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Abstract. In comparison to PDF-based measures which provided by extropy, the CDF-based measures of
cumulative residual and past extropies are generally more stable. In this paper, we extend the concept of
cumulative extropy which includes both cumulative inaccuracy and dynamic versions, such as cumulative
residual inaccuracy and cumulative past inaccuracy. By using these measures, we characterize specific
lifetime distributions and explore some generalized results. Additionally, we find that these inaccuracy
measures can uniquely identify the underlying distributions, and we also characterize a few specific lifetime
distributions. Two non-parametric estimators for this measure are provided and their performances are
compared via some simulation studies. Finally, we illustrate our method in a real data set.

1. Introduction

The concept of entropy was initially introduced by physicist Boltzmann [15] to quantify the disorderin a
physical system. However, information theory owes its origins to Shannon’s [20] groundbreaking work on
communication, where he introduced a mathematical definition of information known as Shannon entropy.
Since then, many different entropy and information measures have been developed in both parametric
and non-parametric contexts, and are widely used across various fields. A significant advancement in this
area is Kerridge’s [11] inaccuracy measure, which offers a non-parametric extension of Shannon entropy.
Assume that X and Y be two non-negative continuous random variables with cumulative distribution
functions (CDFs) F(x) = P(X < x) and G(x) = P(Y < x), and probability density functions (PDFs) f(x)
and g(x), respectively. If F(x) is the actual distribution corresponding to the observations and G(x) is the
distribution assigned by the experimenter, then the Kerridge inaccuracy measure of X and Y is given by

H(f,9) = —Ef[log g(X)] = —j; f(x)log g(x)dx, (1)
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where log(-) stands for the natural logarithm such that 0log0 = 0. Specially, if f(x) = g(x), it reduces to
Shannon differential entropy H(f) = —E[log f(X)]. Kumar and Taneja [12] proposed an alternative measure,
based on survival functions instead of probability density functions. If F(x) and E(x) are the survival
functions of X and Y, the cumulative residual inaccuracy measure is defined as:

E(FG) = - fo ) F(x)log G(x)dx. 2)

In case a(x) = F(x), we have the cumulative residual entropy defined by Rao et al. [19]. The cumulative
residual inaccuracy measure defined in (2) reduces to the cumulative residual entropy defined by Rao et al.
[19] when the survival functions of the two random variables are equal i.e. G(x) = F(x). Analogous to (2),
the cumulative past inaccuracy measure can be defined as (see Di Crescenzo and Longobardi [2])

C&E(E G) = —% ‘fo ) F(x)log G(x)dx, 3

where F(x) is the baseline distribution function and G(x) can be considered as some reference distribution
function. When the two distributions coincide, then measure (3) reduces to the cumulative entropy defined
by Di Crescenzo and Longobardi di2009cumulative. In recent years, the extropy of a random variable X
was introduced in [14] and is defined as

100=-3 [ fox @

Extropy is a measure of uncertainty for random variables that is defined analogously to entropy. Since its
introduction by Lad et al. in [14], extropy has been further studied and utilized in areas such as [17], [18]
and [21] and the references therein. More recently, Jahanshani ef al. [9] introduced an alternative measure
of uncertainty for non-negative random variables called cumulative residual extropy (CRE). The CRE of a

non-negative random variable X with SF F(x) = 1 — F(x) is defined as

j(F):—% fo F(x)dx. (5)

Compared to extropy, CRE accounts for the survival function of X rather than just its probability density
function. Jahanshani et al. [9] showed that CRE satisfies several desirable properties as a measure of
uncertainty, and derived bounds relating it to extropy. Overall, CRE provides a new perspective on
quantifying uncertainty that complements existing measures like entropy and extropy. In analogy to CRE,
Kumar et al. [12] proposed a measure called cumulative extropy (CE) that quantifies the idle time of a
system. The cumulative extropy serves as a valuable tool for assessing the uncertainty related to the past
lifetimes of a system. The cumulative extropy of a non-negative random variable X with CDF F(x) is defined
as

F0=—3 [ oo ©

Hashempour and Mohammadi [8] introduced two new extropy-based measures called cumulative past
extropy inaccuracy (CPEI) and dynamic cumulative past extropy inaccuracy (DCPEI). These provide an
alternative approach to calculating extropy compared to traditional methods. CPEI and DCPEI measure
the inaccuracy of predicting the realized value of a random variable X based on its cumulative distribution
function up to a given point. Hashempour and Mohammadi [8] conducted a study analyzing properties
of DCPEI, with a focus on stochastic ordering and characterization. The DCPEI measure provides a new
perspective on quantifying uncertainty and unpredictability that complements existing extropy definitions.
Further research is needed to explore applications of CPEI and DCPEI in areas such as statistics, economics,
and engineering.
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The paper introduces dynamic cumulative residual and past inaccuracy measures and investigates their
characterization results. The paper is organized as follows. Section 2 focuses on the cumulative residual
inaccuracy measure and establishes a lower bound for it. The dynamic cumulative residual inaccuracy is
discussed in Section 3, while Section 4 examines the characterization results for this measure, including
characterizing certain specific lifetime distributions. In Section 5, the dynamic cumulative past inaccuracy
measure and its characterization result are discussed. Finally, the study concludes with some concluding
remarks.

2. Cumulative residual extropy inaccuracy measure

Hereafter, we introduce a new measure of inaccuracy measure between two non-negative random

variables X and Y with the SFs F and G, respectively. To this end, we define the cumulative residual extropy
inaccuracy (CREI) measure by

JE) =3 [ Fowy 7)

provided that the integral in the right-hand side of (7) is finite. It is worth mentioning that Eq. (7) measures
the difference between the true SFs of two lifetime random variables, X and Y. In fact, it takes into account
the total discrepancy between the actual and predicted values of the SFs over time. In our discussion, we
will be referring to two random variables, namely X and Y, which have identical support. If X and Y are
identically distributed, then (7) becomes equivalent to the cumulative residual extropy shown in (5). Let us
assume that the random variables X and X; satisfy the proportional hazard (PH) rate model given as

Fp(x) = [F0)PF, x>0, 8)

for some constant § > 0. In this case, by substituting (8) in (7), it reduces to

J (X, Xg) = —% fo " ' ()dx,

for some constant § > 0.

Example 2.1. For a non-negative random variable X uniformly distributed over (c,d). The CDF is F(x) =
¢, ¢ <x < d. Assuming that the PH holds for random variables X and Y, we can conclude that the CDF of
random variable Y is equal to

_ _ 1P
G(x)=[u],c<x<d,ﬁ>0. 9)
d-c
By plugging in the given values into (7) and subsequently simplifying, we obtain the cumulative inaccuracy
measure as

d-c

jGﬂD=—ﬂﬁ+D.

(10)

In the following, we will derive both lower and upper bounds for the measure of inaccuracy between X
and Y, starting with a lower bound expressed in terms of the extropy for the CREI measure.

Proposition 2.2. If X and Y are non-negative continuous random variables with finite means, then
1
J(EG) 2 -5 [E(Y) - DX)], (11)

where D(X) = — [~ G(x)F(x) log F(x)dx.
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Proof. To prove (11), using the inequality x log i >x—yforallx,y >0, we get

P = F(x)G(x) P EaE =
fo F(x)G(x)log = dx > fo [Fx)G(x) - G()] dx,

(x)

next,

f F(x)G(x) log F(x)dx > f F(x)G(x)dx — f G(x)dx
0 0 0
= f F(x)G(x)dx — E(Y).
0
In the following, we given
1 (=, = 1 (= = = 1
—= f F(x)G(x)dx > —= f F(x)G(x) log F(x)dx — E(Y)
2 Jo 2 Jo 2
1
= —3 [E0) = D).
This confirms the conclusion. [
Proposition 2.3. Under the conditions of Proposition 2.2, we have
1.
J(FG) < S[E(FC) + EX)]-
Proof. Using the identity log(x) < x — 1 for 0 < x < 1, we obtain
F(x)log G(x) < F(x)G(x) — F(x), x > 0.
Integrating both sides of (13) with respect to x over (0, o) yields
1 (= — 1 (=, = 1 (=
= f F(x)log G(x)dx < - f F(x)G(x)dx — = f F(x)dx
2 Jo 2 Jo 2 Jo
-1 f ) F(x)G(x)dx — 1E(X)
2 27"

So, we have

%E(P; G) = J(F;G) + %E(X)f

and this confirms the result. [

2774

(12)

(13)

Proposition 2.4. Let l_f(x) and C(x) be the SFs non-negative continuous random variables X and Y with finite means,

respectively. Then

) J(FG) = max{—ﬁ,_y},
i) J(F;G) <} &F;G),
iii) J(F;G) = 1 [Wi(x) — E(X)], where Wi(x) = [;” F(x)G(x)dx,

iv) J(F;G) = } [Wa(x) — E(Y)], where Wa(x) = [ F(x)G(x)dx.
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2.1. Dynamic cumulative residual extropy inaccuracy measure

In experiments that involve testing the lifetime of a system, the experimenter typically knows how old
the system is at the time of the test. This means that the method for measuring accuracy introduced in
(7) cannot be used as it does not account for the age of the system. Instead, the residual lifetime random
variable should be used in such situations. These variables reflect the remaining lifetime of a component
that has already survived up to time t. To this aim, let us consider two non-negative random variables X
and Y, representing the lifetimes of two items, and having the same support. For t > 0, let X; = [X — t|X > t]
and Y; = [Y — t|Y > t] be their respective residual lifetimes. These notions deserve interest in applied fields
such as survival analysis, reliability theory, and actuarial science. For each ¢t > 0, we denote the survival
functions of X; and Y; by

Li(x) = F (f Al t), Gi(x) = G%‘(:) t), x,t>0, (14)

E(t)

respectively. Let us define the dynamic cumulative residual extropy inaccuracy (DCREI) measure as follows:

J(F,G;t)

—% fo wl_:t(x)at(x)dx

1 (" F(x)G(x)

_Z = dx, 15
2ft F(HG(H) * (15

for all t > 0. It is evident that the DCREI is non-positive and it reduces to CREI when ¢ = 0. The following
example illustrate the DCREIL

Example 2.5. Let X and Y be two non-negative random variables having CDFs respectively

- 1-%  0<x<1
Fy =4, 2 -
) {%e—u-n, x>1

and

— 1-2 0<x<1
- 2 SX=
G(x) - {%e—(x—l)’ r>1

It is not hard to verify that the DCREI measure can be obtained as

3t — 83 — 1242 + 48t — 37
JEGH=1 | 24(t - 2)(#2 - 2)

—-= t>1
5 2

, O0<t<1

By substituting t = 0, we get the CREI measure as

-0385, 0<x<1

JEGC) = {—0.5 x> 1.
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-0.3

DCREI

-0.4

Figure 1: DCREI measure given in Example 2.5.

The behaviour of the DCREI measure J (F, G; t) for t € (0, o) is shown in Figure 1.

Corollary 2.6. Suppose that X and Y are non-negative random variables that follow the proportional hazards (PH)

model, and let F(x) and G(x) denote their respective survival functions. If J(F,G;t) is a decreasing (increasing)
function of t for all t > 0, then we have the inequality

ANt
2B+1)

where A(t) is the hazard rate function and f is a constant.

JEGH =< (=) (16)

Example 2.7. Suppose X be a non-negative random variable with SF F(x) = (1 - xz) ,x €(0,1) and suppose
the random variable Y be uniformly distributed over (0,1) with density and survival functions given
respectively by gy(x) = 1 and Gy(x) = 1 — x,x € (0,1). Replacing these values in (15), we obtain the DCREI

measure as
_ (3H5)(1-h)

JEG;t) = . o 0st<l1
o 0 ; O.W.

Figure 2 depicts the changes in the DCREI measure, denoted by J (F, G; t), over (0, 1) for varying values of
t.
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DCREI

Figure 2: DCREI measure given in Example 2.7.

2.2. Characterization

In the context of the PH equation given by (8), the general characterization problem refers to determining
the conditions under which the DCREI measure (15) provides a unique characterization of the distribution
function. This problem is of interest because it helps to understand the behavior of the system under certain
conditions.

Proposition 2.8. Under the PH model given by (8), let X and Y be non-negative random variables with respective
survival functions denoted by F(x) and G(x). If for all t > 0, the function J(F; G, t) is an increasing function of t,
and J (F; G, t) > —oo, then the survival function F(x) of the variable X is uniquely determined by J (F; G,t) .
Proof. Since X and Y satisfying the PH, the DCR] (15) can rewrite as
1 00 541
TEGH = ~—— [ F i 1)
2F (f) !

Differentiating (17) with respect to t on both sides, we obtain

d 1

GJEGH=E+DABIEGCH+ 5, (18)
where Ap(x) = %CX—(J; is the HR function.

X
Assume that F1, G1 and F», G, be two sets of the PDFs satisfying the PH, and let

J(Fr, G t) = I (F2, Gost), £20. 19)
Differentiating (19) with respect to t on both sides, relation (18) gives
Ar () (B+1) T (F1,Gi;t) = A () (B+ 1) T (F2, Go; t). (20)

If for all + > 0; Ap(t) = Apa(t), then Fi(x) = Fa(x) and the proof will be over, otherwise, let Q = {t :
t > 0, and Ap,(t) # Ap,(t)}, and in following, let the set Q to be non-empty. Hence for some fy € Q,
Ar,(to) # Ap,(tp). Without limiting the scope of the argument, assume that Ar,(fg) < Ap,(fp). Using this,
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(20) gives J(F1,G1;t) > J(F2,Go;t), for t = ty. Therefore, the set Q is the null set, and this completes the
proof. [

One of the important characteristic of a CDF F(x) is the mean residual life (MRL). Let X be a non-negative
random variable with CDF F(x), then the MRL of X at time ¢ is given by 0r(t) = E(X — {|X > t). Based on the
DCREI measure (15), we characterize some specific lifetime distributions in the following result.

Theorem 2.9. Suppose X and Y are both non-negative continuous random variables that follow the PH (8). Given
that X has a MRL of 6(t), then the DCREI measure

J(F,G; 1) = cor(t), ¢ <0, (21)
if, and only if
(a) the random variable X has an exponential distribution for ¢ = —m,
(b) the random variable X has an uniform distribution for —co < ¢1 = —ﬁ <cg,
(c) the random variable X has an finite range distribution for c < cp = —m <0.

Proof. First we prove the ‘i’ part. (a) If X has an exponential distribution with F(x) = exp(—0x), 0 > 0, then
the MRL function Op(t) = %. The DCREI measure (15) under PH (2.2) is given as

1
J(EG;t) = _2(ﬁ+—1)9 = cOr(t),

— 1
forc = —m.

(b) If X follows a uniform distribution with F(x) = 1 —x, and the MRL is 6p(t) = % The DCREI measure
(15), under PH (8) is given by

JEG;t) = cop(t),

2+2)

forc; = —-L < c.

2

(c) In case X follows a finite range distribution with f(x) = a(1 - x)"!,a > 1, 0 < x < 1, then the SF is
F(x) =1-F(x) = (1 —x)*, and the MRL is 6¢(t) = ;ﬁ The inaccuracy measure (15) under PH (8) is given by

1-t

J(EG;t) = T

= CéF(t)/

forc <cy = _W%)H) < 0. This proves the 'if’ part. To prove the ’ only if ’ part, consider (21) to be valid.
Using (17) under PH (8), it gives

O (f) = ———— f TF . 22)
oF ()

Differentiating it both sides with respect to ¢, we obtain
d 1
e220r(t) = B+ DAFOT E G;1) + 5

Since %61:(1%) = Ap(£)6r(t) — 1 and simplify, we obtain
B+

c

1
A3 = AT E G + o +1,
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which implies

g+1

%‘W) = —M@OIFGt) + %

Integrating both sides of this with respect to t over (0, x) yields

28+ 1)c + 1x
2Bc

A continuous non-negative random variable X has an MRL function 6¢(x) that is linear in form (23) if,

and only if, the distribution of X follows one of three possible distributions: exponential with parameter
c= —ﬁ%, uniform with some constant ¢; < ¢, or finite range for some constant c < c,. This information can

be found in further detail in Hall and Wellner [7]. The proof of the theorem is complete. [J

Op(x) = - +0p(0). (23)

The following theorem is a new result that extends Theorem 2.9 to allow for ¢ to vary as a function of t.
This result is significant because it allows for greater flexibility in the application of Theorem 2.9 in various
contexts.

Theorem 2.10. Assuming that we have two continuous random variables, X and Y, that are both non-negative and
follow the PH (8). If

T(E,G:t) = c(t)5: (), for t = 0, (24)
then
5(t) = c(b)t [f 1+25+1)C 1426+ Ve ) Lol
Z,Bc(x) 3

where C = 6(0)c(0)_%.
Proof. Substituting (24) in (17), we obtain

d 1

FJEGH= (B + 1) ArBOH)() + 5, (25)
differentiating (24) with respect to t and substituting from (25), we obtain

d d 1

Ec(t)é(t) + c(t)aé(t) = (B + 1) Ap(H)o(t)c(t) + 5 (26)
substituting Ap(#)or(t) =1 + %6(1?) from (15) and simplifying, we obtain

d 4 (1) 1+2(8 + c(?)
a0 - Be() 28c(t)

a linear differential equation in 6(t). Solving this we obtain (24). O

o) = (27)

@+b)7 b7 (at+b)f b N (at + b) (In(at + b) — (Inb)) Lo

o) = | gt -

This is the final expression for 6(t) in terms of ¢(t) = at + b,a > 0,b > 0.

Remark 2.11. (i) For c(t) = at + b,t > 0 and a > 0, from (24), we obtain the general model with MRL
function

-8 1-$ 1 1 1
(@t+b)7 —bF  (at+b)f —bf  (at +b)F(In(at + b) — (Inb))
W1=p) + p + p +C

5(t) = (at + b)? [
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(ii) If a = 0, we obtain the characterization results given by Theorem 2.9.
(iii) When g =1, the expression for 6(t) simplifies to
o(t) = c(t) [In(at + b) —Inb + C].

3. Cumulative inaccuracy measure

Hereafter, we introduce a new measure of inaccuracy measure between two non-negative random
variables X and Y with the CDFs F and G, respectively. To this end, we define the cumulative inaccuracy
(CI) measure by

FE =1 fo F)G)dx, 28)

provided that the integral in the right-hand side of (28) is finite. It is worth mentioning that Eq. (28)
measures the difference between the true CDFs of two lifetime random variables, X and Y. In fact, it takes
into account the total discrepancy between the actual and predicted values of the SFs over time. In our
discussion, we will be referring to two random variables, namely X and Y, which have identical support. If
X and Y are identically distributed, then (28) becomes equivalent to the cumulative extropy shown in (5).
If two random variables X and X; satisfy the proportional reversed hazard (PRH) model (see e.g. Gupta
and Gupta [5]), that is,

G(x) = [FW)IF, > 0. (29)
In this case, by substituting (29) in (28), it reduces to

JX,Xp) = —% fo ) Al (x)dx,

for some constant 5 > 0.

Example 3.1. For a non-negative random variable X uniformly distributed over (c,d). The CDF is F(x) =
T, ¢ <x < d. Assuming that the PH holds for random variables X and Y, we can conclude that the CDF of
random variable Y is equal to

B
E(x)z[%],c<x<d,ﬁ>0. (30)

By plugging in the given values into (7) and subsequently simplifying, we obtain the cumulative inaccuracy
measure as

JEG) = —1¢

28+2)

(81)

3.1. Dynamic past cumulative inaccuracy measure

Uncertainty measures in the context of past lifetime distributions have been extensively studied in the
literature. For example, Di Crescenzo and Longobardi [3, 4], Nanda and Paul [16], and Kumar et al. [13]
have all investigated these measures. One specific scenario where uncertainty arises is when a system is
observed only at certain preassigned inspection times, and at time ¢, the system is found to be down. In
this case, the uncertainty of the system’s remaining life depends on the past, i.e., at which instant in (0, t)
the system failed. For t > 0, let Xsy = [X|X < t] and Yy = [Y]|Y < t] be their respective past lifetimes. These
notions deserve interest in applied fields such as survival analysis, reliability theory, and actuarial science.
For each t > 0, we denote the distribution functions of X(; and Y by

_FW o C®

Fy —, G =—=,0<x<t, 32
(%) 0 #(x) S0 <x<t (32)
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respectively. In analogy with the dynamic cumulative residual extropy inaccuracy measure defined in (15),
we now introduce a dynamic version of the cumulative inaccuracy measure referred to the past lifetimes
X and Y(y. So, we define the cumulative past inaccuracy (CPI) measure as follows:

t
JEGH = — f Fi(0)Gi(x)dx

F(x) G(x)
2 f FO CO™ )

When t goes to infinity, the measure (33) reduces to (3). In this situation, the random variable ;X = [X | X < {]
is suitable to describe the time elapsed between the failure of a system and the time when it is found to
be ‘down’. The past lifetime random Variable +X is related to two relevant ageing functions, the reversed

hazard rate (RHR) defined by ur(x) = F(x), and the mean past lifetime (MPT) defined by 6p(t) = E(t — X |
X<t)= W fo F(x)dx, which are further related as follows:

_ d -
pe(Op(t) = 1= —0p(t). (34)
For further results on PRH function refer to Gupta and Nanda [6].

Example 3.2. Suppose X and Y be two non-negative random variables having distribution functions re-
spectively
expi{- ; }(}, 0<x<1
F(x) ={exp{-2+%), 1<x<2
1 xz2

and

xZ

=, 0<x<g2
Gx) =13 N

1, x=2

The DCPI measure is given by

r(-3,1) et
_ ( 2—t2t) , 0<t<1
_ _ 1 e*%(ﬁi(erf(i—t)—erf(L))+ \/E(te% - \/E))
JEGn=1-L Dt VA , 1<t<2
212 2342
r(=3,1) el (\/ﬁi(erf 21 —erf(%))+ 23e2 \/E\/E)e—% i o,
212 %tZ 2 =

Graphs of J(F, G; 1)) for Example (3.2) (left panel) and Example (3.3) (right panel).

Example 3.3. Let X and Y be two non-negative random variables having distribution functions respectively

2

5 0<x<l1
F)={%2, 1<x<2
1 x>2
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and
x

X 0<x<1
G(x) =13, 1<x<2
1 for x>2

The DCPI measure is given by

t(4t+5)
-_— t<1
wen 0<t<
= 9 t* 4+ 4t -5
FG;t)=4{— - , 1<t<2
I ) 40(t4 +13) 8t + 16t
9 27 t—2
t>2

A0 +B) 8B +2t) 2

also,the CPI measure is given by
-0.23, 0<t<l1

JEGH)=1-0476, 1<t<2
—00. t>2

The behaviour of the DCPI measure J (F, G; t) for t € (0, o) is shown in Figure 3.

0.0

Figure 3: DCREI measure given in Example 3.3.

2782

Analogous to Proposition 2.8, the the next theorem presents the characterization problem for the dynamic

measure (33) under the PRHM (29).

Theorem 3.4. Let X and Y be two non-negative random variables with distribution functions F. and G satisfying
the PRHM (29). Let £J(F, G; t) > —oo, VYt > 0 be an decreasing function of t, then EJ(F, G; t) uniquely determines the

distribution function F of the variable X.

The proof of the current theorem is similar to the proof presented in Theorem 2.4, and hence omitted.
In the following, we present a characterization of a specific distribution through the utilization of the

DCPI measure, which is stated below.
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Theorem 3.5. Assuming that F and G are two CDFs satisfying the PRH model (29), then the DCPI measure

J(EG;t) =cne(t), 0> c > —p. (35)

2c+1

if/ and only 1fF(x) = (%)_(2£(ﬁ+1)+1) b>0.

Proof. Substituting (29) in (33), this gives

; p+1
U@Gﬂ=—%£(%g)dx

Differentiating this with respect to ¢ both sides, we obtain

d N f(PE)\
Eﬁ@Gﬁ——EF—$+MMﬂL(ﬁ5)th, (36)

Substituting (29) and (33) in Equation (36), we obtain
d 1
SGEEGCH =~ + DurOEIEGD - 5,

Let us take that (35) is valid, then differentiate both side with respect to ¢, we get

d d
S EG = cne(t).

Put this value into (36), we get

d 1
o r(t) = =B+ Dur®Onet) - 5.
Using (29) and simplify, we obtain

2cB+1)+1

28 37)

d
Eﬂp(t) =

This gives

2 H+1
ne(t) = (%) ' (38)
Divide (37) by (38), we obtain

1- dir]p(t) 2c+1 1
qpt(t) = pr(t) = - (2c(5 T+ 1) T

The RHR and CDF function have a known relationship, which can be expressed as
F(x) = el weta]
this gives

( )—(z«éﬁ%n)

F(x) = ’—; b>0.

Proving the reverse part is a simple and uncomplicated process. [
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Example 3.6. Assume X and Y be two non-negative random variables satisfying the PRHM and suppose

ax*1 ; if0<x<1l,a>0

0; 0.W.

fx(x) = {

The distribution function F(x) = x°, and G(x) = [x]%,8 > 0. Substituting these values in (33), after
simplification we get

JEGH) = - aB+1) # -1

t
2@ +a+1)

where ¢ = and mean past lifetime is Op(f) = - +1

a+1
2(ap+a+1)
To generalize the result (33) for a specific value of ¢, we consider the case where c is a function of time t.
The following statement presents our result in this more general scenario.

Theorem 3.7. Let X and Y be two non-negative continuous random variables satisfying the PRHM and
J(F,G;t) = c(tyne(b), fort 20,
then

t
5F(t):c(t);l— f wdx-kc ) (39)
0

2Bc(x) 7

where C = SF(O)C(O)_%.
Proof. The proof has been omitted since it follows a comparable approach to that of Theorem 2.10. [

Corollary 3.8. () Forc(t) =at+b,t > 0anda > 0, from (39), we obtain the general model with MRL function

@+b)7 —bT _(@t+b) —bl  (at+b)i (inat + b) - (Inb)) Lo

Se(t) = (at+b) A=) p p

(II) If a = 0, we obtain the characterization results given by Theorem 3.5.
(III) When B = 1, the expression for 6(t) simplifies to
O(t) = c(t) [In(at + b) —Inb + C].

4. Non-parametric estimator and simulation study

In this section, two estimators are proposed. By using a simulated data set, we illustrate the usefulness
of the proposed estimators. Our estimators are based on the estimation of F(x) in the formula of DCREL
One of the traditionally estimator of F(x) is the empirical cumulative distribution function (ECDF) given by

Fi) =5 Y I <),
i=1

where I(.) stands for an indicator function. Therefore our first estimator is obtained by substituting CDF
F(x) by ECDF as

Ji(E,, G;t) = -

1 f E, ()G | f L 106 > )5 0

2 Fu(b) G(t) Y IX > t)G(t)



M. Hashempour et al. / Filomat 39:8 (2025), 2771-2788 2785

In recent years, smoothed versions of ECDF have been taken into account by researchers. It can be obtained
by integrating f, as

. LA - - X;
B = [ =1 Y Wi, @
e i=1 "

where f, is the kernel density estimation of PDF f(x), and &, is a bandwidth parameter and W(x) is defined
as

W(x) = f ) K(bdt,

o0

where K(x) is a kernel density function. So, our second estimator is obtained by substituting CDF F(x) by
Fu(x) as

0 T (S © Vi (1- WEX)G
1f F’Z(X)G(x)dxz _1f Zz_l( ( Tn )) (x)dx (42)
; t

Tabr Gty =—5 | 22 - —

2Je F(0G() 2J DL - WEEGH
In this article, we consider the normal kernel function as K(x) = 1/ V2rmexp (—x%/2) and so, W(x) is its
corresponding CDEF. The issue of selecting bandwidth h,, is crucial due to smoothness. Here, we observed

that h, = n~'/2 has the plausible performance in terms of the bias and mean square error (MSE) contrasting
other smoothing methods based on .

4.1. Simulation study

For comparing the proposed estimators 1 (E,, G;t) and J»(Fy, G; t) for estimating J(F, G; t), here, we
consider some situations and we obtain the bias MSE of the proposed estimators using simulated data.In
each case, we run the simulation B = 5000 times and we let sample size n vary in {25,50,75}. For the first
case, an exponential distribution is selected. We let the parameter A = 1 for the actual distribution of data
and A = 2,5,7 for PDF g and f = 0.5,1, 1.5. For the second case, we consider the beta distribution. We let
the parameter («, ) = (1, 1) for the actual distribution of data and («, f) = {(2, 3), (6,3), (7,7)} for PDF g and
t =0.1,0.6,0.9. The results are provided in Tables 1-2. From the results of these tables, it can be found that
both of J1(F,, G;t) and J»(Ey, G; t) perform well in terms of the bias and MSE. Also, the method based on
J> (Z:"h, G; t) outperform for estimating the DCREI measure in terms of the MSE for most configurations.
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exponential(1) A=2 A=5 A=7
t n J1 NE J1 NE J1 NE
0.5 30 Dbias 0.0108 0.0110 0.0409 0.0409 0.0320 0.0321
MSE 0.0004 0.0004 0.0018 0.0017 0.0011 0.0011
50 bias 0.0111 0.0113 0.0402 0.0403 0.0316 0.0316
MSE 0.0004 0.0003 0.0017 0.0017 0.0010 0.0010
75 Dbias 0.0112 0.0112 0.0406 0.0406 0.0320 0.0320
MSE 0.0003 0.0003 0.0017 0.0015 0.0010 0.0010
1 30 bias 0.0114 0.0122 0.0404 0.0406 0.0321 0.0321
MSE 0.0011 0.0007 0.0018 0.0018 0.0011 0.0011
50 bias 0.0111 0.0114 0.0404 0.0406 0.0318 0.0319
MSE 0.0007  0.0005 0.0017 0.0017 0.0011 0.0011
75 bias 0.0116 0.0117 0.0407 0.0407 0.0319 0.0319
MSE 0.0005 0.0003 0.0017 0.0017 0.0011 0.0010
1.5 30 bias 0.0170 0.0164 0.0399  0.0406 0.0321 0.0324
MSE 0.0029 0.0018 0.0020 0.0019 0.0012 0.0012
50 Dbias 0.0119 0.0121 0.0404 0.0405 0.0315 0.0315
MSE 0.0012 0.0008 0.0018 0.0018 0.0011 0.0011
75 Dbias 0.0117 0.0119 0.0406 0.0406 0.0321 0.0322
MSE 0.0008 0.0006 0.0018 0.0018 0.0011 0.0010

Table 1: Bias and MSE for J; (ﬁn, G;t) and J; (ﬁh, G; t) for exponential distribution.

beta(1, 1) (a,) =(2,3) (a,p) = (6,3) (a,p)=(7,7)
t n J1 I J1 NP J1 I

0.1 30 bias 0.0415 0.0369 0.0464 0.0381 0.0505 0.0449
MSE 0.0019 0.0017 0.0026 0.0017 0.0027 0.0023

50 Dbias 0.0409 0.0379 0.0451 0.0397 0.0504 0.0465
MSE 0.0017 0.0015 0.0023 0.0017 0.0027 0.0024

75 Dbias 0.0405 0.0385 0.0445 0.0408 0.0495 0.0469

MSE 0.0017 0.0015 0.0022 0.0016 0.0025 0.0022

0.6 30 Dbias 0.0158 0.0126 0.0185 0.0141 0.0128 0.0107
MSE 0.0003 0.0002 0.0004 0.0002 0.0002 0.0001

50 Dbias 0.0154 0.0133 0.0180 0.0152 0.0127 0.0112
MSE 0.0003  0.0002 0.0004 0.0002 0.0002 0.0001

75 bias 0.0154 0.0139 0.0177 0.0156 0.0126 0.0116

MSE 0.0003 0.0002 0.0004 0.0001 0.0002 0.0001

09 30 bias 0.0019 0.0003 0.0029 0.0003 0.0027  0.0009
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

50 Dbias 0.0039 0.0001 0.0025 0.0013 0.0026 0.0011
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

75 bias 0.0035 0.0013 0.0039 0.0014 0.0025 0.0013
MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2: Bias and MSE for 1 (E,, G; t) and J»(E),, G; t) for beta distribution.

2786
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5. Real data

Here, we consider the real data set to show the behavior of the estimators in real world. The following
data set has been provided by [1]. They are showing the lifetime of 50 devices.

01,021,11,1,1,23,6,7,11,12, 18,18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55,60, 63, 63, 67, 67, 67, 67,
72,75,79, 82,82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86

this dataset was also studied by [10]. They fitted some distributions to this data set. Candidate distributions
for fitting to this data set are generalized Gompertz (GG), extension of the generalized exponential (EGE)
and extension of the generalized Gompertz distribution (EGG). The CDF of EGG is

Bt

Hnm@p@:(yw1—?4ﬂ—1www. (43)

If B = 0, then (43) reduces to GG which has the following CDF as
F(x;ar,a,b) = (1 —e @Dy, (44)

Also, if ¢ — 0, then (43) reduces to EGE. The p-value of Kolmogorov-Smirnov (K-S) statistics for EGG, GG
and EGE are 0.3041, 0.5273 and 0.1763, respectively. We consider two cases for estimating J (F, G; t). In both
cases, we consider the GG as the actual distribution of the data and EGG or EGE as a one assigned by the
experimenter. The values of J (F, G; t) as well as two estimators J; (E,, G;t) and J»(E),, G; 1) as a function of
t are depicted in Figure 4. From Figure 4, it can be seen that the performance of the two estimators is well
and in this case we can see that F,,(x) ~ F},(x).

o o 4
A —— A
- J(Fn, GY) o o Ui(F G Y) -
A - A -
o == B(Fn G F 3 = J(FnG.Y) i
! — JXYY 72 — J(FGY) ol
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Figure 4: The plot of J; (ﬁn, G; 1), 92 (ﬁ n, G;t)and J (F,, G; t): left plotis GG as actual and EGE as a distribution assigned by experimenter
and right plot is GG as actual and EGG as a distribution assigned by the experimenter.

6. Conclusions

This research paper introduced measures for dynamic cumulative residual and past inaccuracy, and
explored their characterization results under different hazard models. Specifically, the proportional haz-
ard model was used to analyze dynamic cumulative residual extropy inaccuracy, while the proportional
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reversed hazard model was used for dynamic cumulative past inaccuracy. We found that these inaccu-
racy measures can uniquely determine the underlying distributions. Also, we provided characterization
results for some specific lifetime models. Finally, we gave two non-parametric estimations for the proposed
measure and the efficiency of these estimators was compared via some simulation studies.
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