+ 1.

Proof. First, we provide an exact
⌊

3n
2

⌋
-coloring ψ of Wn that avoids a rainbow θ4. For each i ∈ {1, . . . ,n}, let

ψ(ri) = i and

ψ(si) =

n + i
2 , if i is even,

ψ(si+1), if i is odd,

where the indices are reduced modulo n. For example, Figure 4 shows the coloring ψ for the cases n = 5
and n = 6.

Figure 4: An exact 7-coloring of W5 and an exact 9-coloring of W6 that avoid rainbow θ4-subgraphs.

Every θ4-subgraph includes the hub x and three consecutive vertices in the cycle v1v2 · · · vnv1, so it must
include both si and si−1 for some i. Hence, no rainbow θ4 exists. Since ψ uses n+

⌊
n
2

⌋
=

⌊
3n
2

⌋
colors, it follows

that rb(Wn, θ4) ≥
⌊

3n
2

⌋
+ 1.

To see that the reverse inequality is also true, let ψ be an exact
(⌊

3n
2

⌋
+ 1

)
-coloring of Wn that avoids a

rainbow θ4-subgraph. Each spoke is in exactly three central θ4-subgraphs and each rim edge is in exactly
two central θ4-subgraphs. One can obtain a contradiction using the same argument used in the proof of
Lemma 3 of [13], so we leave the details to the reader. It follows that every exact

(⌊
3n
2

⌋
+ 1

)
-coloring of Wn

contains a rainbow θ4-subgraph, and hence, rb(Wn, θ4) ≤
⌊

3n
2

⌋
+ 1.

When considering the rainbow number rb(Wn, θ+4 ), we start with n = 4 since θ+4 is not a subgraph of W3.

Theorem 2.2. For n ≥ 4,

rb(Wn, θ
+
4 ) =


8, if n = 4,
9, if n = 5,⌊

3n
2

⌋
+ 1, if n ≥ 6.

Proof. We divide the proof into cases based on the values of n considered in the statement of the theorem.
Case 1 Assume that n = 4. Every θ+4 -subgraph of W4 is central and includes all four spokes. If two

spokes receive the same color, and all other edges receive distinct colors, then we have produced an exact
7-coloring of W4 that avoids a rainbow θ+4 -subgraph. Hence, rb(W4, θ+4 ) ≥ 8. On the other hand, |E(W4)| = 8,
so every exact 8-coloring of W4 necessarily contains a rainbow θ+4 -subgraph. Hence, rb(W4, θ+4 ) ≤ 8.

Case 2 Assume that n = 5. Since every θ+4 -subgraph of W5 contains at least four of the spokes, coloring
three spokes the same color, and giving all other edges distinct colors, results in an exact 8-coloring of
W5 that avoids a rainbow θ+4 -subgraph. Hence, rb(W5, θ+4 ) ≥ 9. Now consider an exact 9-coloring of W5.
As |E(W5)| = 10, only a single color is repeated one time. Delete one of the edges in this repeated color.
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Regardless of whether the deleted edge is a spoke or a rim edge, the resulting graph contains a θ+4 -subgraph,
which is rainbow. Hence, rb(W5, θ+4 ) ≤ 9.

Case 3 Assume that n ≥ 6. Since θ4 is a subgraph of θ+4 , Inequality (1) and Theorem 2.1 imply that

rb(Wn, θ
+
4 ) ≥ rb(Wn, θ4) =

⌊3n
2

⌋
+ 1.

Now consider an exact
(⌊

3n
2

⌋
+ 1

)
-coloring of Wn. By Theorem 2.1, there exists a rainbow θ4. Such a

subgraph necessarily includes the hub x, three spokes, and two rim edges. If a rainbow θ+4 -subgraph does
not exist, then the other n − 3 spokes must receive colors that already appear in the θ4-subgraph. In this
case, at most n+ 3 edges can receive distinct colors. As

⌊
3n
2

⌋
+ 1 > n+ 3 whenever n ≥ 6, it follows that there

must exist a rainbow θ+4 -subgraph. Hence,

rb(Wn, θ
+
4 ) ≤ rb(Wn, θ4) =

⌊3n
2

⌋
+ 1,

completing the proof.

Theorem 2.3. If n ≥ 4, rb(Wn, θ5) =
⌊

3n
2

⌋
+ 1.

Proof. We start by providing an exact
⌊

3n
2

⌋
-coloring ψ of Wn that avoids a rainbow θ5. For each i ∈ {1, . . . ,n},

let ψ(si) = i and

ψ(ri) =

n + i
2 , if i is even,

ψ(ri+1), if i is odd,

where the indices are reduced modulo n. For example, Figure 4 shows the coloring ψ for the cases n = 5
and n = 6.
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Figure 5: An exact 7-coloring of W5 and an exact 9-coloring of W6 that avoid rainbow θ5-subgraphs.

Every θ5-subgraph includes the hub x and three consecutive rim edges. Hence, no rainbow θ5 exists.
Since ψ uses n +

⌊
n
2

⌋
=

⌊
3n
2

⌋
colors, it follows that rb(Wn, θ5) ≥

⌊
3n
2

⌋
+ 1.

To see that the reverse inequality is true, let ψ be an exact t-coloring of Wn that avoids a rainbow θ5-
subgraph. For each k ∈N, letAk denote the set of colors that appear on exactly k of the edges in Wn under
the map ψ. When j ≥ 1 and γ ∈ [t], define β j(γ) to be the number of central θ5-subgraphs of Wn that have
exactly j edges in color γ. Then

β(γ) :=
∑
j≥2

β j(γ)
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is the number of central θ5-subgraphs of Wn that have two or more edges in color γ. Also define the
numbers

η(γ) := |{i ∈ [n] | ψ(xvi) = γ}| and η′(γ) := |{i ∈ [n] | ψ(vivi+1) = γ}|,

representing the number of spokes and the number of rim edges in color γ, respectively. Note that for any
γ ∈ Ak, η(γ) + η′(γ) = k.

The graph Wn contains a total of 2n θ5-subgraphs, all of which are central, and each spoke and each rim
edge occur in exactly six of the θ5-subgraphs. For any γ ∈ Ak, it follows that

2β(γ) ≤ 2β(γ) + β1(γ) ≤
∑
j≥1

jβ j(γ) = 6η(γ) + 6η′(γ) ≤ 6k.

Equivalently, β(γ) ≤ 3k. Note that for any γ ∈ A2, two edges of Wn being colored with γ can prevent at most
four central θ5-subgraphs from being rainbow. Similarly, for any γ ∈ A3, three edges of Wn being colored
with γ can prevent at most six central θ5-subgraphs from being rainbow. So, β2(γ) ≤ 4 and β3(γ) ≤ 6. Since
every one of the 2n central θ5-subgraphs is assumed to include a color γ such that β(γ) ≥ 1, it follows that

2n ≤
∑
k≥2

∑
γ∈Ak

β(γ) ≤ 4|A2| + 6|A3| +
∑
k≥4

3k|Ak|.

Combining this inequality with 2n = |E(Wn)| =
∑
k≥1

k|Ak|, we see that

3|A1| + 2|A2| + 3|A3| ≤ 4n.

Using the weaker inequality
3|A1| + 2|A2| + |A3| ≤ 4n,

we find the following upper bound for the number of colors used by ψ:

t = |A1| + |A2| + |A3| +
∑
k≥4

|Ak|

≤ |A1| + |A2| + |A3| +
∑
k≥4

k
4
|Ak|

≤
1
4

(3|A1| + 2|A2| + |A3|) +
1
4

∑
k≥1

k|Ak|

≤
4n
4
+

2n
4
=

3n
2
.

It follows that every exact t-coloring of Wn contains a rainbow θ5-subgraph whenever t ≥
⌊

3n
2

⌋
+1, resulting

in the inequality rb(Wn, θ5) ≤
⌊

3n
2

⌋
+ 1.

3. Rainbow Numbers in Sunflowers

Recall that SFn is formed by combining a wheel Wn, with hub x and n-vertex cycle v1v2 · · · vnv1, with n
additional vertices w1,w2, . . . ,wn such that each vertex wi is connected by edges to both vi and vi+1 (where
i ∈ [n], and i+1 is reduced modulo n). The edges si = xvi are called the spokes, the edges ri = vivi+1 are called
the rim edges, and the edges pi = wivi and p′i = wivi+1 are called the petal edges.

The following lemma will be useful for the rainbow numbers we consider in this section.

Lemma 3.1. [13] Let Ck be a rainbow cycle of length k ≥ 4 in an edge-colored graph G. If G[Ck] has a diagonal, then
there exists a rainbow cycle in G of length smaller than k. Furthermore, all but one of the edges in the smaller rainbow
cycle are included in the rainbow Ck.
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Theorem 3.2. The rainbow number for C3 in SFn satisfies

rb(SFn,C3) =
{

7, if n = 3,
2n + 2, if n ≥ 4.

Proof. Regardless of the value of n, SFn contains n central C3-subgraphs and n non-central C3-subgraphs
that each consists of a single rim edge and two consecutive petal edges. In the special case where n = 3,
SF3 also contains a non-central C3-subgraph consisting of the three rim edges. Hence, the n = 3 case must
be handled separately.

Case 1 Assume that n = 3 and consider the exact 6-coloring of SF3 given by ψ(v1v2) = ψ(v2v3) = 1,
ψ(v1v3) = 2, ψ(xvi) = 3, and ψ(wivi) = ψ(wivi+1) = 3 + i, for all i ∈ [3] (with the indices reduced modulo 3).
See the first image in Figure 6.
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Figure 6: An exact 6-coloring of SF3 and an exact 11-coloring of SF5 that avoid rainbow C3-subgraphs.

As this coloring does not contain a rainbow C3-subgraph, it follows that rb(SF3,C3) ≥ 7.
To prove the reverse inequality, consider an exact 7-coloring of SF3. We complete the proof of the upper

bound by considering subcases based on the number of colors used on the spokes.
Subcase 1.1 Assume that the spokes receive three distinct colors, then the rim edges must use the same

three colors in order to avoid a rainbow C3-subgraph. The four remaining colors must all appear on the
petal edges, from which it follows that there is some i ∈ [3] such that wivi and wivi+1 receive distinct colors,
different from that of vivi+1, producing a rainbow C3-subgraph.

Subcase 1.2 Assume that the spokes receive exactly two colors. Without loss of generality, assume that
xv1 and xv2 receive color 1 and xv3 receives color 2. Then v2v3 and v1v3 must also receive one of the colors
1 or 2. Regardless of whether or not v1v2 receives a new color, at least four colors are then used on the
petal edges. Once again it follows that there is some i ∈ [3] such that wivi and wivi+1 receive distinct colors,
different from that of vivi+1, producing a rainbow C3-subgraph.

Subcase 1.3 Assume that the spokes all receive the same color. Then the rim edges can use at most two
new colors, leaving at least four petal edges in distinct new colors. It follows that there is some i ∈ [3] such
that wivi and wivi+1 receive distinct colors, different from that of vivi+1, producing a rainbow C3-subgraph.

In all three subcases, we see that an exact 7-coloring of SF3 contains a rainbow C3-subgraph. The
inequality rb(SF3,C3) ≤ 7 then follows.

Case 2 Assume that n ≥ 4 and consider the following exact (2n + 1)-coloring of SF3: ψ(xvi) = 1,
ψ(vivi+1) = 1 + i, and ψ(wivi) = ψ(wivi+1) = n + 1 + i, for all i ∈ [n] (with the indices reduced modulo n).
See the second image in Figure 6 for the case n = 5. Since every central C3-subgraph contains at least two
spokes and every non-central C3-subgraph contains two petal edges wivi and wivi+1, for some i ∈ [n], it
follows that rb(SFn,C3) ≥ 2n + 2.

To prove the reverse inequality, consider an exact (2n + 2)-coloring of SFn. Let F be a subgraph of SFn
such that |E(F)| = 2n + 2 and ψ(ei) , ψ(e j) for all distinct ei, e j ∈ E(F) (so, F is a rainbow subgraph of SFn).
Since |V(F)| ≤ |V(SFn)| = 2n+ 1, the graph F is not a tree, and hence, must contain a cycle. So, SFn contains a
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rainbow cycle. Let Ck be a rainbow cycle of minimum order k in SFn. If k = 3, then the proof is complete. So,
assume that k ≥ 4 and note that if Ck is central, then it contains some diagonal in SFn. By Lemma 3.1, there
exists a rainbow cycle Cℓ such that ℓ ≤ k. However, this contradicts the assumption that Ck is a rainbow
cycle of minimum order.

It is also possible that the rainbow cycle Ck is not central. It could have any of the orders n,n + 1, . . . , 2n
using rim edges and some collection of consecutive petal edges. If any consecutive pair of petal edges are
used, then Ck has a diagonal in SFn, and once again using Lemma 3.1, there is a rainbow Cℓ, where ℓ ≤ k,
giving a contradiction. So, assume that the rainbow Ck consists of only rim edges, in which case k = n.
Since F has size 2n + 2, at least two spokes must be in F, which along with some of the edges in Ck, can
form a central cycle of order less than n, once again leading to a contradiction. It follows that there exists a
rainbow C3, which implies rb(SFn,C3) ≤ 2n + 2.

Theorem 3.3. The rainbow number for C+3 in SFn satisfies

rb(SF3,C+3 ) = 7 and rb(SFn,C+3 ) = 2n + 2, for n ∈ {4, 5}.

Proof. Theorem 3.2 implies that

rb(SFn,C+3 ) ≥ rb(SFn,C3) =
{

7, if n = 3,
2n + 2, if n ≥ 4.

To prove the reverse inequality, consider the cases n = 3 and n ∈ {4, 5} separately.
Case 1 Suppose that n = 3 and consider an exact 7-coloring of SF3. Since rb(SF3,C3) = 7, there exists a

rainbow C3 subgraph. If the rainbow C3-subgraph consists of the three rim edges, then none of the other
edges can receive a new color without producing a rainbow C+3 -subgraph. If the rainbow C3-subgraph is
central (i.e., it includes two spokes and a rim edge), then only one spoke and two petal edges can receive
colors not contained in the C3 without forming a rainbow C+3 -subgraph. In this case, only six colors can
be used. Finally, if the rainbow C3-subgraph includes two petal edges and a rim edge, then again, only a
single spoke and two petal edges can receive colors not included in the C3. In all cases, we find that the SF3
must contain a rainbow C+3 -subgraph.

Case 2 Suppose that n ∈ {4, 5} and consider an exact (2n + 2)-coloring of SFn and note that rb(SFn,C3) =
2n + 2 implies that there exists a rainbow C3-subgraph. Consider two subcases.

Subcase 2.1 Suppose that there exists a rainbow C3-subgraph that is central. That is, for some i ∈ [n],
the cycle xvivi+1x is rainbow. If a rainbow C+3 is avoided, then all of the spokes, two rim edges (vi−1vi and
vi+1vi+2), and four petal edges (wi−1vi, wivi, wivi+1, and wi+1vi+1) must use the same colors as the rainbow
C3-subgraph. This leaves only n − 3 rim edges and 2n − 4 petal edges to use the remaining 2n − 1 colors.
However, 3n − 7 < 2n − 1 whenever n < 6, so every such coloring must contain a rainbow C+3 -subgraph.

Subcase 2.2 Suppose that no central rainbow C3-subgraph exists. Since rb(Wn,C3) = n + 1 [13], the
Wn-subgraph uses at most n colors. Hence, the petal edges must use at least n+ 2 colors that do not appear
on the rim edges or spokes. Iteratively applying the pigeonhole principle twice, it follows that there exist
i, j ∈ [n] with i , j such that wivivi+1wi and w jv jv j+1w j are both rainbow C3-subgraphs that do not share
colors with one another. Note that the two rainbow C3-subgraphs cannot have any vertices in common
without producing a rainbow C+3 -subgraph. So, if a rainbow C+3 -subgraph is avoided, then there are at most
n− 4 spokes, n− 4 rim edges, and 2n− 8 petal edges that can receive colors other than the six colors used in
the two rainbow C3-subgraphs. Since 4n − 16 < 2n − 4 whenever n < 6, every such coloring must contain a
rainbow C+3 -subgraph.

Theorem 3.4. The rainbow number for C4 in SFn satisfies

rb(SF3,C4) = 9, rb(SF4,C4) = 13, and

3n + 2 ≤ rb(SFn,C4) ≤ 3n + 1 +
⌊n

4

⌋
,

for all n ≥ 5.
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Proof. We separate the proof into cases based upon the value of n.
Case 1 Assume that n = 3. In this case, the sunflower SF3 contains three C4-subgraphs that are not

central, each of which contains exactly two rim edges and two petal edges. All other C4-subgraphs are
central, and hence include at least two spokes. Consider the following exact 8-coloring of SF3: ψ(xvi) = 1,
ψ(vivi+1) = 2, ψ(wivi) = i + 3, and ψ(wivi+1) = i + 6, where i ∈ [3] and the indices are reduced modulo 3. As
every C4-subgraph includes at least two edges that are the same color, it follows that rb(SF3,C4) ≥ 9.

To prove the reverse inequality, consider an exact 9-coloring of SF3 that avoids a rainbow C4-subgraph.
By Inequality (4), the W3-subgraph uses at most four colors. Since there are six petal edges, the W3-subgraph
must use at least three colors. If it uses exactly three colors, then each petal edge receives its own unique
color, and regardless of whether there are two colors used for the spokes or two colors used for the rim
edges, combining distinctly colored consecutive spokes or rim edges with two corresponding petal edges
forms a rainbow C4. So, assume that the W3-subgraph uses exactly four colors and consider three subcases.

Subcase 1.1 Suppose that the spokes all receive distinct colors and the rim edges all receive the fourth
color. The petal edges use five different colors and there exists some i ∈ [3] such that wivi and wi, vi+1 receive
distinct colors that do not appear in the W3-subgraph. Then xviwivi+1x is a rainbow C4-subgraph.

Subcase 1.2 Suppose that two colors appear on the spokes and two different colors appear on the rim
edges. Without loss of generality, assume that xv1 and xv2 are red and xv3 is blue. In order to avoid a
rainbow central C4-subgraph, edges v1v2 and v2v3 must be the same color. However, v1v3 and v1v2 must
also be the some color, contradicting the assumption that the W3-subgraph uses four colors.

Subcase 1.3 Suppose that the rim edges all receive distinct colors and the spokes receive the fourth color.
The petal edges use five different colors and there exists some i ∈ [3] such that wivi and wi, vi+1 receive
distinct colors that do not appear in the W3-subgraph. Then wivi+1vi+2viwi is a rainbow C4-subgraph.

Thus, every exact 9-coloring of SF3 contains a rainbow C4-subgraph. It follows that rb(SF3,C4) ≤ 9.
Case 2 Assume that n = 4. In this case, the sunflower SF4 contains one C4-subgraph that is not central,

consisting of the four rim edges. All other C4-subgraphs are central, and hence, include at least two spokes.
Consider the following exact 12-coloring of SF4: ψ(xvi) = 1, ψ(v1v2) = 2 = ψ(v2v3), ψ(v3v4) = 3, ψ(v4v1) = 4,
ψ(wivi) = i + 4, and ψ(wivi+1) = i + 8, where i ∈ [4] and the indices are reduced modulo 4. As every
C4-subgraph includes at least two edges that are the same color, it follows that rb(SF4,C4) ≥ 13.

To prove the reverse inequality, consider an exact 13-coloring of SF4 that avoids a rainbow C4-subgraph.
By Inequality (4), the W4-subgraph uses at most 5 colors. As there are exactly 8 petal edges, the W4-subgraph
uses exactly 5 colors and each of the 8 petal edges receives its own distinct color. Since the rim edges form
a C4-subgraph, they use at most 3 colors, from which it follows that the spokes use at least 2 of the colors.
For some i ∈ [n], there exist consecutive spokes xvi and xvi+1 that are different colors. Then one of the petals
wivi or wivi+1 must repeat a color, leading to a contradiction. It follows that rb(SF4,C4) ≤ 13.

Case 3 Assume that n ≥ 5. In this case, every C4-subgraph of SFn is central, and hence, includes at least
two spokes. Consider the following exact (3n+1)-coloring of SFn: ψ(xvi) = 1,ψ(vivi+1) = i+1,ψ(wivi) = 2i+1,
and ψ(wivi+1) = 3i + 1, for all i ∈ [n], and where the indices are reduced modulo n. As every C4-subgraph
includes at least two edges that are the same color, it follows that rb(SFn,C4) ≥ 3n + 2, for all n ≥ 5.

To prove the upper bound stated in the theorem, letψ be an exact t-coloring of SFn that avoids a rainbow
C4-subgraph. For each k ∈ N, let Ak denote the set of colors that appear on exactly k of the edges in SFn
under the map ψ. When j ≥ 1 and γ ∈ [t], define β j(γ) to be the number of central C4-subgraphs of SFn that
have exactly j edges in color γ. Then

β(γ) :=
∑
j≥2

β j(γ)

is the number of central C4-subgraphs of SFn that have two or more edges in color γ. Also define the
numbers

η(γ) := |{i ∈ [n] | ψ(xvi) = γ}|,
η′(γ) := |{i ∈ [n] | ψ(vivi+1) = γ}|, and
η′′(γ) := |{i ∈ [n] | ψ(wivi) = γ}| + |{i ∈ [n] | ψ(wivi+1) = γ}|.
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Note that for any γ ∈ Ak, η(γ) + η′(γ) + η′′(γ) = k.
The graph SFn contains a total of 2n C4-subgraphs, all of which are central. Each petal edge is included

in exactly one C4-subgraph, each rim edge is included in exactly two C4-subgraphs, and each spoke is
included in exactly four C4-subgraphs. For each γ ∈ Ak, we see that

2β(γ) ≤ 2β(γ) + β1(γ) ≤
∑
j≥1

jβ j(γ) = 4η(γ) + 2η′(γ) + η′′(γ) ≤ 4k,

from which it follows that β(γ) ≤ 2k. Notice that for any γ ∈ A2, two edges of SFn colored by γ can prevent
at most one central C4-subgraph from being rainbow and three edges of SFn colored γ can prevent at most
three central C4-subgraphs from being rainbow. So, β2(γ) ≤ 1 and β3(γ) ≤ 3. Given that every one of the 2n
central C4-subgraphs includes at least one color γ such that β(γ) ≥ 1, it follows that

2n ≤
∑
k≥2

∑
γ∈Ak

β(γ) ≤ |A2| + 3|A3| +
∑
k≥4

2k|Ak|.

Combining this with 4n = |E(SFn)| =
∑
k≥1

k|Ak|, we can conclude that

2|A1| + 3|A2| + 3|A3| ≤ 6n =⇒ |A1| + |A2| + |A3| ≤ 3n.

Then

t = |A1| + |A2| + |A3| +
∑
k≥4

|Ak|

≤ |A1| + |A2| + |A3| +
∑
k≥4

k
4
|Ak|

≤
1
4

(3|A1| + 2|A2| + |A3|) +
1
4

∑
k≥1

k|Ak|

≤
3
4

(|A1| + |A2| + |A3|) +
4n
4

≤
3
4

(3n) +
4n
4
= 3n +

n
4
.

Thus, t ≤ 3n +
⌊

n
4

⌋
whenever ψ avoids a rainbow C4-subgraph. It follows that every exact t-coloring of SFn

contains a rainbow C4-subgraph whenever t ≥ 3n + 1 +
⌊

n
4

⌋
, and hence, rb(SFn,C4) ≤ 3n + 1 +

⌊
n
4

⌋
, for all

n ≥ 5.

Note that besides the cases n = 3, 4, Theorem 3.4 also implies the following exact evaluations:

rb(SF5,C4) = 17, rb(SF6,C4) = 20, and rb(SF7,C4) = 23.

Theorem 3.5. For all n ≥ 3, rb(SFn, θ4) =
⌊

7n
2

⌋
+ 1.

Proof. First, we provide an exact (
⌊

7n
2

⌋
+ 1)-coloring of SFn that avoids a rainbow θ4-subgraph. For each

i ∈ [n], let ψ(vivi+1) = i, ψ(wivi) = n + i, ψ(wivi+1) = 2n + i, and

ψ(xvi) =
{

3n + i
2 , if i is even,

ψ(xvi+1), if i is odd.

Since every θ4-subgraph is central, no rainbow θ4-subgraph exists. It follows that rb(SFn, θ4) ≥
⌊

7n
2

⌋
+ 1.

To prove the reverse inequality, consider an exact (
⌊

7n
2

⌋
+ 1)-coloring of SFn. Even if all 2n petal edges

receive their own distinct colors, at least
⌊

7n
2

⌋
+1−2n =

⌊
3n
2

⌋
+1 colors appear on the edges of the Wn-subgraph.

By Theorem 2.1, rb(Wn, θ4) =
⌊

3n
2

⌋
+ 1, from which it follows that there exists a rainbow θ4-subgraph.
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4. Rainbow Numbers in Double-Hubbed Wheels

Now we consider the rainbow number when the host graph is the double-hubbed wheel W∗
n, so we

begin by formalizing the notation for the various components of W∗
n. Denote the hubs by x and y and

assume that the cycle in the definition of W∗
n is given by v1v2 · · · vnv1. Denote the spokes by si = xvi and

ti = yvi, and the rim edges by ri = vivi+1, with the indices reduced modulo n.

Theorem 4.1. For all n ≥ 3, rb(W∗
n,C3) =

⌊
3n
2

⌋
+ 1.

Proof. When n is odd, consider the exact
⌊

3n
2

⌋
-coloring of W∗

n given by

ψ(si) = i, ψ(ri) =


ψ(si+1), if i is odd and i < n,
ψ(sn), if i = n,
ψ(si), if i is even,

and ψ(ti) =


ψ(si), if i is even,
n + 1 +

⌊
i
2

⌋
, if i is odd and 3 ≤ i ≤ n − 2,

n + 1, if i = 1,
ψ(sn), if i = n.

For example, the second image in Figure 7 shows the case n = 5.
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Figure 7: An exact 6-coloring of W∗4 and an exact 7-coloring of W∗5 that avoid rainbow C3-subgraphs.

Note that all of the C3-subgraphs that contain one of the hubs use two colors. In the special case where
n = 3, the rim edges also form a C3-subgraph, which has edges r1 and r2 receiving the same color. It follows
that rb(W∗

n,C3) ≥
⌊

3n
2

⌋
+ 1, for all odd n ≥ 3.

When n is even, consider the exact
⌊

3n
2

⌋
-coloring of W∗

n given by

ψ(si) = i, ψ(ri) =

ψ(si+1), if i is odd,
ψ(si), if i is even,

and ψ(ti) =


ψ(si), if i is even,
n + 1, if i = 1,
n + 1 +

⌊
i
2

⌋
, if i is odd and i ≥ 3.

The first image in Figure 7 shows the case n = 4. Again, every C3-subgraph uses at most two colors, from
which it follows that rb(W∗

n,C3) ≥
⌊

3n
2

⌋
+ 1, for all even n ≥ 4.
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For the upper bound, recall that by (2), rb(Tn,C3) =
⌊

3n
2

⌋
− 2. Since W∗

n is a plane triangulation of order

n + 2, it follows that rb(W∗
n,C3) ≤

⌊
3(n+2)

2

⌋
− 2 =

⌊
3n
2

⌋
+ 1.

Theorem 4.2. For all n ≥ 3,
⌊

4n
3

⌋
+ 2 ≤ rb(W∗

n,C4) ≤ 2n + 1.

Proof. Consider the exact (
⌊

4n
3

⌋
+ 1)-coloring of W∗

n given by

ψ(si) = i, ψ(ri) =


ψ(si+1), if i ≡ 1 (mod 3),
ψ(si), if i ≡ 2 (mod 3),
n + i

3 , if i ≡ 0 (mod 3),

and ψ(ti) =
⌊4n

3

⌋
+ 1.

The cases n = 4 and n = 5 are shown in Figure 8.
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Figure 8: An exact 6-coloring of W∗4 and an exact 7-coloring of W∗5 that avoid rainbow C4-subgraphs.

Any C4-subgraph that is entirely contained in the Wn-subgraph with hub x uses at most three colors and
any C4-subgraph that includes y has color

⌊
4n
3

⌋
+ 1 appear on two of its edges. It follows that rb(W∗

n,C4) ≥⌊
4n
3

⌋
+ 2.

The upper bound follows from Theorem 4 of [13], where it was shown that

rb(Tn,C4) ≤ 2(n − 2) + 1, for all n ≥ 4.

Since W∗
n is a plane triangulation of order n + 2, it follows that

rb(W∗

n,C4) ≤ 2n + 1 for all n ≥ 3,

completing the proof of the theorem.

Now we consider the rainbow number for θ4 in the set Tn of plane triangulations of order n. For each
T ∈ Tn of order at least four and each v ∈ V(T), the subgraph of T induced by the closed neighborhood
NT(v) contains a subgraph W(v) that is isomorphic to Wd, where d = dT(v). If ψ is an edge coloring of T,
denote by Cψ(v) the set of colors used by ψ on the edges of the wheel W(v). In the next theorem, our proof
of the upper bound for rb(Tn, θ4) follows an approach similar to Theorem 4 of [13] and improves upon the
bound in (3) whenever n ≥ 47.

Theorem 4.3. For all n ≥ 3, rb(Tn, θ4) < 7(n−2)
3 .
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Proof. Let T ∈ Tn and suppose that ψ : E(T) −→
[

7(n−2)
3

]
is an exact edge coloring that avoids a rainbow

θ4-subgraph. By Lemma 1 of [13], it follows that

4
(

7(n − 2)
3

)
≤

∑
v∈V(T)

|Cψ(v)| ≤
∑

v∈V(T)

(rb(W(v), θ4) − 1).

By Theorem 2.1, it follows that

4
(

7(n − 2)
3

)
≤

∑
v∈V(T)

3
2
· dT(v) ≤

3
2
· 2|E(T)| = 3(3n − 6) = 9(n − 2).

This inequality is equivalent to 28(n − 2) ≤ 27(n − 2), which gives a contradiction. Hence, every exact
t-coloring of T that avoids a rainbow θ4-subgraph uses fewer than 7(n−2)

3 colors.

Since W∗
n is a plane triangulation of order n + 2, Theorem 4.3 implies that rb(W∗

n, θ4) < 7n
3 . In Theorem

4.5, we provide a lower bound, and in the case where n = 3k, an improvement of this bound is given. Before
we state and prove this theorem, we need the following lemma, concerning the case n = 3k. For such values
of n, W∗

n contains k edge-disjoint wheels W(1),W(2), . . . ,W(k) that are isomorphic to W4, with hubs v3 j−1
and cycles xv3 j−2yv3 jx, for 1 ≤ j ≤ k. The only edges in W∗

n that are not in these W4-subgraphs are the edges
v3 jv3 j+1 that join them. For any exact coloring ψ of W∗

n, we denote by ψ(W( j)) the set of colors used on the
edges of W( j).

Lemma 4.4. Suppose that n = 3k for some k ∈ N, and let ψ be an exact coloring of W∗
n that avoids a rainbow

θ4-subgraph. For each j such that 1 ≤ j ≤ k,

|ψ(W( j)) ∪ ψ(W( j + 1)) ∪ {ψ(v3 jv3 j+1)}| ≤ 12.

Proof. By Theorem 2.1, |ψ(W( j))| ≤ 6 and |ψ(W( j + 1))| ≤ 6. So, if ψ(W( j)) ∩ ψ(W( j + 1)) , ∅ or ψ(v3 jv3 j+3) ∈
ψ(W( j)) ∪ ψ(W( j + 1)), then the statement in the lemma clearly follows. Assume that W( j) and W( j + 1) do
not have any colors in common and

ψ(v3 jv3 j+1) < ψ(W( j)) ∪ ψ(W( j + 1)).

To prevent the subgraph induced by {x, y, v3 j, v3 j+1} from being a rainbow θ4-subgraph, either ψ(xv3 j) =
ψ(yv3 j) or ψ(xv3 j+1) = ψ(yv3 j+1). Without loss of generality, assume that ψ(xv3 j) = ψ(yv3 j) and consider the
following cases.

Case 1 Suppose thatψ(v3 j−1v3 j) , ψ(xv3 j) = ψ(yv3 j). In order for the subgraph induced by {x, v3 j−1, v3 j, v3 j+1}

to not be a rainbow θ4-subgraph, edge xv3 j−1 must use one of the colors ψ(xv3 j) or ψ(v3 j−1v3 j). In order for
the subgraph induced by {y, v3 j−1, v3 j, v3 j+1} to avoid being a rainbow θ4-subgraph, edge yv3 j−1 must use
one of the colors ψ(yv3 j) or ψ(v3 j−1v3 j). At this point, five of the edges in W( j) use two colors and only three
other edges exist. Hence, |ψ(W( j))| ≤ 5.

Case 2 Suppose that ψ(v3 j−1v3 j) = ψ(xv3 j) = ψ(yv3 j). The five other edges of W( j) span a θ4-subgraph,
and hence, use at most four colors. It follows that |ψ(W( j))| ≤ 5.

In both cases, |ψ(W( j))| ≤ 5 and |ψ(W( j + 1))| ≤ 6, from which the lemma follows.

Theorem 4.5. For all n ≥ 3,

rb(W∗

n, θ4) ≥
{

2n, if n is odd,
2n + 1, if n is even, and rb(W∗

n, θ4) <
7n
3
.

Furthermore, if n = 3k for some k ∈N, then rb(W∗
n, θ4) ≤ 2n + 2.
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Proof. When n is odd, consider the following exact (2n − 1)-coloring of W∗
n:

ψ(si) = i, ψ(t1) = 1, ψ(ti) = n − 1 + i when i ≥ 2, and

ψ(ri) =

ψ(si+1), if i is odd,
ψ(ti+1), if i is even.

When n is even, consider the following exact (2n)-coloring of W∗
n:

φ(si) = i, φ(ti) = n + i, and

φ(ri) =

φ(si+1), if i is odd,
φ(ti+1), if i is even.

Figure 9 shows the cases n = 4, 5.
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Figure 9: An exact 8-coloring of W∗4 and an exact 9-coloring of W∗5 that avoid rainbow θ4-subgraphs.

In either coloring, every θ4-subgraph either includes two adjacent triangles that contain the vertex x,
two adjacent triangles that contain the vertex y, or have a diagonal given by one of the edges ri. In all cases,
some color is repeated in one of the triangles, leading to the lower bound stated in the theorem.

For the upper bound, we use the fact that W∗
n is a plane triangulation of order n+ 2. So, by Theorem 4.3,

it follows that rb(W∗
n, θ4) < 7n

3 . In the special case where n = 3k, first note that W(1) uses at most six colors
(Theorem 2.1). Then for each j such that 1 ≤ j ≤ k− 1, |{ψ(v3 jv3 j+1)} ∪ψ(W( j+ 1))| ≤ 6 by Lemma 4.4. Finally,
we have two cases: ψ(vnv1) ∈ ψ(W(1)) ∪ ψ(W(k)) or W(1) uses at most six colors. Either way, W∗

n uses at
most 6k + 1 = 2n + 1, leading to the bound rb(W∗

n, θ4) ≤ 2n + 2.

Since W∗
n is a plane triangulation of order n+ 2, the following corollary to Theorem 4.5 follows immedi-

ately.

Corollary 4.6.

rb(Tn, θ4) ≥
{

2n − 4, if n is odd,
2n − 3, if n is even, for all n ≥ 5.

5. Conclusion

We conclude by mentioning some directions for future research. Rainbow numbers in wheels, sunflow-
ers, and double-hubbed wheels can be considered for larger cycles and theta graphs than the ones considered
here. Since double-hubbed wheels are plane triangulations, such work may lead to lower bounds for the
corresponding rainbow numbers in plane triangulations. Another host graph worth considering is the
plane triangulation K1 + SFn, but we reserve this topic for future study.
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