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Abstract. The paper examines the Infante-Webb spectrum within the framework of nonlinear block
operator matrices, focusing on the relationship between the spectra of 3 × 3 matrices and their constituent
components. The focus of the study is on the Infante-Webb spectrum of 3 × 3 nonlinear block operator
matrices. This study establishes the connection between the Infante-Webb spectrum of specific 3 × 3
nonlinear block operator matrices and the spectrum of their individual entries.

1. Introduction

The Infante-Webb spectrum, a component of nonlinear operator theory, is essential for comprehending and
resolving nonlinear differential and integral problems. The expansion of semilinear pairs and the inclusion
of positively homogeneous operators provide essential insights that contribute to diverse domains like
mathematics, physics, biology, and engineering. The value of transdisciplinary applications is emphasized
in various scientific disciplines. The Infante-Webb spectrum, first proposed by Infante and Webb in 2002,
is a collection of nonlinear operators that exhibit intriguing topological characteristics, notably in the case
of positively homogeneous operators. The IW-spectrum, sometimes referred to as the Infante and Cremins
spectrum, encompasses semilinear couples (L,F) as described by Infante and Cremins [5]. Additionally,
various spectra for nonlinear operators are investigated in references [6] to [13]. The investigation of
Kachurovskij, Furi-Martelli-Vignoli, and Feng spectra in continuous nonlinear block operator matrices
enhances the depth of the research field.

The paper is structured as follows. To prove the primary results of the remaining sections, we will require
the preliminary and auxiliary qualities that are contained in Section 2. Infante-Webb spectra of 3 × 3
nonlinear block operator matrices are examined in Section 3.
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2. Preliminary and auxiliary properties

Let X be an infinite dimensional complex Banach space and L(X) be denote the set of all bounded linear
operators from X into X. The product space X × X × X is equipped with the norm

∥(x, y, z)∥ = max{∥x∥, ∥y∥, ∥z∥}.

Further, we assume that X and X × X × X have a fixed projection scheme Γ1 = {Xn,Pn} and Γ̃1 =Xn × Xn × Xn,

 Pn 0 0
0 Pn 0
0 0 Pn


 respectively, where {Xn} is a sequence of finite dimensional subspaces

of X and Pn : X −→ Xn is a linear projection with Pnx→ x for every x ∈ X and ∥Pn∥ = 1. Let F : X −→ X be
an operator. The operator F is called finitely continuous at x if for any finite dimensional subspace X0 of X
and every sequence {xn} in X0 with xn → x, we have F(xn) ⇀ F(x) (weak convergence). The operator F is
said to be positively homogeneous if F(tx) = tF(x) for every x ∈ X and t ∈ R+. The operator F is called to be
bounded if F(Q) is bounded whenever Q ⊂ X is bounded. Now, consider the following notation that will
be used in the sequel [15]

[F]B = sup
x,0

∥F(x)∥
∥x∥

,

[F]b = inf
x,0

∥F(x)∥
∥x∥

.

We write F ∈ B(X) if [F]B < ∞ and call the operator F linearly bounded. It is easy to see that if F is a bounded
linear operator, then [F]B = ∥F∥. We may also consider the following

dR(F) = lim inf
n→∞

inf
{
∥PnF(x)∥
∥x∥

: x ∈ Xn, ∥x∥ ≥ R
}

(R > 0),

and
d(F) = sup

R>0
dR(F).

Obviously, if F is positively homogeneous, then d(F) = lim infn→∞[PnF]b.

Lemma 1. [4] Let qR(G) = lim sup
∥x∥≥R

∥G(x)∥
∥x∥ , then dR(F − G) ≥ dR(F) − qR(G).

Definition 1. Given an operator F : X −→ X, we call that F is A-proper with respect to Γ1, if

PnF|Xn : Xn −→ Xn

is continuous for each n ∈N, and if {xn j such that xn j ∈ Xn j } is any bounded sequence such that

∥Pn j F(xn j ) − Pn j y∥ → 0 ( j→∞),

for some y ∈ X, then there exist a subsequence {xn j(k)} of {xn j } and x ∈ X, such that xn j(k) → x and F(x) = y.

Definition 2. Given an operator F : X −→ X, we say that F is A-proper stable, if there exists some ε > 0 such that
F + µI is A-proper for all µ ∈ C with |µ| < ε.

Note that F is A-proper stable if and only if

τ(F) = sup{ε > 0 : F − µI is A-proper for every µ ∈ Cwith |µ| < ε} > 0.

Lemma 2. [16] Let X, Y be Banach spaces and D be a subset of X, Γ = {Xn,Vn; En,Wn} be an admissible scheme for
(X,Y). If T : D ⊂ X −→ Y is A-proper with respect to Γ, and C : D ⊂ X −→ Y is continuous and compact, then
T + C is A-proper with respect to Γ.
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Definition 3. Let F : X −→ Y be a continuous operator. The operator F is called stably solvable if, given any
continuous compact operator G : X −→ Y with [G]Q = 0, the equation F(x) = G(x) has a solution x ∈ X.

Definition 4. Let F : X −→ Y be a continuous operator. We say that F : X −→ X is A-stably solvable, if there exists
n0 ∈N such that the operator PnF|Xn is stably solvable for all n ≥ n0.

Definition 5. A finitely continuous operator F : X −→ X is called IW-regular if F is A-stably solvable, F is A-proper
stable and d(F) > 0. The set

ρIW(F) = {λ ∈ C : F − λI is IW-regular}

is called the IW-resolvent set of F, and its complement σIW(F) = C \ ρIW(F) is called the IW-spectrum of F. Note that
if we put

σδ,A(F) = {λ ∈ C : F − λI is not A-stably solvable},

στ(F) = {λ ∈ C : F − λI is not A-proper stable},

σd(F) = {λ ∈ C : d(F − λI) = 0}.

Then,
σIW(F) = σδ,A(F)

⋃
στ(F)

⋃
σd(F).

In the case of a bounded linear operator L : X −→ X, we have

σIW(L) = σ(L)
⋃
πA(L),

where πA(L) = {λ ∈ C : L− λI is not A-proper} and σ(L) is the usual spectrum of L. Consider the following
essential spectra by

σr,1(A) = {λ ∈ C : A − λI is injective, R(A − λI) , X and R(A − λI) is closed},

σp,1(D) = {λ ∈ C : D − λI is not injective and R(D − λI) = X}.

3. Main results

We begin by establishing the connection between the IW-spectrum of 3× 3 diagonal nonlinear operator
matrices and that of their entries, as previously discussed in [1–3].

Theorem 3.1. Let

L0 =

 A 0 0
0 E 0
0 0 K

 : X × X × X −→ X × X × X

be a diagonal nonlinear operator matrix with L0 is finitely continuous and L0(0) = 0. Then,

στ(L0) = στ(A)
⋃
στ(E)

⋃
στ(K).

Proof. To prove that στ(L0) = στ(A)
⋃
στ(E)

⋃
στ(K), it suffices to prove that L0 is A-proper with respect to

Γ̃1 if and only if both A, E and K are A-proper with respect to Γ1. Assume that L0 is A-proper with respect

to Γ̃1. It is easy to see that

 Pn 0 0
0 Pn 0
0 0 Pn

L0 |Xn×Xn×Xn is continuous if and only if both of PnA|Xn , PnE|Xn

and PnK|Xn are continuous for each n ∈ N. Now let {xn j such that xn j ∈ Xn j }, {yn j such that yn j ∈ Xn j }, and
{wn j such that wn j ∈ Xn j } be bounded sequences such that

∥Pn j A(xn j ) − Pn j y1∥ → 0 ( j→∞),
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for some y1 ∈ X,
∥Pn j E(yn j ) − Pn j y2∥ → 0 ( j→∞),

for some y2 ∈ X, and
∥Pn j K(wn j ) − Pn j y3∥ → 0 ( j→∞),

for some y3 ∈ X. Set zn j = (xn j , yn j ,wn j )
T
∈ Xn j × Xn j × Xn j , y = (y1, y2, y3)T

∈ X × X × X. Then∥∥∥∥∥∥∥∥
 Pn j 0 0

0 Pn j 0
0 0 Pn j

L0(zn j ) −

 Pn j 0 0
0 Pn j 0
0 0 Pn j

 y

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
 Pn j Axn j − Pn j y1

Pn j Exn j − Pn j y2

Pn j Kxn j − Pn j y3


∥∥∥∥∥∥∥∥

= max{∥Pn j A(xn j ) − Pn j y1∥, ∥Pn j E(yn j ) − Pn j y2∥, ∥Pn j K(xn j ) − Pn j y3∥} → 0 ( j→∞).

Hence, by the A-properness of L0, there exist a subsequence {zn j(k)} = {(xn j(k), yn j(k),wn j(k))T
} of {zn j } and

x = (x1, x2, x3)T
∈ X × X × X, such that zn j(k) → x and L0(x) = y, i.e., xn j(k) → x1, yn j(k) → x2, wn j(k) → x3 and

A(x1) = y1, E(x2) = y2, K(x3) = y3. This shows that A, E, and K are A-proper with respect to Γ1. Conversely,
suppose that A, E, and K are A-proper with respect toΓ1. Let {zn j such that zn j = (xn j , yn j ,wn j )

T
∈ Xn j×Xn j×Xn j }

be a bounded sequence such that∥∥∥∥∥∥∥∥
 Pn j 0 0

0 Pn j 0
0 0 Pn j

L0(zn j ) −

 Pn j 0 0
0 Pn j 0
0 0 Pn j

 y

∥∥∥∥∥∥∥∥→ 0 ( j→∞)

for some y = (y1, y2, y3)T
∈ X × X × X, i.e.,

max{∥Pn j A(xn j ) − Pn j y1∥, ∥Pn j E(yn j ) − Pn j y2∥, ∥Pn j K(wn j ) − Pn j y3∥} → 0 ( j→∞)

Then
∥Pn j A(xn j ) − Pn j y1∥ → 0 ( j→∞)

∥Pn j E(yn j ) − Pn j y2∥ → 0 ( j→∞)

and
∥Pn j K(xn j ) − Pn j y3∥} → 0 ( j→∞).

Therefore, by the A-properness of A, there exist a subsequence {xn j(k)} of {xn j } and x1 ∈ X, such that xn j(k) → x1
and A(x1) = y1. Taking a subsequence {yn j(k)} of {yn j }, then

∥Pn j(k)E(yn j(k)) − Pn j(k)y2∥ → 0 (k→∞).

Taking a subsequence {wn j(k)} of {wn j }, then

∥Pn j(k)K(wn j(k)) − Pn j(k)y3∥ → 0 (k→∞).

Also, by the A-properness of E (resp. K), there exist a subsequence {yn j(k)m
} of {yn j(k)} (resp. {wn j(k)m

} of
{wn j(k)}) and x2 ∈ X (resp. x3 ∈ X) such that yn j(k)m

→ x2 (resp. wn j(k)m
→ x3) and E(x2) = y2 (resp. K(x3) = y3).

Let x = (x1, x2, x3)T
∈ X × X × X and zn j(k)m

= (xn j(k)m
, yn j(k)m

,wn j(k)m
)T, where {xn j(k)m

} is a subsequence of
{xn j(k)}. Then

zn j(k)m
→ x and F(x) = y.

This proves that L0 is A-proper with respect to Γ̃1.
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Theorem 3.2. Let

L0 =

 A 0 0
0 E 0
0 0 K

 : X × X × X −→ X × X × X

be a diagonal nonlinear operator matrix with L0 is finitely continuous and L0(0) = 0. Then,

σd(L0) = σd(A)
⋃
σd(E)

⋃
σd(K).

Proof. Let λ < σd(A)
⋃
σd(E)

⋃
σd(K). Then there exist R1, R2, R3 > 0 such that dR1 (A−λI) > 0, dR2 (E−λI) > 0

and dR3 (K − λI) > 0. Let z = (x, y,w)T
∈ Xn × Xn × Xn be any vector. Without loss of generality we may

assume that ∥x∥ ≥ max(∥y∥, ∥w∥). Hence, ∥z∥ = max{∥x∥, ∥y∥, ∥w∥} = ∥x∥, and thus

dR1 (L0 − λI) = lim inf
n→∞

inf
∥z∥≥R1

∥∥∥∥∥∥∥∥
 Pn 0 0

0 Pn 0
0 0 Pn

 (L0 − λI)(z)

∥∥∥∥∥∥∥∥
∥z∥

= lim inf
n→∞

inf
∥z∥≥R1

max(∥Pn(A − λI)(x)∥, ∥Pn(E − λI)(y)∥, ∥Pn(K − λI)(w)∥)
max(∥x∥, ∥y∥, ∥w∥)

≥ lim inf
n→∞

inf
∥z∥≥R1

∥Pn(A − λI)(x)∥
∥x∥

= dR1 (A − λI) > 0.

Therefore λ < σd(F). Conversely, let λ < σd(F). Then there exists R > 0 such that

dR(L0 − λI)

= lim inf
n→∞

inf
∥z∥≥R

∥∥∥∥∥∥∥∥
 Pn 0 0

0 Pn 0
0 0 Pn

 (L0 − λI)(z)

∥∥∥∥∥∥∥∥
∥z∥

= lim inf
n→∞

inf
max(∥x∥,∥y∥,∥w∥)≥R

max(∥Pn(A − λI)(x)∥, ∥Pn(E − λI)(y)∥, ∥Pn(K − λI)(w)∥
max(∥x∥, ∥y∥, ∥w∥)

> 0.

for all z = (x, y,w)T
∈ Xn × Xn × Xn. In particular, if x = 0, and y = 0, then

dR(K − λI) = lim inf
n→∞

inf
∥w∥≥R

∥Pn(K − λI)(w)∥
∥w∥

= dR(L0 − λI).

If x = 0, and w = 0, then

dR(E − λI) = lim inf
n→∞

inf
∥y∥≥R

∥Pn(E − λI)(y)∥
∥y∥

= dR(L0 − λI).

Also, if y = 0 and z = 0, then

dR(A − λI) = lim inf
n→∞

inf
∥x∥≥R

∥Pn(A − λI)(x)∥
∥x∥

= dR(L0 − λI).

Thus λ < σd(A)
⋃
σd(E)

⋃
σd(K).
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Theorem 3.3. Let

L0 =

 A 0 0
0 E 0
0 0 K

 : X × X × X −→ X × X × X

be a diagonal nonlinear operator matrix with L0 is finitely continuous and L0(0) = 0. Then,

σδ,A(L0) ⊃ σδ,A(A)
⋃
σδ,A(E)

⋃
σδ,A(K).

Proof. It suffices to show that if L0 is A-stably solvable then so are A, E and K. Suppose that L0 is A-

stably solvable. Then there exists n0 ∈ N, such that

 Pn 0 0
0 Pn 0
0 0 Pn

L0 is stably solvable for n ≥ n0. Let

H1 : Xn −→ Xn, H2 : Xn −→ Xn and H3 : Xn −→ Xn are continuous operators with [H1]Q = 0, [H2]Q = 0, and
[H3]Q = 0. Define an operator H : Xn × Xn × Xn −→ Xn × Xn × Xn by

H =

 H1 0 0
0 H2 0
0 0 H3


Clearly, H is continuous and [H]Q = 0. Then Pn 0 0

0 Pn 0
0 0 Pn

L0

 x
y
z

 = H

 x
y
z


has a solution (x, y, z)T

∈ Xn ×Xn ×Xn, i.e., PnA(x) = H1(x), PnE(y) = H2(y), and PnK(z) = H3(z). This proves
that both of A, E and K are A-stably solvable.

Theorem 3.4. Let

L0 =

 A 0 0
0 E 0
0 0 K

 : X × X × X −→ X × X × X

be a diagonal nonlinear operator matrix with L0 is finitely continuous and L0(0) = 0. Then,

σIW(L0) ⊃ σIW(A)
⋃
σIW(E)

⋃
σIW(K).

Proof. It follows immediately from Theorems 3.1, 3.2, 3.3 and the definition of the IW-spectrum.

Corollary 1. Let L0 =

 A 0 0
0 E 0
0 0 K

 ∈ L(X × X × X). Then

σIW(L0) = σIW(A)
⋃
σIW(E)

⋃
σIW(K).

Proof. By virtue of Theorem 3.1, we can learn thatπA(L0) = πA(A)
⋃
πA(E)

⋃
πA(K), andσ(L0) = σ(A)

⋃
σ(E)
⋃
σ(K)

is clearly valid. Then σIW(L0) = σ(L0)
⋃
πA(L0) = σ(A)

⋃
σ(E)
⋃
σ(K)

⋃
πA(A)

⋃
πA(E)

⋃
πA(K) =

= σIW(A)
⋃
σIW(E)

⋃
σIW(K).

Theorem 3.5. Let

L =

 A B C
0 E F
0 0 K

 : X × X × X −→ X × X × X

be an upper triangular nonlinear operator matrix with A, B, C, E, F, K are finitely continuous and B(0) = C(0) =
E(0) = F(0) = K(0) = 0. If B, C, and F are continuous, then στ(A) ⊂ στ(L) ⊂ στ(A)

⋃
στ(E)

⋃
στ(K).
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Proof. First we show that στ(A) ⊂ στ(L). We only need to show that if L is A-proper with respect to Γ̃1 then A

is A-proper with respect to Γ1. Assume that L is A-proper with respect to Γ̃1. Then

 Pn 0 0
0 Pn 0
0 0 Pn

L|Xn×Xn×Xn

is continuous for each n ∈ N, which obviously implies that PnA|Xn is continuous for each n ∈ N. Now let
{xn j such that xn j ∈ Xn j } be a bounded sequence such that

∥Pn j A(xn j ) − Pn j y1∥ → 0 ( j→∞),

for some y1 ∈ X. Set zn j = (xn j , 0, 0)T
∈ Xn j × Xn j × Xn j , y = (y1, 0, 0)T

∈ X × X × X. Then∥∥∥∥∥∥∥∥
 Pn j 0 0

0 Pn j 0
0 0 Pn j

L(zn j ) −

 Pn j 0 0
0 Pn j 0
0 0 Pn j

 y

∥∥∥∥∥∥∥∥ =
∥∥∥∥∥∥∥∥
 Pn j Axn j − Pn j y1

0
0


∥∥∥∥∥∥∥∥

= ∥Pn j Axn j − Pn j y1∥ → 0 ( j→∞).

Hence, by the A-properness of L, there exist a subsequence {zn j(k)} = {(xn j(k), 0, 0)T
} of {zn j } and x = (x1, 0, 0)T

∈

X × X × X, such that zn j(k) → x and L(x) = y, i.e., xn j(k) → x1 and A(x1) = y1, which shows that A is A-proper
with respect to Γ1. Next we show that στ(L) ⊂ στ(A)

⋃
στ(E)

⋃
στ(K). We only need to prove that if A, E, and

K are A-proper with respect toΓ1, then L is A-proper with respect to Γ̃1. Suppose that A, E, and K are A-proper
with respect to Γ1. Then PnA|Xn , PnE|Xn and PnK|Xn are continuous for each n ∈ N, which can deduce that Pn 0 0

0 Pn 0
0 0 Pn

L|Xn×Xn×Xn is continuous for each n ∈N. Let {zn j such that zn j = (xn j , yn j ,wn j )
T
∈ Xn j×Xn j×Xn j }

be a bounded sequence such that∥∥∥∥∥∥∥∥
 Pn j 0 0

0 Pn j 0
0 0 Pn j

L0(zn j ) −

 Pn j 0 0
0 Pn j 0
0 0 Pn j

 y

∥∥∥∥∥∥∥∥→ 0 ( j→∞)

for some y = (y1, y2, y3)T
∈ X × X × X, i.e.,

max{∥Pn j A(xn j ) + Pn j B(yn j ) + Pn j C(wn j ) − Pn j y1∥,
∥Pn j E(yn j ) + Pn j F(wn j ) − Pn j y2∥, ∥Pn j K(wn j ) − Pn j y3∥} → 0 ( j→∞).

Then
∥Pn j A(xn j ) + Pn j B(yn j ) + Pn j C(wn j ) − Pn j y1∥ → 0 ( j→∞)

∥Pn j E(yn j ) + Pn j F(wn j ) − Pn j y2∥ → 0 ( j→∞)

and
∥Pn j K(wn j ) − Pn j y3∥ → 0 ( j→∞).

Thus, by the A-properness of E (resp. K), there exist a subsequence {yn j(k)} of {yn j } (resp. {wn j(k)} of {wn j })
and x2 ∈ X (resp. x3 ∈ X), such that yn j(k) → x2 and E(x2) = y2 (resp. wn j(k) → x3 and K(x3) = y3). Taking a
subsequence {xn j(k)} of {xn j }, then

∥Pn j(k)A(xn j(k)) + Pn j(k)B(yn j(k)) + Pn j(k)C(wn j(k)) − Pn j(k)y1∥ → 0 (k→∞),

this and the continuity of B and C imply that

∥Pn j(k)A(xn j(k)) − Pn j(k)(y1 − B(x2) − C(x3))∥

≤ ∥Pn j(k)A(xn j(k)) + Pn j(k)B(yn j(k)) + Pn j(k)C(wn j(k)) − Pn j(k)y1∥

+∥Pn j(k)(B(yn j(k)) − B(x2))∥ + ∥Pn j(k)(C(wn j(k)) − C(x3))∥ → 0 (k→∞).
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Hence, by the A-properness of A, there exist a subsequence {xn j(k)m
}of {xn j(k)} and x1 ∈ X, such that xn j(k)m

→ x1

and A(x1) = y1−B(x2)−C(x3). Let x = (x1, x2, x3)T
∈ X×X×X and {zn j(k)m

} = {(xn j(k)m
, yn j(k)m

,wn j(k)m
)T
}, where

{yn j(k)m
} is a subsequence of {yn j(k)} and {wn j(k)m

} is a subsequence of {wn j(k)}. Then zn j(k)m
→ x and L(x) = y,

which shows that L is A-proper with respect to Γ̃1.

Theorem 3.6. Let

L =

 A B C
0 E F
0 0 K

 : X × X × X −→ X × X × X

be an upper triangular nonlinear operator matrix with A, B, C, E, F, K are finitely continuous and B(0) =
C(0) = E(0) = F(0) = K(0) = 0. If A, B, C, E, F and K are positively homogeneous, then σd(A) ⊂ σd(L) ⊂
σd(A)

⋃
σd(E)

⋃
σd(K).

Proof. It is easy to see that σd(A) ⊂ σd(L), and so we only need to prove that σd(L) ⊂ σd(A)
⋃
σd(E)

⋃
σd(K).

Let λ ∈ σd(L). Then lim infn→∞[P̃nL − λP̃n]b = 0, where P̃n =

 Pn 0 0
0 Pn 0
0 0 Pn

. Evidently, the factorization

formula
P̃nL − λP̃n = UnRnVnWnZn,

where

Un =

 I 0 0
0 I 0
0 0 PnK − λPn

 ,
Rn =

 I 0 PnC
0 I PnF
0 0 I

 ,
Vn =

 I 0 0
0 PnE − λPn 0
0 0 I

 ,
Wn =

 I PnB 0
0 I 0
0 0 I

 ,
and

Zn =

 PnA − λPn 0 0
0 I 0
0 0 I

 .
Note that lim infn→∞[Rn]b > 0 and lim infn→∞[Wn]b > 0. Since [P̃nL − λP̃n]b = [UnRnVnWnZn]b ≥

[Un]b[Rn]b[Vn]b[Wn]b[Zn]b, it follows that either lim infn→∞[Un]b = 0 or lim infn→∞[Vn]b = 0 or lim infn→∞[Zn]b =
0, and hence lim inf[PnA − λPn]b = 0 or lim infn→∞[PnE − λPn]b = 0 or lim infn→∞[PnK − λPn]b = 0, therefore
λ ∈ σd(A)

⋃
σd(E)

⋃
σd(K).

According to Theorem 3.5, we can give a characterization of the IW-spectrum for bounded linear upper
triangular operator matrices, see the following theorem:

Theorem 3.7. Let

L =

 A B C
0 E F
0 0 K

 ∈ L(X × X × X).

If A(Xn) = Xn, B(Xn) ⊂ Xn, C(Xn) ⊂ Xn and F(Xn) ⊂ Xn for all n ∈N, then
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(σIW(A) \ (σ(E)
⋃
σ(K))

⋃
(σIW(E) \ (σ(A)

⋃
σ(K))

⋃
(σIW(K) \ (σ(A)

⋃
σ(E)) ⊂

σIW(L) ⊂ σIW(A)
⋃
σIW(E)

⋃
σIW(K).

Proof. From the proof of Theorem 3.5, we obtain that πA(L) ⊂ πA(A)
⋃
πA(E)

⋃
πA(K), since σ(L) ⊂

σ(A)
⋃
σ(E)
⋃
σ(K), then σIW(L) ⊂ σIW(A)

⋃
σIW(E)

⋃
σIW(K). Next, we prove that (σIW(A) \ (σ(E)

⋃
σ(K))

⋃
(σIW(E) \ (σ(A)

⋃
σ(K))

⋃
(σIW(K) \ (σ(A)

⋃
σ(E)) ⊂ σIW(L). Let λ ∈ σIW(A) \ (σ(E)

⋃
σ(K)), assume that

λ < σIW(L). Then it is not hard to see that λ ∈ ρ(A), and again from Theorem 3.5, we obtain that λ < πA(A).
Therefore λ ∈ ρIW(A), which contradicts λ ∈ σIW(A), thus σIW(A) \ (σ(E)

⋃
σ(K)) ⊂ σIW(L). Also, let

λ ∈ σIW(K) \ (σ(A)
⋃
σ(E)), assume that λ < σIW(L). Then we easily obtain that λ ∈ ρ(E), and λ < πA(E). In

fact, let {yn j such that yn j ∈ Xn j } be a bounded sequence such that

∥Pn j (E − λI)(yn j ) − Pn j y2∥ → 0 ( j→∞),

for some y2 ∈ X. Set zn j = (−(A − λI)−1Byn j , yn j , 0)T
∈ Xn j × Xn j × Xn j , y = (0, y2, 0)T

∈ X × X. Then∥∥∥∥∥∥∥∥
 Pn j 0 0

0 Pn j 0
0 0 Pn j

 (L − λI)(zn j ) −

 Pn j 0 0
0 Pn j 0
0 0 Pn j

 y

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥
 0

Pn j (E − λ)yn j − Pn j y2

0


∥∥∥∥∥∥∥∥

= ∥Pn j (E − λI)(yn j ) − Pn j y2∥ → 0 ( j→∞).

Hence, by the A-properness of L − λI, there exist a subsequence {zn j(k)} = {(−(A − λI)−1Byn j(k), yn j(k), 0} of
{zn j } and x = (−(A − λI)−1Bx2, x2, 0)T

∈ X × X × X, such that zn j(k) → x and L(x) = y, i.e., yn j(k) → x2 and
(E − λ)(x2) = y2, which shows that E − λI is A-proper with respect to Γ1, i.e., λ < πA(E). Thus λ ∈ ρIW(E),
which contradicts λ ∈ σIW(E), and hence σIW(E) \ (σ(A)

⋃
σ(E)) ⊂ σIW(L). The same reasoning for the set

σIW(K) \ (σ(A)
⋃
σ(E)). The proof is completed.

Corollary 2. Let

L =

 A B C
0 E F
0 0 K

 ∈ L(X × X × X)

with A(Xn) = Xn and B(Xn) ⊂ Xn, C(Xn) ⊂ Xn, F(Xn) ⊂ Xn for all n ∈N. If σ(A)
⋂
σ(E)
⋂
σ(K) = ∅, then

σIW(L) = σIW(A)
⋃
σIW(E)

⋃
σIW(K).

Proof. Since (σIW(A) \ (σ(E)
⋃
σ(K))

⋃
(σIW(E) \ (σ(A)

⋃
σ(K))

⋃
(σIW(K) \ (σ(A)

⋃
σ(E)) = (σIW(A)

⋃
σIW(E)

⋃
σIW(K)) \ (σ(A)

⋂
σ(E)
⋂
σ(K)), it follows from Theorem 3.7 that σIW(L) = σIW(A)

⋃
σIW(E)

⋃
σIW(K).

In Corollary 2, the conditions for σIW(L) = σIW(A)
⋃
σIW(E)

⋃
σIW(K) are relatively strong. In the following,

according to the fact that A-properness is invariant under compact perturbation, we will give a weaker
condition.

Corollary 3. Let

L =

 A B C
0 E F
0 0 K

 ∈ L(X × X × X)

with B is compact. If σr,1(A)
⋂
σp,1(E)

⋂
σp,1(K) = ∅, then

σIW(L) = σIW(A)
⋃
σIW(E)

⋃
σIW(K).
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Proof. From Lemma 2, we infer that πA(L) = πA(A)
⋃
πA(E)

⋃
πA(K). Since σ(A)

⋃
σ(E)
⋃
σ(K) =

σ(L)
⋃

(σr,1(A)
⋂
σp,1(E)

⋂
σp,1(K)) (see [14]), we have the desired result immediately.

By using Lemma 2 and 1, we have the following

Lemma 3. Let M, N are finitely continuous.

(i) If N is continuous and compact, then στ(M +N) = στ(M).
(ii) If qR(N) = 0 for some R > 0, then σd(M +N) = σd(M).
(iii) If N is continuous and [N]Q = 0, then σδ,A(M +N) = σδ,A(M).
(iv) If N is continuous, compact and qR(N) = 0 for some R > 0, then σIW(M +N) = σIW(M).

Theorem 3.8. Let

L =

 A B C
0 E F
0 0 K

 : X × X × X −→ X × X × X

be an upper triangular nonlinear operator matrix with A, B, C, E, F, K are finitely continuous and A(0) = E(0) =
K(0) = 0.

(i) If B, C and F are continuous and compact, then στ(L) = στ(A)
⋃
στ(E)

⋃
στ(K).

(ii) If qR(B) = 0 for some R > 0, then σd(L) = σd(A)
⋃
σd(E)

⋃
σd(K).

(iii) If B is continuous and [B]Q = 0, then σδ,A(L) ⊃ σδ,A(A)
⋃
σδ,A(E)

⋃
σδ,A(K).

(iv) If B is continuous, compact and qR(B) = 0 for some R > 0, then

σIW(L) ⊃ σIW(A)
⋃
σIW(E)

⋃
σIW(K).

Proof. Let M =

 A 0 0
0 E 0
0 0 K

, N =

 0 B C
0 0 F
0 0 0

. Then N is continuous, compact and qR(N) = 0 for some

R > 0. Thus, by Lemma 3, we know that σ∗(L) = σ∗(M), where σ∗ ∈ {στ, σd, σδ,A, σIW}, and by applying
Theorems 3.1, 3.2, 3.3, 3.4 the desired results can be obtained immediately.
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