Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 39:8 (2025), 2789-2804
https://doi.org/10.2298/FIL2508789H

%, Py

2

&) 5
2 &
gy as’

5
TIprpor®

Complete convergence and complete f-moment convergence for
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Abstract. In this paper, the complete convergence and complete f-moment convergence for arrays of
rowwise m-negatively associated (m-NA, for short) random variables are studied, which generalize and
improve the corresponding ones of Hu et al. (2009) and Wang et al. (2023). The complete moment
convergence for arrays of rowwise m-NA random variables is also obtained as an auxiliary conclusion.

1. Introduction

It is known that the complete convergence plays a significant role in probability theory and mathematical
statistics. The concept of complete convergence was introduced by Hsu and Robbins (1947) as follows.
Definition 1.1. A sequence {X,,,n > 1} of random variables converges completely to the constant c if for any € > 0,

ZP(an —c| > ¢€) < o0.
n=1
By the Borel-Cantelli lemma, this implies that X,, — c almost surely. Hence, the complete convergence

is stronger than almost sure convergence.
Chow (1988) introduced the following concept of complete moment convergence, which is much

stronger than complete convergence.
Definition 1.2. For a sequence {X,,, n > 1} of random variables, if

o)

ZanE(bﬁan — ) < oo

n=1
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for some v > 0 and any € > 0, where x, = max{x,0}, {a,,n > 1} and {b,,n > 1} are two sequences of positive
numbers, then {X,,, n > 1} is said to exhibit complete r-th moment convergence.

Wu et al. (2019) put forward a more general concept of convergence, i.e., complete f-moment conver-
gence as follows.
Definition 1.3. Let {S,,, n > 1} be a sequence of random variables, {c,,n > 1} be a sequence of positive constants and
f : R* — R* is an increasing continuous function with f(0) = 0. We say that {S,,n > 1} converges f-moment
completely, if

(]

Y GEf(ISil = €)2) <o forall e >0,

n=1

where herein and after, a, = max{0,a}.
Taking a special case f(t) = t',t > 0, the complete f-moment convergence degenerates to complete r-th
moment convergence. Wu et al. (2019) also proved that

(e8]

Y uEflIS4 — €/21,) 2 6 ) cuP(ISul > ),
n=1

n=1

where 6 = f(e/2) > 0. That is to say, the complete f-moment convergence is stronger than complete

convergence. Therefore, the study of complete f-moment convergence is of general interest in limit theory.
Let {k,,n > 1} be a sequence of positive integers. Hu et al. (2009) established the following result on

complete convergence for m-negatively associated (m-NA, for short) random variables. The concept of

m-NA random variables will be given in Section 2.

Theorem 1.1. Let {X,, 1 < k < ky,n > 1} be an array of rowwise m-NA random variables and {c,,n > 1} be a

sequence of positive constants. Suppose that for any € > 0 and some 6 > 0,1 > 2,

Y oY Pl > ) <o

n=1 k=1

3

and

=

0 ky, n
Y Zaxnkﬁmxmsa)] < oo,

n=1 k=1

Then for any € > 0,

<j<
=1 sl P

~ j
Z ¢, P [max Z(Xnk = EXuI(IXikl < 0))
p

>8]<00.

Theorem 1.1 was later on generalized to several dependence structures. For examples, Wu et al. (2014)
extended it for extended negatively dependent random variables and improved n > 2 to 1 > 1; Shen et
al. (2016) extended it to complete moment convergence for negatively supper-additive dependent random
variables; Hu et al. (2015) obtained the desired result for partial sums of extended negatively dependent
random variables, which also improves the condition

kn

Yal)

n
E|Xnk|21(|Xnk| < 6)] <
n=1 k=1

of Theorem 1.1 to

o ki n
Y e {Z E Xl (Xual < 8) = EXul (X < 6)|"] < oo

n=1 k=1
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for some 11 > 0 and 0 < p < 2; Wang et al. (2017) extended the results of Hu et al. (2015) for widely orthant
dependent random variables under the assumptions

(o]

kﬂ
Y eaglkn) Y P(Xoul > €) < o0
k=1

n=1
and
00 ky 1
Y cuglhon| Y EIXud(Xiel < 8) = EXuel (Xl < 0P | < o0,
n=1 k=1

where g(k,) is the dominating coefficient of widely orthant dependent random variables. For the defini-
tions of extended negatively dependent random variables, negatively supper-additive dependent random
variables and widely orthant dependent random variables, one can see in Liu (2009), Hu (2000), and Wang
et al. (2013), respectively.

Recently, Wang et al. (2023) investigated the complete f-moment convergence for m-NA random
variables based on Theorem 1.1, as follows.
Theorem 1.2. Let {X, 1 < k < ky, n > 1} be an array of rowwise m-NA random variables, {c,,n > 1} be a sequence
of positive constants, f : R* — R* be an increasing function with f(0) = 0 and n > 1 be a constant. Suppose that
the following conditions hold:

o0 kn

(1) Y cn Y, Ef(192m| Xl I(1X k| > €)) < o0 for any ¢ > 0;
n=1 k=1

(2) there exist constants 0 < p < 2 and 6 > 0 such that

iC

n=1

rz

2
Z EX21( X, < 6)}

3) Z EIXull(1Xk] > 52=) = 0, as n — oo.

384m

(4) Let g : R* — R* be the inverse function for f(t), that is, g(f(t)) = t,t > 0 and s(t) = maXs<x<y(r) o Assume
that the constants 1 and 6 and the function f : R* — R* satisfy the condition

00

“2(H)s(t) dt < 0.

f©®
+

We point out that the conditions of Theorem 1.2 are limited. Assumptions (2) and (4) can be improved
to much more general case. More details are given in Section 3. For this purpose, the current study
will further investigate the complete convergence and the complete f-moment convergence for arrays of
rowwise m-NA random variables, which extend and improve Theorem 1.1 and Theorem 1.2 under some
weaker conditions.

Throughout this paper, the symbol C represents a positive constant which may vary in different places.
Let I(A) be the indicator function of the set A. This work is organized as follows: Some preliminary concepts
and lemmas are provided in Section 2. Main results are stated in Section 3. The proofs of the main results
are presented in Section 4.

Then forall € > 0,

oo i
Z cyEf|{ max
1<j<k, Py

Y (X = EXol (Xl < 9))
n=1
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2. Preliminaries

In this section, we recall some concepts of dependent random variables and give some lemmas which
will be used in proving our main results.

The concept of negatively associated (NA, for short) random variables was introduced by Joag-Dev and
Proschan (1983) as follows.
Definition 2.1. A finite family of random variables (X;, 1 < i < n} is said to be NA if for every pair of disjoint subsets
Aand Bof{1,2,- - -, n} and any real coordinatewise nondecreasing functions f; on R* and f, on R5,

Cov(fi(Xi,i € A), f2(X;,j € B)) <0,

whenever the covariance above exists. An infinite family of random variables is NA if every finite subfamily is NA.

As pointed out and proved by Joag-Dev and Proschan (1983), a number of well known multivari-
ate distributions, such as multinomial, convolution of unlike multinomial, multivariate hypergeometric,
Dirichlet, permutation distribution, negatively correlated normal distribution, random sampling without
replacement, and joint distribution of ranks all possess the NA property.

As a general extension of NA random variables, the following concept of m-NA random variables was
raised by Hu et al. (2007).
Definition 2.2. Let m > 1 be a fixed integer. A sequence {X,,n > 1} of random variables is said to be m-NA if for
any n > 2 and any iy, iy, -+ , iy such that |i; — ix| > m for all 1 < j # k < n, we have that Xj, Xip, -+ , Xin are NA.

In many real-world scenarios, the dependencies between random variables may not conform to strict
negative association. The m-NA framework provides a way to model such scenarios by allowing for limited
positive associations. On the other hand, verifying the m-NA condition may be easier than verifying the
NA condition, especially when dealing with large sets of random variables. Moreover, if we take m =1,
then the m-NA structure will degenerate to NA. In summary, the m-NA framework offers a more flexible
and general approach to modeling negative dependence structures among random variables, making it
advantageous in certain situations compared to the traditional NA framework.

The following lemma is a basic property for m-NA random variables, which can be found in Shen et al.
(2015a).
Lemma 2.1. If {X,,,n > 1} is a sequence of m-NA random variables and f,(-),n > 1 are all nondecreasing (or
nonincreasing) functions, then {f,(X,), n > 1} is still m-NA.

The following exponential inequality for m-NA random variables plays a significant role in the proofs
of the main results, which was proved in Remark 2.1 of Wu et al. (2015).
Lemma 2.2. Let {X,,,n > 1} be a sequence of m-NA random variables with zero means and finite second moments.
Denote B, =: Yj_4 EX,%. Then for all x > 0, y > 0and n > m,

yx

> X

3x ~ T2my
<2mZP(|Xk|>y)+8m(1+2 g) .
k=1 n

max
1<]<n

3. Main results

We now present our main results as follows.
Theorem 3.1. Let {X,,1 < k < ky,n > 1} be an array of rowwise m-NA random variables and {c,,n > 1} be a
sequence of positive constants. Suppose that the following two conditions hold:

Ll ky
(i) Y, cn X, P(IXokl > €) < oo for any e > 0;
n=1 k=1
(ii) there exist 1 > 0,6 > 0 and 0 < p < 2 such that
/1 r’

Y e ZE|XnkI(|Xnk|<6> EXul(Xoud < O)F | < oo,

n=1 k=1
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Then for any € > 0,

(o]
Z ¢, P| max
1<j<ky,

Remark 3.1. It is obvious that condition (i) in Theorem 3.1 improves the corresponding assumption in
Theorem 1.1. Even when we take p = 2, we still have

/
Z(Xnk - EXnkI(|Xnk| < 6)) > ‘9] < 00. (1)
k=1

00 ky 1
Y| D EIXuid Xkl < 6) = EXoel (Xl < 5)|2]
n=1 k=1

00 K, N
< CZ Cn Z EX2 (1 Xl < 6)] < oo,
n=1 k=1

Moreover, 1 > 2 in Theorem 1.1 is improved to n > 0. Hence, the result of Theorem 3.1 generalizes and
improves the corresponding one of Theorem 1.1.

Corollary 3.1. Let { X, 1 < k < ky,n > 1} be an array of rowwise m-NA random variables with zero means and
{cn, n > 1} be a sequence of positive constants. Suppose that conditions (i) and (ii) of Theorem 3.1 hold. If there exists

a constant 61 > 0 such that 2]}?;1 EIXull(| Xkl > 01) = 0 as n — oo, then for any € > 0,

i CnP i Xnk
k=1

n=1
Under some stronger conditions, we can obtain the complete f-moment convergence for arrays of
rowwise m-NA random variables as follows.
Theorem 3.2. Let { Xy, 1 < k < ky,, n > 1} be an array of rowwise m-NA random variables, {c,,n > 1} be a sequence
of positive constants, f : R* — R* be an increasing function with f(0) = 0 and n > 1 be a constant. Suppose that
the following conditions hold:

o kn
(a) Y. cn Yo EFO6mn| X I(1 Xl > €)) < oo for any € > 0;
k=1

n=1 =

(b) there exist constants 0 < p < 2 and 6 > 0 such that

max
1<j<k,

> é‘] < o0, (2)

ki L

Y en| D EXud (Xl < 8) = EXpid (X < )| < 00;
n=1 k=1

Ky ‘
() ¥ EIXul (Xl > 19357) = 0, as n — oo

k=1
(d) Let g : R* — R* be the inverse function for f(t), thatis, g(f(t)) = t,t > 0and s(t) = maXs<x<y() ﬁ Assume
that the constants n and 0 and the function f : R* — R* satisfy the condition

foo g (t)s(t) dt < oo.
f(6)

—s} ]<oo. 3)

Furthermore, if EX, = 0 for each 1 < k <k, and n > 1, then for all € > 0,

o0 j
chEf {gl]e;? ;Xnk —e} ]<oo. 4)
= +

n=1

Then forall € > 0,

00 i
Z cuEf {max Z(Xnk = EXuel (1 Xl < 0))

1<j<k,
n=1 =E 3
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Remark 3.2. Taking n = 2, conditions (a), () and (d) in Theorem 3.2 equal to corresponding ones in Theorem
1.2. However, condition (b) is still weaker than (2) in Theorem 1.2. We give a simple example to show the
superiority of our result to that of Wang et al. (2023).

Example 3.1. Let p = 2, ¢, = 1, ky, = n, X ~ U[-6,6] and X,x = (n%k)"1/4X; foreach1 <k <mand n > 1.
Then it is easy to check that

(e8]
Yo
n=1

k 2 0 n 2

n 62 B _

§ EXZ (Xl < 6)] =3 2 [2 n 'k 1/2] = co.
k=1

n=1 \ k=1

That is to say, Theorem 1.2 is unavailable. However, the condition (b) in Theorem 3.2 hold true from

oo
)

n=1

k, n 00 n n
n 62
— 2 — -17-1/2
E EIXuI (1Xl < 0) EXnkI(IXnk|S5)|] =3 z [z n-k ] <o

k=1 k=1

n=1

for all n > 2. Moreover, as pointed out in Wu et al. (2019), if the function f(x)/x is increasing, then the
assumption (d) can be written as:
= @)

— dt < 0.
H+n

Under this situation, Theorem 1.2 does not work if f(t) = t7 for some q > 2. However, Theorem 3.2 is also
valid. The aforementioned statements reveal that our result improves the corresponding one of Wang et al.
(2023).

Taking f(t) = t9,t > 0,4 > 0 in Theorem 3.2, we can obtain the following complete g-th moment
convergence for m-NA random variables.
Theorem 3.3. Let q > 0, {X,x, 1 < k < ky,, n > 1} be an array of rowwise m-NA random variables and {c,,n > 1} be
a sequence of positive constants. Suppose that the following conditions hold:

0 kn
(1) Y cn Y EIXul'I(1 Xkl > €) < o0 forany e > 0;
n=1 k=1
(2) there exist constants n > max(1,4),0 < p <2, and 6 > 0 such that
00 kn n
D EIXud(Xil < 8) = EXl( Xl < ‘WJ <oo;
k=1

Cn
n=1

kn .
(3) ¥ EXud (Xl > 1o5) = 0, as n — oo.
k=1
Then forall € > 0,

(o]
Z ¢, E { max
1<j<k,

j
Z(Xnk - EXnkI(lxnkl < 6))
k=1

n=1

q
+

Furthermore, if EX, = 0 for each 1 < k <k, and n > 1, then for all € > 0,

0 j q
ZC”E max ZX”k —&y < oo.
1<j<k,
k=1 +

n=1
Remark 3.3. We point out that (3) and (4) in Theorem 3.2 also hold true under the conditions similar to
those in Theorem 3.3 if we take f(t) = t9I(t),t > 0,q > 0, where I(f) is any slowly varying function.
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4. Proofs of the main results

Proof of Theorem 3.1. Since ¢ > 0 is arbitrary, we may assume without loss of generality that = 48"” < 0. The

proof will be conducted under the following three cases.
Casel:1<p<2 n=1

kn kn
Under this case, we denote N; = {n 2 Y P(Xu| > 4%']) < 1}. Noting that for n € IN — Ny, Y, P(1 Xyl >
k=1 k=1

ﬁy) > 1, so we can obtain by condition (i) that

Z ¢, P| max
1<j<k,

j
2(xnk — EXyil (Xl < 9))

nelN-N;
< Y oas< ) cHZP<|Xnk|>—)
HEN—N1 nEIN—N1 k=1
kn
< Zc,,ZP(|Xnk|>—)<oo 1)

n=1 k=1

Therefore, it suffices to consider the case n € Nj. Define for 1 <k <k,

£ € —g <
Yok = g Kk < = 4 T 48mnI(X”k ” B
£ € _E
ok = 48mnI(Xnk < _ATmn) " ”kl(48m17 < Xul < 0) = I( e 48"”7)'

Uy = XnkI(|Xnk|>6)'

It is easy to obtain that

j
Z c,P| max Z(Xnk — EXul(IXk| < 0))| > €

1<j<ky Py

neN

= ) cP|max Z(Ynk — EY e+ Zu — EZyge + Up)

neN; 1Sj5k =1
j
e e

< Z cnP max Z(Ynk — EYu)| > 5] + Z cnP[lr?g;; Z(an —EZy)| > 5]

neN; k=1 neN; k=1

+ Z Cn (max [ Xk > 6)

neNy

= L+DL+Is. (2)

On one hand, by C;-inequality and Jensen'’s inequality we have that

& &
— EXll(| Xl < P
4877’[7]) nk (l nkl = 487111])'

E|Xnkl(|Xnk| <
= EIXnkI(IXnkI < 0) = EXuel (1Xiuk| < 5)

_Xnk1(48 m < |Xnk| < 6) + EXnkI( m < |Xnk| < 6)|p
< 2P EIX (1 Xl < 0) — EX(1Xuk] < 5)|p
2P EX I (—— < [Xi] < 8) — EX el (—— < |X,i] < 6)F
ol gy < Pl < 0) = EXitl (g < Xl <)
< zp_lElxnkl(|Xnk| < 6) - EXnkI(lxnkl < 5)'?
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2p-1 4 € <
+22 VB X P I( oy < Xkl <0)
< 2PTEXul(1Xonl < 0) = EXud (Xl < O)F

+22-1§P (X .
0 (| nk|> 487”17])

On the other hand, it follows from Lemma 2.1 that {Yy, 1 <k < k,,n > 1} is still an array of rowwise m-NA
random variables with Y, — EYyy| < 55— for all1 <k <k, and n > 1. Hence, applying Lemma 2.2 with

x=35y= 24"”7 and B, Zk:l E(Y,, — EY,,k)z, we get by the C,-inequality and conditions (7) and (ii) that

cy. anP Yo = EYual > 70

neNy

+CY e [iE nk—EYno]

1

k n
o [Z EIY i — EYnklp)

I

IA

3

[

neNl k=1
K n
< C)le ZE|XnkI<|Xnk|< 7~ EXul(Xul < 1 )|P]
neNy k=1
K, 1
Cn p n
+CY e [Z (Xl > 48%7)]
neN; 1
K n
< €Y o] Y EXud(Xud < ) Exnk1<|xnk|<é)|'ﬂ]
neN; k=1
K 1
+CZcH[ZP(|Xnk| 48%7)]
neN; k=1

kn

IA
(@]
g
2

n
EIXuel(1Xik| < 0) = EXuel(1Xiuk| < (5)|”J

k=1

0o n

+CZC,, ZP (Xl >
n=1 k=1

For I, we derive by C,-inequality and condition (i) that

) 3)

h < C) oF Z(znk ~EZy)| < C)Y ¢, Z E\Zl
neN; neN;
< C)e Z Bl < Xul <)+ C ) Z P(Xl > g
neNy neNy
< CchZP|Xnk|> o
neNy
< c; ng (k) ; P(Xl > o) < o, )
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For I3, we can obtain by condition (i) that

k

kn o
o< Y e ) P(Xul > 0) < Z_;cn P(I Xl > 6) < co. (5)

neN; k=1 k=1

2

Hence, the proof of Case 1 is completed by (1)-(5).
Case2:1<p=<2, 0<n<L

k)1
In this case we define N, = {n 2 Y ENXul(1 X < 6) — EXull(1Xu] < 0 < 1}. Noting thatif n € N — Ny,
k=1

kn
Y, X (IXkl < 0) — EXul (Xl < )P = 1, so we have by condition (ii) that for any 1 > 0,
k=1

j
) (K = EXukl(Xo] < )
k=1

Z ¢, P| max
neN-N, 1ishn
ks m
< )< Yo Y EXud(Xil < 8) = EXuel (Xl < 6)|P)
nelN—-N, nelN—-N, k=1
oo ky n
< Y o] ) EXud (Xl < 8) = EXuil (Xl < O)F | < o0,
n=1 k=1
It retains to consider the case n € N,. Note that
kn
D en ) EIXud(Xoud < 8) = EXutl (Xl < O)F
neN, k=1
ks 1
<) on| D EXud (Xl < 6) = EXuel(Xoel < 5)|p]
neN, k=1
o ky, N
< Cn EIXul(1Xuk| < 6) — EXul(IXiuk| < 6)|p] < .
n=1 k=1

Hence, by applying the result obtained in Case 1 with 7 = 1 and 1 < p < 2, we obtain the desired result
under Case 2.

Up to now, we have proved that (1) holds when 1 < p < 2 and 1 > 0. We now prove that (1) also holds
when 0 <p <1landn>0.

Case3:0<p<1,1>0.

Noting that E| X I(IXul < 0) — EX,ul (Xl < 6)| < 26, we can obtain

00 kn n
Y| D E Xl (Xl < 6) = EXoel (X < )
n=1 k=1

sl K n
< @)Y e, [Z EIX ol (1 Xkl < 8) = EXl(IXoue] < 6)|P] < co.

n=1 k=1

That is to say, the two conditions of Theorem 3.1 are satisfied with p = 1 and 1 > 0, which we have proved in
the former two cases. In other words, condition (ii) under Case 3 is a stronger assumption than that under
Cases 1 and 2, which of course can guarantee the validity of the result. Therefore, the proof of Theorem 3.1
is completed. O
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Proof of Corollary 3.1. It follows from Z:”Zl EIXulI(| Xl > 61) > 0and EX,x =0 foreach1 <k <k, n>1
that there exists 1y € IN such that for all n > ny,

]
Y EXud (X < 61)

j
Y Xl (Xl > 01)
=1

max = max
1<j<ky | 4= 1<k | £
k!l g
< Y EXll(Xul > 1) < 7. (6)
k=1

The rest of the proof will be considered under the following two cases.
Case 1: 61 > 0.

ky ky
Let N3 = {n 2 Y P( Xl > 0) < 4%1} For all n € IN — N3 we have )} P(|X,x| > ) = ﬁ and thus by
k=1

k=1
condition (i),

Z max
1<j<ky,

k
46 -
ank >é] < Z CnSTl Z anp(lxnk|>6)
nelN—-Nj3 k=1 nelN-N3 nelN-N3 k=1
15 &
< — chZqum > 6) < . 7)
n=1 k=1

It follows by conditions (1) and (b) that the conclusion (1) of Theorem 3.1 holds. Now to obtain (2), it suffices
to show that for all n large enough with n € N3,

max
1<]<

<—.

Z Xl (Xl < )

For n > ng and n € N3, we obtain by (6) that

max
1<]<

ZEXnkmxm <)

IA
=
QO
X

+ Z EIXulI(6 < Xl < 61)

]
Y EXuil (Xl < 1)
k=1 k=1

1<j<k,

k)1
61 )" P(Xoul > 0)

k=1
&

45

IA

IN
+
g

N[O | m dxm
+

~

which together with (1) obtains

Z ¢, P| max
1<j<k,

neNs;

< Z c, P [1?]2?" > S]
neNz n<ny
+ HEA§>”0 Cn [f?]iii Z(Xnk — EXul(IXik| < 0))| + max Z EXiul(1Xiuk| < 6)| > 8]
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j
< C+ Z c,P [f?]ikxn ;(Xnk - EXnkl(lxnkl < 6))

neNs;,n>ny

> g] < oo, (8)
Hence we obtain the desired result by (7) and (8) for Case 1.
Case 2: 61 <.
kn
Let Ny = {n 2 Y P(I Xl > 61) < 4%} Note that if n € IN — Ny, we have Z P(IX;x| > 61) 2 §5. Hence, by
k=1
condition (i) we have

n

max Xk > E} < n< — n P(lxnkl > 61)
nE]NZM; [1<]<k Z ne]NZN4 ne]NZN4 k=1
o0 k,
46 -
< =) e ) PUXul > 1) < oo )
n=1 k=1

Similar to the proof of Case 1, we only need to show that for all sufficiently large n € Ny,

max
1<]< ”

<_

Z EX,ul (Xl < 6)

For n > ng and n € N4, we obtain

Z EXl(|X] < )

max
1<j<k,

IA
"3
o
& X

ZExnkmxm <o)

+ Z EIXull(01 < [Xel < 0)
k=1
kll

< 1 +0 ) P(Xul > 61)
pa)
€ €
< = L
S 7 +0 Y
-
= 5

Similar to the proof of (8), we also obtain that

X [m ank

neNy
A combination of (9) and (10) gives (2) under Case 2. This completes the proof of the corollary. O
Proof of Theorem 3.2. Since function f is increasing, m > 1 and 1 > 1, it follows from condition (a) that

> e] < o0, (10)

00 k
Z cn ) Ef(IXull(1Xl > €)) < oo for any & > 0.
n=1 k=1

Now we state that the conditions (i) and (if) of Theorem 3.1 hold. For all € > 0, it follows from Markov’s
inequality that
Z Cﬂ

n=1 k=1

k

P( Xl > €) < CZ & Z Ef(Xull (Xl > €)) < o0,
n=1
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which implies that condition (i) of Theorem 3.1 holds. Condition (i7) of Theorem 3.1 holds trivially by (b).
Thus all the conditions of Theorem 3.1 are satisfied.
Denote S, = max«<j«, |ZI]<=1(X"k — EX,i l(IXk| < 0))|. It can be checked that

chE F(1Sn — €)4) i f ) P(S, > ¢ + g(t))dt

n=1 n=1
oo

; f P(S, > e+g(t))dt+2cn f " P(S, > ¢ + g(t))dt

= Ji+)o. (11)

By Theorem 3.1, it follows that
1 < £0)) " cuP(Su > €) < oo. (12)
n=1

Thus, to prove (3), we need to show |, < co. Note that

0 0 kn
Z Cnf P[Sn > g(t)/ U{|Xnk| > !J(f)}] dt
=1 f©) k=1
00 00 kn
+ Z Cn f " P[sn > g(t), Q“X"k' < g(t)}]dt
00 00 ky
Y e ff (U Xl > () ]

n=1 ©® k=1

IA

J2

IA

+ Z c f " [gm]gx Z Xkl (Xl < 9(8)) = EXoal(Xot] < )| > g(t)] t
= Ja+ ]4- (13)
It follows from condition (a) and Markov’s inequality that
ok o ke
<Ya) f P > 0t < C Y ¢, Y EF(Xull(Xoal > 5) < o0, (14)
pr n=1 k=1

Now we turn to estimate J4. For fixedn > 1,1 <k <k, and t > (), denote

—gMI(Xk < =g(1)) + Xl (Xl < 9(8)) + 9Kk > 9(2)),
—gOI(Xk < =g(B) + gOI(Xok > (1))

It follows from Lemma 2.1 that {&x — E&u, 1 < k < ky,n > 1} is still an array of m-NA random variables.
Note that

CS nk
Mnk

P [max Z(Xnkmxm < g(t) = EXul (Xl < 0)| > g()
1<j<k,
< P [lrg]gf’ g@k — B = Nk + En)| + Z EIX,ulI(5 < Xl < g(8)) > g(t)]

(15)
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By assumption (c), we can obtain that

max —— Z EIXull(6 < [Xud < 9(1)) < 6 Z EIXulI( Xl > 8) = 0, as n — oo.

i2f(0) g(t) £

k=1

Hence, for all n large enough,

Ky
Y EIXulI(6 < Xl < g(8) < 9(B/2, 2 £(5),
k=1

which together with (15) yields that for all n large enough,

Hence, we have

Ja

IN

IA

<

P

P

max ;(XnkIﬂXnH < g(1) — EXud (1Xl < 6))| > g(t)]

mmax kzj;(énk — E&uk — Nk + ENi)| > g(f)/Z]

max ;(nnk — Enui)| > (t)/4] + P{ max Z::(énk —E&n)| > y(t)/4]

C”i‘cn ff o (g}gj Z(nnk Enue)| > g(t)/4)dt

+CZ Cn f(s) [{Bfi;( kZ]f Enk = E&mi)| > !J(f)/4] dt

J5 + ]6- (16)

Noting that |n,x| = g(1)[(|X,| > g(t)), we obtain by Markov’s inequality and condition (a) that

s

IA

IA

<

Cif f (t)ZEmnkmt

(o9

cY Z ff o 0ol > g0}t

n=1

o~
0
—_

n

cn ) Ef(IXuklI(1 Xkl > 6)) < co. (17)
1

C

gk

1l
—_
=~
I

n

Hence it suffices to deal with Js. Noting that {&,x — E&uk, 1 < k < k,,, n > 1} is still an array of m-NA random
variables, we apply Lemma 2.2 with x = g(t)/4 and y = g(t)/(48mmn), where 7 satisfies the assumption (d), to

obtain

J6

<

dt

o0 t
cy cnf P(max e — Bl > 2
1 £00)

1<ksk, 48mn
+CZC,1 f (

n=1 f©) )

J7+ s, (18)

n=
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where B, = ]1?’:1 E(&m — E&n).

k”
It follows from assumption (c) and Markov’s inequality that }, P(|X| > 192m —+—) — 0asn — oo. Conse-
k=1

quently, for all n large enough, Z P( X, > 192mn) < 384m1] Thus,
t>f6)1<k<k g(t)| Eurl < t>f(b R g(t) Elend
< max max [—— Xl (Xl € ——) + —— E|Xl[(—2— - < Xl < 900)
R B e T L T} =g
+P(I Xkl > g(1))]
o - o
< ot 2y P(X,
= 192mn ;‘ (Xl > 755m)

1,1 1
192mn 384mn  96mn’

Hence by condition (2) we have

g()
<
J7 C;cn f@) (g}(gﬁ 1€kl > S6m dt

Cnf P(max [ Xkl > 9! )dt (since || < [Xiukl)
£(6) 1<k<k, 96m mi)

SR )
< C;C”fo@ (|x,7k|>9g6 17)

k=1

kn
< CZ o 2L EFOOmIIX,ll(Xond > 0) < oo (19)

T ) n
_ -2 _ 2
= c;cn ff Nl (; E(&nk ~ E&ur) ] dt
. R
C;CH ’ff(ﬁ)g 0
+Cicn ff: g
n
+Cch f [ZP(IX,,k|>g(t))] dt

£(0)
= Jo+ ]10 + - (20)
Noting that | X, I(|Xuk| < 6) — EX,ul(IXok| < 6)| < 20, we obtain by assumptions (b) and (d) that

(e8]

Jo < CEOEPY e,

n=1

IN

ks 1
Y ECGI (Xl < 8) = EXel (Xl < 6))2J dt
k=1

K n
Z EX2I(5 < Xl < g(t))] dt

ky n 00
ZE|XnkI<|Xnk|sa)—EXnkluxnusa)w] IINECL
f©)

k=1
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< oo. (21)

For [y, it follows from condition (c) that for all n large enough,

k,, kn kn
Y EIXull© < Xl < 9(8) < Y EIXuel 11Xl > 8) < Y EXull(1Xoel >

k=1 k=1 k=1

92my) <

which together with n > 1 yields that

kn Tk
Z EIXulI(6 < | Xkl < g(t))] < Z EIXulI(6 < | Xl < g(t)).

k=1 k=1

Therefore, by conditions (a) and (d) we have

o - K 1
Ju < CY e ff N g2’l<t>[g<t>ZE|xnku<6<|Xnk|Sg<t>>] dt
n=1 %)

. _, |Xnk|I O <Xl < !Z(t))

ci G f s

n=1 f(é)

IN

IA

kn
Z EF(Xull(6 < Xl < g(0)) |t
k=1

kn

e} EFIXl(X] > 6)) ff RECTIE (22)
)

k=1

gk

C

IA

=
—_

Finally, we will show that J1; < co. Noting that t > f(6), it follows from Markov’s inequality and
condition (c) that

kn er k’l
Y PXuid > g(0) < ) P(Xoul > 8) <67 ) EIXudl( Xl > 6) = 0, as n — oo,
k=1 k=1 k=1

which implies that for all n large enough,
kn
Y PUXol > g(t) <1
k=1

and thus for all t > f(5),

ki Tk
(Z P(Xl > g(t))] < Y P(Xul > g(t).
k=1 k=1

Hence, we have by condition (a) that

Pl
1 Zf (X > g(6) it

Ky
< C) cn ) Ef(IXull(1 Xl > 6)) < oo. (23)
k=1

o]

8

—_

n=

Therefore, by (11)-(23), (3) follows immediately. The proof of (4) is completely analogous to that of Corollary
3.1 and thus is omitted here. The proof of the theorem is completed. O
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