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Infante-webb spectrum of nonlinear 3 X 3 upper triangular block
operator matrices
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Abstract. The paper examines the Infante-Webb spectrum within the framework of nonlinear block
operator matrices, focusing on the relationship between the spectra of 3 X 3 matrices and their constituent
components. The focus of the study is on the Infante-Webb spectrum of 3 X 3 nonlinear block operator
matrices. This study establishes the connection between the Infante-Webb spectrum of specific 3 x 3
nonlinear block operator matrices and the spectrum of their individual entries.

1. Introduction

The Infante-Webb spectrum, a component of nonlinear operator theory, is essential for comprehending and
resolving nonlinear differential and integral problems. The expansion of semilinear pairs and the inclusion
of positively homogeneous operators provide essential insights that contribute to diverse domains like
mathematics, physics, biology, and engineering. The value of transdisciplinary applications is emphasized
in various scientific disciplines. The Infante-Webb spectrum, first proposed by Infante and Webb in 2002,
is a collection of nonlinear operators that exhibit intriguing topological characteristics, notably in the case
of positively homogeneous operators. The IW-spectrum, sometimes referred to as the Infante and Cremins
spectrum, encompasses semilinear couples (L, F) as described by Infante and Cremins [5]. Additionally,
various spectra for nonlinear operators are investigated in references [6] to [13]. The investigation of

Kachurovskij, Furi-Martelli-Vignoli, and Feng spectra in continuous nonlinear block operator matrices
enhances the depth of the research field.

The paper is structured as follows. To prove the primary results of the remaining sections, we will require

the preliminary and auxiliary qualities that are contained in Section 2. Infante-Webb spectra of 3 x 3
nonlinear block operator matrices are examined in Section 3.
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2. Preliminary and auxiliary properties

Let X be an infinite dimensional complex Banach space and £(X) be denote the set of all bounded linear
operators from X into X. The product space X X X x X is equipped with the norm

lCx, v, 2)II = max{lx]], [[y]l, l|zI[}.

Further, we assume that X and X X X X X have a fixed projection scheme I'1 = {X,,P,} and fl =

P, 0 O
Xy xX,xX,,] 0 P, O ] respectively, where {X,} is a sequence of finite dimensional subspaces
0 0 P,

of X and P, : X — X, is a linear projection with P,x — x for every x € X and ||[P,|| = 1. Let F : X — X be
an operator. The operator F is called finitely continuous at x if for any finite dimensional subspace Xj of X
and every sequence {x,} in Xy with x, — x, we have F(x,) — F(x) (weak convergence). The operator F is
said to be positively homogeneous if F(fx) = tF(x) for every x € X and ¢ € R,. The operator F is called to be
bounded if F(Q) is bounded whenever Q C X is bounded. Now, consider the following notation that will
be used in the sequel [15]

I
s

W
Ll = nf T

We write F € B(X) if [F]p < co and call the operator F linearly bounded. It is easy to see that if F is a bounded
linear operator, then [F]z = ||F||. We may also consider the following

P,F
dr(F) = 1iminfinf{W . xeX,, |Hl> R} R > 0),

and

d(F) = sup dgr(F).
R>0

Obviously, if F is positively homogeneous, then d(F) = lim inf,,_,co [P, Fls.
Lemma 1. [4] Let gr(G) = limsup . %, then dgr(F — G) = dr(F) — qr(G).
Definition 1. Given an operator F : X — X, we call that F is A-proper with respect to I'y, if
P.Fix, : X, — X,
is continuous for each n € IN, and if {x,, such that x,; € Xy} is any bounded sequence such that
1P F(n,) = Payyll = 0 (j — o),
for some y € X, then there exist a subsequence {x,,/,(k)} of {xy;} and x € X, such that Xy = X and F(x) = y.

Definition 2. Given an operator F : X — X, we say that F is A-proper stable, if there exists some ¢ > 0 such that
F + ul is A-proper for all u € C with |u| < e.

Note that F is A-proper stable if and only if
T(F) = sup{e > 0 : F — ul is A-proper for every u € C with |u| < €} > 0.

Lemma 2. [16] Let X, Y be Banach spaces and D be a subset of X, I = {X,,, Vyy; En, Wy} be an admissible scheme for
(X,Y). If T: D C X — Y is A-proper with respect toI', and C : D C X — Y is continuous and compact, then
T + C is A-proper with respect to I'.
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Definition 3. Let F : X — Y be a continuous operator. The operator F is called stably solvable if, given any
continuous compact operator G : X — Y with [G]g = 0, the equation F(x) = G(x) has a solution x € X.

Definition 4. Let F : X — Y be a continuous operator. We say that F : X — X is A-stably solvable, if there exists
ngy € IN such that the operator P,Fx, is stably solvable for all n > ny.

Definition 5. A finitely continuous operator F : X — X is called IW-regular if F is A-stably solvable, F is A-proper
stable and d(F) > 0. The set
pw(F) ={A € C : F— Al is IW-regular}

is called the IW-resolvent set of F, and its complement orw(F) = C \ piw(F) is called the IW-spectrum of F. Note that
if we put
05,4(F) = {A € C: F — Al is not A-stably solvable},

0.(F) ={A € C : F— Alis not A-proper stable},
04(F)={AeC : d(F - Al) =0}.

Then,
om(F) = o4(F)|_J o) | ouP).

In the case of a bounded linear operator L : X — X, we have

om(L) = o) | ma(l),

where ma(L) = {A € C : L - Alis not A-proper} and o(L) is the usual spectrum of L. Consider the following
essential spectra by

0,1(A) ={A € C : A — Al isinjective, R(A — AI) # X and R(A — Al) is closed]},

0,1(D) ={A € C : D - Alis not injective and R(D — AI) = X}.

3. Main results

We begin by establishing the connection between the [W-spectrum of 3 X 3 diagonal nonlinear operator
matrices and that of their entries, as previously discussed in [1-3].

Theorem 3.1. Let

A 0 0
Lo=] 0 E 0 [: XXXXX—>XXxXxX
0 K

0
be a diagonal nonlinear operator matrix with Ly is finitely continuous and Lo(0) = 0. Then,

0:(Lo) = 0:(A) |_Joe(B) ] oe(K).

Proof. To prove that 0.(Lo) = 0:(A) U 0:(E) U 0.(K), it suffices to prove that Ly is A-proper with respect to
I'y if and only if both A, E and K are A-proper with respect to I'1. Assume that L is A-proper with respect

P, 0 O
to I'. It is easy to see that [ 0O P, O ]Lomxxnxxn is continuous if and only if both of P,Axx,, P,Ex,
0 0 P,

and P,Kx, are continuous for each n € N. Now let {x,; such that x,,; € X}, {y»; such that y,; € X, }, and
{wn,. such that Wy, € Xn].} be bounded sequences such that

”PnjA(xnj) - Pnlylll -0 (] - Oo)/
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for some y; € X,
IPn, E(Yn;) = Puyll = 0 (j — o0),

for some y, € X, and
||Pn,'K(wn,) - Pﬂjy3” -0 (] — ),

for some y3 € X. Set z,, = (X, Y, Wn))" € X, X Xy X X, ¥ = (1, Y2, ¥3)T € X X X x X. Then

P, 0 0 P, 0 0
0 Py 0 |Lo@y)~-| O Py 0 |y
0 0 Py 0 0 P,

Pn/-Exnj - Pn/yz
Pn/Kxnj - Pn/y3
= max{l|Pn,A(x;1;) - Pn,-]/l”z ||P71]'E(yn]‘) - Pn,-yZH/ ”Pn,-K(xnj) - Pnjy3||} =0 (j— o).

[ Pnijn,v - Pn]yl ]

Hence, by the A-properness of Ly, there exist a subsequence {znj(k)} = {(x,,/(k), ynj(k),wnj(k))T} of {z,;} and
X = (xl,xz, X3)T € X X X X X, such that Znjk)y — X and Lo(x) =Y, ie., Xnj(y = X1, Ynjth) — X2, Wnytk) — X3 and
A(x1) = y1, E(x2) = y2, K(x3) = y3. This shows that A, E, and K are A-proper with respect to I';. Conversely,
suppose that A, E, and K are A-proper with respecttoI’;. Let{z, ; such thatz, ;= (xn], Ynj) Wn /.)T € Xy, XX /.XX,,}.}
be a bounded sequence such that

P, 0 0 P, 0 0
0 Py 0 |Lo(zs)—| O Py O |y >0 (j— )
]

0 0 P, 0 P,

o

for some y = (y1, 12, ¥3)T € XX X x X, ie.,
maX{HP,,].A(xn].) - Pn,-]/l”z “P‘rl]‘E(yl’l,‘) - Pn,-]/2||/ “P‘ﬂ]‘K(wn,‘) - PninH} -0 (] - OO)

Then
1P, AGkn,) = Payyall = 0 (j = oo)

”Pn/E(ynj) - PnijH -0 (] - oo)

and
”Pn]-K(xn]-) - Pn/]/SH} -0 (] - Oo)

Therefore, by the A-properness of A, there exist a subsequence {xn/(k)} of {x,,j} and x; € X, such that Xty = X1
and A(x1) = y;. Taking a subsequence {ynj(k)} of {y,,}, then

WP E(Yins0) = Pusgoyall = 0 (k — o0).
Taking a subsequence {wy,x} of {wy,}, then
P, 00 K(Wnjh)) = Pujgoyall = 0 (k — o).

Also, by the A-properness of E (resp. K), there exist a subsequence {yn].(k)m} of {yn].(k)} (resp. {wn,(k)m} of
{wn,1}) and x, € X (resp. x5 € X) such that Ynj(ky,, = X2 (resp. W), = x3) and E(xz) = y, (resp. K(x3) = y3).
Let x = (x1,x,x3)7 € X x X x X and Zny,, = Kyt y,,](k)m,wnj(k)m)T, where {x, ), } is a subsequence of
{Xn](k)}. Then

Znj(ky,, = ¥ and F(x) = y.

This proves that L is A-proper with respect to T.. O
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Theorem 3.2. Let
Lo =

A 0 0
0 E 0 |:XXXXxX—XXxXXxX
0 K

0
be a diagonal nonlinear operator matrix with Ly is finitely continuous and Lo(0) = 0. Then,

0a(Lo) = 0u(A)|_Joa(E) | _Jou(K).

Proof. Let A ¢ 04(A) U 04(E) | 04(K). Then there exist Ry, Ry, R3 > 0 such that dg, (A —AI) > 0, dg,(E-AI) > 0
and dg,(K - AI) > 0. Letz = (x,y, w)T € X, x X, x X, be any vector. Without loss of generality we may
assume that ||x|| > max(||yll, [[wll). Hence, |z[| = max{||x[|, [[yll, [[ew]l} = [|x[|, and thus

P, 0 O
0 P, 0 |(Lo—AD@)
o 0 P,
dr,(Lo —Al) = liminf inf
n—eo  |lzl|=R IIzI|
— Lminf inf max(|[P,(A = AD@)I|, 1P, (E = ADW)I|, 1P (K = AD(w)l)
>0 ||zl|2R, max(|[x|l, llyll, llzll)

n—co  |zl>R: (1]l
dr,(A = AI) > 0.

\%

Therefore A ¢ 04(F). Conversely, let A ¢ 04(F). Then there exists R > 0 such that

dr(Lo — AI)
P, 0 O
0 P, 0 |(Lo-AD)
0o 0 P,
= liminf inf
n—c0 ||z]|>R Izl
. max(|[Py(A = AD@)|, IPx(E = ADW)l, IPx(K = AD)(w)||
= liminf > 0.
n—eo max(lllllyll lwl) =R max(||xl|, [lyll, llzwll)

forallz = (x,y, w) € X, x X, x X,,. In particular, if x = 0, and y = 0, then

o IPMK = AD@)]
liminf inf —————
n—co  |lw||>R [[zl|
dr(Lo — AI).

dr(K = )

If x =0, and w = 0, then

P,(E—-AI
drE-AD) = liminf inf nEZ AW
n—e [yl=R Il

= dr(Lg — Al).
Also, if y =0and z = 0, then

liminf inf IPw(A = ADI|
n—>co  |lxf|2R (|l
dr(Lo — AD).

dr(A = AI)

Thus A ¢ 04(A) Jo4(E) Jog(K). O
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Theorem 3.3. Let

A 0 0
Lo=l 0 E 0 [: XXXXxX—DXXxXxX
0 0 K

be a diagonal nonlinear operator matrix with Ly is finitely continuous and Lo(0) = 0. Then,

05,4(Lo) D 054(A) U os.4(E) U 05,4(K).

Proof. It suffices to show that if Ly is A-stably solvable then so are A, E and K. Suppose that L is A-

P, 0 O
stably solvable. Then there exists ny € IN, such that [ 0O P, O ]Lo is stably solvable for n > ng. Let
0o 0 P,

H;: X, — X, H, : X;, — X, and H3 : X, — X, are continuous operators with [H1]o = 0, [H2]g = 0, and
[H3]o = 0. Define an operator H : X,, X X, X X, — X, X X;; X X, by

H 0 0
H=| 0 H, O
0 0 H;

Clearly, H is continuous and [H]g = 0. Then

P, 0 O X
0 P, 0 (Lol y
0 0 P, z

has a solution (x, y, 2)T € X, x X, X X,,, i.e., P,A(x) = H(x), P,E(y) = H2(y), and P,K(z) = H3(z). This proves
that both of A, E and K are A-stably solvable. [J

A0 0
Lo=| 0 E 0
0 0 K

be a diagonal nonlinear operator matrix with Ly is finitely continuous and Lo(0) = 0. Then,

=H

x
y
z

Theorem 3.4. Let

XX XXX — XXXXX

ow(Lo) 2 aiw(A) U omw(E) U orw(K).
Proof. It follows immediately from Theorems 3.1, 3.2, 3.3 and the definition of the IW-spectrum. [J

A 0 0
Corollary 1. LetLy=| 0 E € L(X X XX X). Then
0 0

0
K
ow(Lo) = ow(A) U omw(E) U ow(K).

Proof. By virtue of Theorem 3.1, we canlearn that 14 (Lo) = a(A) U ma(E) U ma(K), and 6(Lo) = o(A) U o(E) U o(K)
is clearly valid. Then orw(Lo) = o(Lo) U ma(Lo) = 0(A) U o(E) U o(K) U mta(A) U ma(E) U ma(K) =
= ow(A) Uow(E) Jow(K). O

Theorem 3.5. Let
A B C
L= 0 E F |: XXXXxX—DXxXxX

0 0 K

be an upper triangular nonlinear operator matrix with A, B, C, E, F, K are finitely continuous and B(0) = C(0) =
E(0) = F(0) = K(0) = 0. If B, C, and F are continuous, then 6:(A) C 6.(L) C 0:(A) U 0-(E) U 6.(K).
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Proof. First we show that 0.(A) C o.(L). We only need to show that if L is A-proper with respect to T then A

_ P, 0 O
is A-proper with respect toI'y. Assume that L is A-proper with respecttoI';. Then [ 0 P, O ] Lix,xx,xx,
0 0 P,

is continuous for each n € IN, which obviously implies that P,Ax, is continuous for each n € IN. Now let
{xs; such that x,,; € X,,;} be a bounded sequence such that

”Pn/-A(xnj) - Pnjylll -0 (] - Oo)/
for some y; € X. Set z,, = (x,,,0,0)" € X;;, x X;, x X,,, v = (y1,0,0)T € X x X x X. Then

P, 0 0 P, 0 0
0 Py, 0 |L@y)-| O P, 0

0 0 Py, 0 0 Py

Pn]‘Ale/‘ - P‘rl]‘yl
0

y

0
= ”Pn/Axn] - Pm]/l” -0 (] - OO)

Hence, by the A-properness of L, there exist a subsequence {z,,](k)} = {(an(k), 0,0)} of {zn;} and x = (x1, 0, 0)! €

X X X x X, such that Znjk) = X and L(x) = y, i.e, Xnjk) = X1 and A(x;) = y;, which shows that A is A-proper

with respect to I';. Next we show that 0.(L) C 6:(A) U 0-(E) U 0:(K). We only need to prove thatif A, E, and

K are A-proper with respect toI';, then L is A-proper with respect toI'1. Suppose that A, E, and K are A-proper
with respect to I'1. Then P,Ajx,, P,Exx, and P,Kyx, are continuous for each n € IN, which can deduce that

P, 0 O

[ 0O P, O }LananXn is continuous foreachn € IN. Let {zn]. such that Zy, = (x"/' Ynjs wnj)T € X,,/.xX,,/.xan}
0o 0 P,

be a bounded sequence such that

P, 0 0 P, 0 0
0 Py 0 |Lo(zi)-| 0 Py 0 |y
0

0 0 P, 0 P,

-0 (j— o)

for some y = (y1, 2, ¥3)T € X x X x X, ie.,

maX{”PnjA(xn,-) + P?’l,‘B(yn/) + P?ljc(wn/‘) - PVI,‘]/l”/
”PnjE(yn,-) + Pn,F(wn,) - Pnjy2||1 ||Pn,'K(wn7) - Pn/]/SH} -0 (] — o0).

Then
”PnjA(xn,) + Pn,-B(]/n/-) + Pnjc(wn]) - Pn]-]/1|| -0 (] — 00)

||Pn/E(yn7) + Pnjp(wnj) - Pn/yZH =0 (j—> )

and
“Pan(wn/) - PnijH -0 (] - oo)

Thus, by the A-properness of E (resp. K), there exist a subsequence {yn/(k)} of {y,,/.} (resp. {wn/(k)} of {w,,/})
and x, € X (resp. x3 € X), such that y,,¢) — x2 and E(x2) = y2 (resp. wy,y = x3 and K(x3) = y3). Taking a
subsequence {xn].(k)} of {x,;}, then
P00 ACn,00) + PrjioB(Ynji)) + Pnjgo C(wn9) = Py yall = 0 (k — 0),
this and the continuity of B and C imply that
1Pr;00 A 1) = Py (1 — B(x2) = C(x3))l

S Pja A k) + Projao B0 + Prjiy C(Wn ) = Py yal
H1P; a0 (B(Ynyk) = BO + 1Py (Cw, 1) — Ca))ll = 0 (k — o).
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Hence, by the A-properness of A, there exist a subsequence {xnj(k)m} of {xn/.(k)} and x; € X, such that Xy, = X1

and A(x1) = y1 — B(x2) — C(x3). Letx = (x1,x2,x3)" € XxXx X and {Znjw) b = A0, Yy, Wy, )"}, where
{yn].(k)m} is a subsequence of {yn].(k)} and {wn].(k)m} is a subsequence of {wn].(k)}. Then Znik),, = X and L(x) = y,

which shows that L is A-proper with respect toI'1. [

Theorem 3.6. Let
A
0 XX XXX — XXXxX

B C
L= E F
0 K

0

be an upper triangular nonlinear operator matrix with A, B, C, E, F, K are finitely continuous and B(0) =
C(0) = E(0) = F(0) = K©0) = 0. If A, B, C, E, F and K are positively homogeneous, then o4(A) C c4(L) C
aa(A) U a4(E) U 04(K).

Proof. It is easy to see that 04(A) C 04(L), and so we only need to prove that 04(L) C 04(A) U 04(E) U 04(K).

P, 0 O
Let A € 04(L). Then liminf, ,.[P,L — AP,], =0, where P, =| 0 P, 0 | Evidently, the factorization
0 0 P,
formula _ _
P,L-AP, = U,R,V,W,Z,,
where
I 0 0
u,=|0 1 0 ,
0 0 P,K-AP,
I 0 P,C
R,=|0 I P,F |,
0 0 I
I 0 0
V.= 0 P,E-AP, 0 |,
0 0 I
I P,B 0
W,=(0 T 0],
0 0 I
and

Note that liminf,,_,[R,], > 0 and liminf,_,.[W,], > 0. Since [P,,L — AP, ], = [U, R, V., W, Z,]p >

(U1 [Rulo [ Vilo[Wals[Z: 1b, it follows that either lim inf, o [U, ], = Oorliminf, ,[V,], = Oorliminf, . [Z,]p =
0, and hence liminf[P,,A — AP,]; = 0 or liminf, ,[P,E — AP,]; = 0 or liminf, ,[P,K — AP,];, = 0, therefore
A € 04(A) UJou(E)Joa(K). O

According to Theorem 3.5, we can give a characterization of the IW-spectrum for bounded linear upper
triangular operator matrices, see the following theorem:

Theorem 3.7. Let

A
L=| O € L(X X X X X).
0

B C

E F

0 K
If A(Xy) = X, B(Xy) € Xy, C(X,) € X,y and F(X,,) € X, for all n € IN, then
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(ow(A) \ (a(E) U o(K)) U(omw (E) \ (a(A) U o(K)) U(arw(K) \ (a(A) U o(E)) C
ow(L) € ow(A) U ow(E) U ow(K).

Proof. From the proof of Theorem 3.5, we obtain that ma(L) € ma(A) U ma(E) Uma(K), since o(L) C
o(A) U a(E) U a(K), then orw(L) € oiw(A) U ow(E) U orw(K). Next, we prove that (0w (A) \ (o(E) U o(K)) U
(ow(E) \ (a(A) U a(K)) U(ew(K) \ (6(A) Uo(E)) € amw(L). Let A € amw(A) \ (o(E) Ua(K)), assume that
A ¢ orw(L). Then it is not hard to see that A € p(A), and again from Theorem 3.5, we obtain that A & m4(A).
Therefore A € pyw(A), which contradicts A € ogw(A), thus ow(A4) \ (6(E) Jo(K)) € omw(L). Also, let
A € omw(K) \ (6(A) U o(E)), assume that A ¢ orw(L). Then we easily obtain that A € p(E), and A ¢ m4(E). In
fact, let {ynj such that Yn; € X,,}.} be a bounded sequence such that

P, (E = AD(Yn,) = Pujy2ll > 0 (j — o0),
for some y, € X. Set z,, = (=(A = AI) !By, ¥u;, 0)T € Xy, X Xy, X X1, y = (0,2,0)" € X x X. Then

P, 0 0 P, 0 0
[ 0 P, O }(L—)\I)(zn].)—[ 8 P, 0 }y

0 P,
0
[ Pn,-(E - /\)yn,- - Pniy2 ]
0

IPy;(E = AD)(Yn,) = Pu;y2ll > 0 (j — o0).

0 0 P,

Hence, by the A-properness of L — Al, there exist a subsequence {znj(k)} = {(-(A - /\I)‘lBynf(k), ynj(k),O} of
{zo,} and x = (—=(A = AI)7'Bxp, x,0)" € X x X x X, such that z, 4y — x and L(x) = y, i.e., y,¢ — X2 and
(E = A)(x2) = yo, which shows that E — Al is A-proper with respect to I'y, i.e., A ¢ 1a(E). Thus A € piw(E),
which contradicts A € oiw(E), and hence oiw(E) \ (6(4) U 0(E)) C oiw(L). The same reasoning for the set
o (K) \ (6(A) U o(E)). The proof is completed. [

Corollary 2. Let
L=

A B C
0 E F |eL(XXxXXxX)
0 0 K

with A(X,) = X,, and B(X,)) € X,,, C(X,,) € X,, F(X,)) € X, foralln e N. If 6(A) N o(E)( o(K) = 0, then
ow(L) = ow(A) U ow(E) U o (K).

Proof. Since (o1w(A) \ (o(E) U o(K)) U(omw (E) \ (0(A) U a(K)) U(aw(K) \ (a(A) U o(E)) = (ow(A) U o (E) U
ow(K) \ (6(A) N a(E) N o(K)), it follows from Theorem 3.7 that o;w(L) = ow(A) U ow(E) J ow(K). O

In Corollary 2, the conditions for oyw(L) = orw(A) U ow(E) U orw(K) are relatively strong. In the following,
according to the fact that A-properness is invariant under compact perturbation, we will give a weaker

condition.

Corollary 3. Let

e L(XXXXX)

with B is compact. If 0,,1(A) () 0p1(E) (N 0p1(K , then

~

o (L) = a(A) | om(®)| ] om(K).
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Proof. From Lemma 2, we infer that 714(L) = a(A) U a(E) U a(K). Since 6(A) U o(E) U o(K) =
o(L) U(0,,1(A) N 0p,1(E) N 0,,1(K)) (see [14]), we have the desired result immediately. [J

By using Lemma 2 and 1, we have the following

Lemma 3. Let M, N are finitely continuous.

(i) If N is continuous and compact, then 6.(M + N) = 0.(M).

(ii) If gr(N) = 0 for some R > 0, then 64(M + N) = g4(M).

(iif) If N is continuous and [N]g = 0, then o5 A(M + N) = g54(M).

(iv) If N is continuous, compact and qr(N) = 0 for some R > 0, then ojw(M + N) = ow(M).

Theorem 3.8. Let

A B C
0 E F

0 0 K

L= XX XXX — XXXXX

be an upper triangular nonlinear operator matrix with A, B, C, E, F, K are finitely continuous and A(0) = E(0) =
K(0) = 0.

(i) If B, C and F are continuous and compact, then o:(L) = 0.(A) U 0:(E) U 0.(K).
(i1) If gr(B) = 0 for some R > 0, then o4(L) = 04(A) U 04(E) U 04(K).

(iit) If B is continuous and [B]g = 0, then 05 (L) D 054(A) U 054(E) U 054(K).
(iv) If B is continuous, compact and qr(B) = 0 for some R > 0, then

ow(L) D ow(A) U ow(E) U ow(K).

0 B C

A 0 0
Proof. Let M=| 0 E O [ N=| 0 0 F |. Then N is continuous, compact and gg(N) = 0 for some
0 0 K

0 0 O

R > 0. Thus, by Lemma 3, we know that 0.(L) = 0.(M), where 0. € {0+,04,054,0w}, and by applying
Theorems 3.1, 3.2, 3.3, 3.4 the desired results can be obtained immediately. [
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