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An explicit Milstein-type scheme for simulation of SDEs

Hassan Ranjbar?

?Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences,
Semnan University, P. O. Box 35195-363, Semnan, Iran

Abstract. In the present paper, we developed a new explicit Milstein-type integrator for stiff SDEs.
Theoretically, we indicate that the scheme converges to the true value with a strong order of 1.0. For linear
scalar SDE, the asymptotic mean square stability of our method is investigated. For all time steps, we
prove that the presented integrator is asymptotically mean square stable. In addition, the A-stability and
L-stability of the scheme was discussed in the mean square sense. For dimension two of the submitted

scheme, the asymptotic mean square stability of two test systems has been analyzed. Numerical simulations
confirm the theoretical results.

1. Introduction

In recent decades, SDEs have been shown to be more powerful in modeling real-life problems than
deterministic differential equations [7, 21-23]. Unfortunately, the analytical solution of a few SDEs leads
to an explicit solution. So, solution procedures has been an exciting area for researchers, in this last
half-century [10, 26, 32].

In this investigation, our goal is to provide a new explicit numerical scheme based on the Milstein
approach for the solution of SDEs

k
dZ(t) = a(Z(t))dt + Z b (Z(t)dW,(t), (1)
n=1

with initial condition Z(0) = Zy € R? and k,d € N. In (1), 4,b, : R —» R and {W,,}*_, are standard Wiener
processes. In the last half-century, Milstein’s approach has inspired many numerical schemes [27, 40]. De-
spite the utility of implicit schemes in addressing stiff stochastic problems and high-dimensional stochastic
systems, the increased CPU time and computational cost associated with solving implicit equations in per
step via the Newton-Raphson iterative algorithm has become a significant drawback for these numerical
techniques. The researchers found the solution in developing of explicit integrators with extended stability
regions. A balancing strategy to increasing the efficiency and accuracy of the explicit Euler-Maruyama ap-
proach was introduced in 1998, designed to address the challenges of stiff and high-dimensional stochastic
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problems [20]. In 2006, Kahl and Schurz [15] extend the balanced Milstein scheme to SDE (1). Wang and
Gan [39] by taming strategy achieved a new one-step explicit Milstein scheme. Also, in [42] designed a new
one-step explicit balanced Milstein scheme using the hyperbolic tangent function. Erdégan and G.]. Lord
[11] examined the strong convergence of an explicit exponential Milstein integrator for semi-linear SDEs.
In 2015, Yin and Gan [41] enhanced the explicit Milstein method with an error correction term to address
the challenges posed by stiff SDEs. Papers [24, 37] recently proposed same new numerical schemes with
the combination of the exponential integrator and the explicit Milstein technique for (1). Motivated by the
above note, the authors shall develop the explicit Milstein approach for stiff SDEs and explore the strong
convergence rate of the scheme, in this paper. Also, we achieve the stability properties of the scheme for
linear scalar test equation and for the bi-dimensional of the integrator, we examine the mean square (MS)
stability of multi-dimensional systems with scalar noise. For linear test SDE with multiplicative noise, we
show that the scheme is MS A-stable. Moreover, the L-stability of the scheme is studied in the MS sense.

Seth = (T —ty))/Non[ty,Tland t; =ty + h,0 < I < N. To solve SDE (1), we submit the following explicit
exponential Milstein (EXM, for short) integrator

k k
1
Zl+1 = Zl + I’lf (3ﬂ, Hth”) {Q(Zl) - § Z L”bn(Zl)} + g (311/ HLnbn) { Z bn(Zl)I:;’;Iﬂ
n=1

k 2)
PLERe 3 )
n=1 nni=
n#nl

where g, and J;»p, denoting the Jacobian matrices of a(-) and L"b,(-), respectively. Furthermore,

g (v (Ja, drmp,)) — La
(Y (Hﬁ/ 3L”b”)

k
1
0 (Jardim,) = h(aa -3 Z} ambn],

f(aar gL”b,,) = 7 g(gur gL"by,) = exp ('U (311/ gL"b,z))/

t14

I&;M = de,,(T) = W(ti) — Wa(h),
t

tf T taf T

Jlutin = f f odW,(12) [0 AW, (11), IV = f f dW,(12) | dW,,, (11),

(1,1m) (n,n1)
t f f f

where [iy represents the identity matrix. Also,

d
d
= ; bn,ia_zi/

k d k d
by, (Z1) db (ZI)
n b _ 1 bt n t b
Z L% (Z0) 1) = Z Z 9z U 1&%#22 5z, Pl ou

nn= nni=1 i=1 n=1 i=1
n#ny
dbia Ibgy b1, by
a |9z 0 @ |[Au]l e |z o az |[Bu
=Y |: N IR TSN RN |
i=1 Bbl,d . Bbk,d ‘Akl i=1 abl,d . 8bk,d 'Bkl
d9Z; 9Z; 4 dZ; 9Z;

where A = b(- )I“ t’“ e R™ and B = b(") ]t’ A e Rk with (b(-))axk € R, are a product of d X k diffusion

matrices b(-) and k >< k matrices of double stochastlc integrals Itl t’” and ]t’ 111 respectively. A; and B; denote
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the i row of matrices A and B, respectively. Note that, the symbol o in above notation indicates the
Stratonovich stochastic integral.

The work is organized as follows. Section 2 provides some preliminaries and applies the EXM scheme
to (1). We carry out the analysis of the strong convergence of the proposed scheme in Section 3. In Section
4, has been studied stability properties of our method for linear test equation. Also, the MS A-stable and
MS L-stable of the EXM method have been analyzed in this section. Furthermore, the MS stability of a
two-dimensional EXM scheme for multi-dimensional systems with one Wiener noise has been investigated.
In Section 5, we present numerical results to validate our theoretical findings and, a brief summary is made
in Section 6.

2. Notations and preliminaries

Using the truncating idea for general stochastic [t6-Taylor expansions [17, Theorem 5.5.1], we can obtain
the following explicit order 1.0 strong It6-Taylor scheme

t

1< koL
Z(t) = Zo + f [a(Z(T)) -3, L”bn(Z(T))] dr+ ) f ba(Z(0))dW, (1)
n=1 n=1 P

fo

2 t T
+ Y, [ [ recenan,ean, ) ®)

n,ny=1
n#mn fo to

k

t T
Y f f L"by(Z(12)) 0 dW,(12) 0 dW, (1)
t t

n=1

k t T
+foC(Z(T2))d72de(Tl)/
n=1

Tt to

where ¢(Z()) is the vector function in terms of 4, b, and L"b,,, n,n; = 1,2,...,k. Similar to [11], we take
t = t141, to = t; and adapt the It6-Taylor expansion (3) to analyse scheme (2) as follows

k fre1

tr1 k
Ztia) = Z(t) + f [a(Zu)) - %2 L%(Z(r))] dr+) f bu(Z1)AW,,(7)
f n=1 n=1 8
k fy1 T
Y [ [ v @ @an, @)

nn=1 Lot
n#ng 1M
! 4
k fy1 T ( )
+) f f L"b,(Z(12)) 0 AW, (z2) 0 AW, (1)
n=1 s

1 T

k
Y || ) dradWn).
n=1

t

We let || - || denote the standard Euclidean norm for both vectors and matrices and || - ||%2 QRY) = E [II . |I§].

Also, let us impose the following assumptions and proposition.

Assumption 2.1. The functions a, {b,}*_, : R? — RY are twice continuously differentiable.

1 :
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Assumption 2.2. There exists a positive constant £ for a, b, € RY, n=1,2,...,ksuch that

e global Lipschitz condition:

lae) = a@)], v [|batp) = ba@)||, v [IL"Balp) - L"Bu(g)]],
V|L"n, (p) = L"Ba, (@), < €llp = qll2,

e linear growth condition:

169, 0, a@); v (3, 3,)) bP)5
V|9, 30s,)) L)V [(9@ar dr0,)) L0 |2 < €(1 +1PIR), 7 = 0,1,2,...,

n=1

k
where 9(Ja, drmp,) = [3a - % Z J Lnb,,] and V is a maximal operator.

We recall the following proposition before presenting the strong convergence analysis of our approach.

Proposition 2.3. ([11]). Let Assumption 2.2 holds. For each T > 0 and Z(0) = Zo € R? there exists a unique Z
satisfying (1) such that

1/2
< 400.

sup IZ(\)llzr = sup E[IZOIF]
0<t<T 0<t<T

Furthermore, there exists, £ such that for 0 <t,7 <T,

IZ(t) = Z(Dll 2o rey < £lE = T2, ®)

3. Convergence analysis of the proposed scheme

In the present section, we analyze the strong convergence of the numerical integrator (2). To achieve
this goal, we first prove the following lemma.

Lemma 3.1. Let Assumptions 2.1, 2.2 and Proposition 2.3 hold. Then

2
= 0(h?).
L2(Q,IRY)

N-1
Z (Zt) - 7))
=0

Proof. We derive from (2) and (4), local error €; = Z(t;) — Z;, that

N-1 |2 9
Z €] <9 Jj,
=0 1lL2(Q,R?) j=1
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where
N-1 t1+1 2
n=| Y, [e@e-azya
=y L2(Q,RY)
, N-1 k i1 2
h=s Z f (L"bu(Z(1)) = L"bu(Z;)) d ’
1=0 n=1% QR
No1 1 1 k ’
9y = f(lid — £ (3.(2)), 310, (2)))) [a(Zl) -5 ZU’bn(Zz)] dt ,
=0} = 2QRY)
t 2
N-1 k 1+1
Iy = Z f(lid = 9(3a(Z1), d1,(Z1))) bu(Z1)dW(7) ’
1=0 n=1 i
1 L2(Q,R%)
2
N-1l & fy1 T
35 = Z f(Lnbm (Z(TZ)) - Lnbm (Zl)) de(Tz)dwnl (Tl) ’
1=0 nm=1 hoh
n#ny LHQR)
2
N-1 &k b1 T
o= )] f f (lia = 9 (3a(Z1), Jurb, (Z1))) LBy, (Z))AW, (T2)d Wy, (71) '
1=0 "h@;l WY [2(Q,RY)
t T ’
N-1 &k 1+1 1
5, = Z.f f (L"bu(Z(12)) = L"bu(Z1)) © AWy (12) 0 AWy (11) /
=0 n=1y Y !
L2(Q,RY)
2
N-1l k fmTm
Jg = Z ff(lid = 9(3(Z1), 31, (Z0))) L"bu(Z1) © AW, (T2) © dWy(11) ’
1=0 n=1 Lt
. L2(Q,RY)
N-1 k ty1 Ty 2
Jg = Z‘ffc(Z(Tz))dede(Tl)
=0 n=1%y Y
L2(Q,IRA)

Using the Taylor formula, we get
k
a(Z(T) = a(Z)) + 3ulZ1) ) buZDI + €a,
n=1

with €, = O(t — t;). From E |{I'/", I'""}|=0, i # j, and Jensen’s inequality, we have
] quality,

(RN ©)]
N-1 izl k 2 N-1 {5l 2
n<2|y] f 3(Z1) Y bu(Z)I d +20 Y | edr
1=0 Y n=1 L2(Q,RY) =0} L2(Q,RY)
N-1 k fa 2 B N_p fm1
< 2Kyt sup E[I3.(Z0bu(Z)IB] ) Y f E ||l |dr+2NKyh sup E[lledl] Y f dr
nE{l,Z,...,k] 1=0 n=1 e 2 nE[l,Z,...,k} 1=0 e
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= O(h?).

Similarly, for J,, we have

k
L'bu(Z(0) = L"by(Z1) + Bion, (Z0) Y bu(ZD)IS + €L,
n=1

with erp, = O(t — t;). Then

No1 1 Noq 1 2
jz S Z f L"b, (Zl) Z b (Zl)It] TdT + eLnbndT
1=0 Y L2(Q,RY) 1=0 Y L2(Q,IRY)
Nl K fiy 2 No1 fm1
< kKg,h sup ]E|:||3Lnbn(zl)bn(zl)“2] Zf]E 121; d7 + NKj,h  sup ]E[|eLn ] de
n€{1,2,...,k] 1=0 n=1 h 2 {12 k 1=0 1
= O(h?).

For J3, in view of Assumption 2.2 and Jensen’s inequality, we obtain that

2
N-1 k
1
J3 < Kg,E Z f(lid — f(3:(Z1), 31w, (Z1))) [ﬂ(Zl) ~3 Z L"bn(Zz)] dr
1=0 f n=1 )
N-1 b 1 k 2
< NKJ3hZ f]E (Iia = f(3a(Z1), I, (Z21))) (a(Zl) 5 Z L"b,(Zy) }d’f
=0} n=1 2
<2T1<gg}: f B[ - £ @2, 31, 20z
N-1 kP ,
e, Y Y, [ B[l - @@ g, @o) ou20ff o
1=0 n=1 s
I C@wamy ez,
a,dLnb,)) A4 ’
SZTKJSIZ:O‘J‘]E Z G 2 dr
e Yy (el CEnamy e,
+ JS;Z Z r+ 1) [T 4l 2 T
=0 n ;
<2TKj, sup IE[H(S(H ) a(Z)|, ]sz It —t"
Y ek et — — (r+1)!
+ TkKy, su IE[H(S(H J)) LD (z)||2]N_1Zk‘tf Tt
- neu,z?.,k: S mk =0 n=1y |l7r=1 (r+1)!

el _ iz — gl =1 N1 kM el — e — | =1\
< 2TK,. € d TkK. d
’ Zf( IT -t ) TR, ZZI( IT -t ) ‘

1=0 n=1 ;)



No1 fm1

< 2TKy,t |t — f|*dt + TkKy, €
3 3

1=0 %
= O(h?).

Similarly, for J, we have

ti41
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t141

N-1 k
Zth—tﬂsz

1=0 n= 8

2

N-1 k
Js < NKkK3, ) Y E f (Tia = 9 (3a(Z1), 3100, (Z0))) bu(Z1)dW (1)
=0 n=1 1 )
N-1 k [ f1
<NKKy, ) ) E f (ta = 9. @20, 31, (22) a2 | A7
1=0 n=1 5
N-1 k ' oo
(8(3a, drmw,)) bu(Z1) ,
<Nk1<g4;; E ; T It -t 2
f
N-1 k o et _jr — 4] —1 2
< NKKs,{ 3 ; | ( E— ) d
N-1 k
< NKK5, €)Y f It — t2dt

=0 n=1 ¥
= O0(h?).
For J5, 1t6 isometry implies that
N-1 k ?
=YY [E y f (L0, (Z(12)) — L', (Z0) dWo(r2)|| | dy
1=0 n1=1 ¥ 77;1111 8 )
1k fy1 T
2
-y Y E [HL”bm (Z(12)) - L"b,, (z,)||2] drodrs.
1=0 nny=1 ¥
n#ny ! !

It follows from Assumption 2.2 and Proposition 2.3 that

No1 1 T

J5 < (£L)*Ko, fo

1=0

= O(h?).

|To — tjldTod T

Using virtue of It6 isometry and Assumption 2.2 for Js, we yield

36<NKjszf

1=0 m=1

N6 Y Y ff

1=0 nn=
n#nl

2
(Iia = 9 (@u(Z0), 31, (Z0)) )L"by, (Z1)AW, (72)

]d’fl

1>

n:tnl t

I

2

Lia = 9 (3a(Z2), 810, (Z0)) )L b, (Z1)

]d’fzd’l’l

2
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i (\9(311/ HL"bn))r Lnbm (Zl)
(r+1)!

N-1 kM et gy — ] =1\
Z Z =ty —
< NKy,t ff( [To = #] ) drdn

2
d’l’szl
2

7o =t

N-1 &k
SNK:](,{Z Z ff|’[2—tl|2d’[2d’f1

1=0 n,n=1
n;&mt b

= O(h?).

In a similar way, it can be shown that J; = O(h?) and Jg = O(h?). And for J, recalling Jensen’s inequality
and It6 isometry, one observes

N-1 k b T ?
nsiv, sp 33 LE (k] [ [anaw,
nefl2,...k} =0 =1 e )
N-1 Bt
<Ky, Z flTl - #f*d7y
=0 Y
= O(h?).

The proof is hence completed. O

The strong order of convergence of the EXM integrator (2) is presented in the following theorem.

Theorem 3.2. Let Assumptions 2.1, 2.2 and Proposition 2.3 hold. Also, let Z; be the approximation to the solution
of (4) using the scheme (2). Then, for T > 0, there exists K > 0 independent of h such that

sup IZ(t;) = Zillr2orry < Kh.
0<t<T

Proof. First, by induction, we express the EXM scheme (2) at t = ty as

N-1 B k
N =7y + Z ff(ga(zl ), Jrre, (Z1)) [a(Z,) - = Z Lnbn(Zl)] dt

IOtl nl

N-1 k t141

+ ; ( Zf f!] (3a(Z)), 116, (Z1)) by (Z1) AW (7)
=0 ‘n=1Yy

k ty1 T

Y, [ [ 0@z @) e, @, caw, @)

=1
”nr:f_z.lnl tr tm

t Ty

k
+ Y, [ [ 9@ oz ez o aw,w o amw, m))
n=1

4
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To continue, we rewrite the EXM integrator (2) in continuous time process form Z;(f) that agrees with
approximation Z; at t = t;. By introducing the variable t = f; for t; < t < f41,

j k
2ty =20+ f F G240, B, (Z(D) [a(zw»— 2 Y 1,2 |ax
n=1
(Z f (30200, 18, (2D BaZE) AW, (D)
n=1

+ Z ff!](Ha(Z(fz)),Hu«bn(Z(?z)))L”bnl(Z(fz))de(%z)dWm(ﬁ)

nn=1
n#+m; 0

n=1

k t T
oul g<aa<2(%z)>,aLnbn(Zﬁy))L"bn(zay)odwnm)odwnm)).
)

This continuous version has the property that Z;(t) = Z. The iterated sum of the actual value at t = ty is
gained inductively to be

1 k
Z(tn) = Zo+ff(3a ), Jm, (Z(%))) [ﬂ(Z(T) - EZ ]
n=1
k
(Z f 9 (u(Z(2)), 310, (Z(0)) bu(Z(D) AW, (1)
n=1
k IN T1
£y f f 9 (u(Z(D)), B0, (Z(2))) L'y, (Z(T2)) AW, (T2) AW, (11) ®)
nn=1 0 %
n#ny

i
)

Denote Err(f) = Z(f) — Z(). So, by (7) and (8), we can prove that

|En)|? <6022 +k+kK1+k) f E [|[Em(7)[}] dr + 6K,

L2QRY) =
Finally, Gronwall’s inequality gives the desired assertion. [

4. Stability analysis of the proposed scheme

Nowadays, the study of the stability of SDEs has become one of the important parts of the literature. For
one-dimensional numerical schemes, MS stability of the linear test equation has been discussed in many
works, see [5, 8, 25, 35, 36] for instance. Also, the MS stability of the stochastic test systems has attracted the
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attention of some researchers see, for example, [3, 6, 30]. While for two-dimensional numerical integrators,
few monographs [4, 28, 31, 33, 34] analyze the MS stability behavior of stochastic test systems.
Consider the linear scalar test equation as follows

k
dz(t) = AZ(Hdt + Z W Z(OAW, (), Zo =1, (9)

n=1

with A, 1, ..., ux € C. It has been demonstrated that SDE (9) is asymptotically MS stable if and only if

k
2R+ )l <0, (10)
n=1

see [2, 16, 19]. We would like to highlight that in inequality (10), R(A) denotes the real part of A. For (9),
the MS stability domain is defined in the following form

M = {(A, 1, i) € €' : condition (10) holds}.

If the test equation (9) is solved by the presented scheme (2), we obtain the recurrence equation

Zie = DXS (A ey Gty ) 21, 1=0,1,., (11)
where () = AW N (0,1). Note that set DM3 (-) is called a stochastic function of a numerical scheme.

In order to peruse the stability analysis of numerical techniques, the following definitions are provided,
see [1,13, 14, 29].

Definition 4.1. The numerical scheme applied to the SDE (9) is asymptotically MS stable if and only if

DY, (1,2t i) = |25 (1 A, {Cn,z}f,zl)ﬂ <1. (12)

Now, we can identify the MS stability domain of the unknown numerical integrator for SDE (9) with
DMS {(/\, P, -, He) € C*! : condition (12) holds} .

Definition 4.2. A numerical integrator is said to be MS A-stable if
Dibe S Dno:

Definition 4.3. Assume that the numerical scheme is MS A-stable. If we have

1. 5MS h/ Ai/ in k = 0/
‘R(/\,l)rilfoo num( {:u / }n=1)

for all sequences (A;, { ‘u,',n}’;l )€ BIS\/gE, then the scheme is called MS L-stable.

The following theorem demonstrates that our method for the SDE (9) exhibits MS stability for any step-size.
Theorem 4.4. For any time step h > 0, D < DY,
Proof. By choosing commutative noise terms in test equation (9), for method (2), we drive from (11) that

DY (A Aty 4G

x k kK k
=11+ \/EZ [-lnCn,l + %hZ [’lfl i,l + %hz Z [ln[-lan,lCm,l X
n=1 n=1

n=1 m=1
1 &
exp(/\h—zhzlﬁl], 1=0,1,...,
n=1

n#+ny
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and consequently
MS k k 2
|D(2) (l’l, A, {,Un}nzlz {C”'I}nzl)l

= D5 (I A, (s 1Cui¥icy ) - DS (1, A, Ay (Gt )

k k
=1+ ‘/_Zuncnz+ hZunC ZZ g Cn1Cay 1 eXp[/\h——hZun]x
n=1 n1=1
n#+ny
k 1 k k k 1 k
1+ %Z [anCn,l + EhZ ﬁicil +z Z Z .anHanlCnll exp [Z EhZ .ai]
n=1 n=1 n=1 nm=1 n=1
n¢n
k k
= (1 +2Vh Z R ()Gt + thnFc * hZ Z it Gt
= = n=1 n=1
- hZ Z |ttty P g Gy g + h3/2 Z Z il + i) G2
n=1 n1= n=1m=
n#ny

k k k
1
+ §h3/2 Z Z (,un[-lnl Uny + Hnfln, Flnz) Cn,lCnl,lan,l

n=1 n=1np=1

411 Z Z Z Z Hnlbng e thy Cin1Cn 1 G 1 G l) exp [2?"\ AMh — hZ|yn|2]

n=1 m=1n’ 1n

’
1

On the basis of Definition 4.1, we can get
DMS (1, A, e, ) (1 +2h anﬁ + 22 Z|ynl4

+ hzzz|yn|2|um|2)exp(mm)h th]

n=1m
n#+ny

(13)

From (12), we know that inequality DMS (h A At :1) < 1is always true if

1+2hZ|yn|2+ hZZ|ynl4+ hZZZmnmeP—exp{ 2‘R(/\)h+hZ|yn|2]<0

n=1 n=1
n#ny
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The above inequality can be written as

k k 2 ko k
3 1
2RO+ Yl = 2(R(A) — 712 [anﬁ] =51 Y Y kPl
n=1 n=1 n=1ny=1
n#+ny

k j
k i N [2%()\);1 —h Z| ,ln|2]
+1 Y [29%0\) - anﬁ] * ;H)m <o

n=1 n=1 j

With the aid of condition (10) and R(A) < 0, we complete the proof. [J

In view of Theorem 4.4, it is easy to show that the EXM approach is MS stable for test equation (9) with
one noise term. In Figure 1, has been shows a graphical comparison of the domain of MS stability of the
scheme (2) and the test equation (9). From Figure 1, it is clear that our scheme is MS stable for all time step
h > 0. Thereby, EXM method (2) is MS A-stable, see Definition 4.2. Furthermore, we can obtain from the
(13) and Definition 4.3

x(Ali)rE—w Dy (h’ Ais {yi,n}’,‘,zl) =0,

for all (A, {pin}t_)) € 5%[)5 Hence, scheme (2) is MS L-stable.

oL

-10F, I I I I

-20 -15 -10 -5 0
Ah
(a) One noise term. (b) Two commutative noise terms.

Figure 1: Comparison of MS stability regions: scheme (2) (shaded) and test SDE (9)(gridded).

For real parameters A1, Ay, 0, we consider the two-dimensional test system [33]

dz(t) = [Aol AOZ] Z(t)dt + [2 8] Z(HdW(b), (14)

where Z(t) = [Z1(t), Zo(D)]".
Lemma 4.5. ([33]). The SDE (14) is asymptotically MS-stable if and only if

A+ A+ ot + (Al - /\2)2 <0. (15)
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For test system (14), the domain of MS stability is provided in the form
M?ff) = {()\1,/\2, 0) € R® : condition (15) holds}.

By applying the bi-dimensional numerical method (2) to (14), we can get
Zin Z1)
| _ 1 16
[Zz,m] May |Z2,l} (16)

Mo = |0 1pg2g2)eh(hi=30) ViioCeh(hi-37)
(2) = \/EOCeh(AZ_%UZ) (1 + %hOZCZ) eh(Az—%Gz) .

According to [33], the EXM scheme (2) is asymptotically MS stable if the numerical solutions Z; satisfy
lim E |[|(Z))]l| = 0.
lim E [(Z,7]] = 0

This condition can be written as follows

llim Z] = 0,
T
with Z; = [E[(Z1,)%], E[(Z2,)?], E[Z1,Z2)]| , see [2] for more details. Thus, we rewrite (16) as

Zi = m(z)zl, (17)
where

- my mp 0

Mgy =|ma mxpn 0 |,

0 0 nisz3
with
2, 3 42 h(2A1-0?)

my = 1+0h+zah e\,

My = U2heh(2/\1702),

My = U2heh(2/\27crz),

Moy = (1 +0’h+ Za‘*hz)eh(mz_az),

ms3 = (1 +20%h + 204h2)eh@1”2_“2).
Since Z; — 0if and only if p(M) < 1, see [9]. Note that p(M2)) stands for the spectral radius of the matrix
Mz). So, numerical approach (2) is asymptotically MS stable if for eigenvalues of matrix M) we have

max {|ms3|, [A+]} <1,

where

Ay =

NI

2
(mn +mpy + \/(mn —Mpy)” + 4m12m21)-
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Since m33 < Ay and |[A_| < Ay, the asymptotic MS stability of a scheme (2) becomes
-1<mz3, Ay<l. (18)
We specify the MS stability domain of the EXM scheme applied to the test system (14) with
My = {(A1, 12, 0) € R® : condition (18) holds}.

The asymptotic MS stability of method (2) applied to the stochastic system (14) is investigated in the
following theorem.

. S S
Theorem 4.6. For all step-size h > 0, M?ﬁ) C M?f) .

Proof. The first condition of (18) is always satisfied because
1+ 20%h + Zo‘lhz +(CHA+?) 5
For second condition of (18), we have
(m11 = my)” + dmppmy < (2 = (myy +mp))*.
This is equivalent to showing
(1 =m1) (1 = mpp) > mipmy. (19)
Since
(1 =m1) (1 —mp) > (eh(ml_az) - mn) (eh(uz_oz) - mzz) ,
inequality (19) is equivalent to
(eh(z/\l_az) - mn) (eh(mz_az) - mzz) —myamp >0,

which can be written as

2
(eh(2/\1—az) — m11) (eh(ZAz_Uz) — mZz) — MMy = 82’1(/\1_'—/\2_62)02]1 ((1 + ZOZh) — Ozl/l)
> 0.
This completes the proof. [

The MS stability domains of the EXM integrator and test system (14), Ml(\g)s and M?ff) respectively, are plotted
in Figure 2. Based on our finding from Figure 2, numerical method (2) is MS stable for all step-size & > 0.
Therefore, the findings of Theorem 4.6 are confirmed.
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Figure 2: Comparison of MS stability regions: scheme (2) (shaded) and test system (14)(gridded).

For A,e,0 > 0, consider the following two-dimensional test system [33]

dz(t) = [g g] Z(hdt + [g ‘;] Z(HdW(b). (20)

Lemma 4.7. ([33]). The SDE (20) is asymptotically MS-stable if and only if

max {21 + (e = 0)%, 24 + (e + 0)*} < 0. 1)
The MS stability domain of the test system (20) can be identified with

Sg(% = {()\, €,0) € R® : condition (21) holds}.

If the test system (20) is solved by the scheme (2), we obtain the recurrence equation as (16) with the
stochastic function of the form

_1 Ih(2A-e2-c?) |51 82
Sey = 2% s2 s1)’

with
$1 = (e_h“ + ehe") (1 + \/P_ze(, + %h ((—:2 + 02) Cz) + (e_hm - ehe") ( \/ﬁa(, + hea(jz)
Sy = (e_h“ - ehw) (1 + \/fle(, + %h ((—:2 + 02) Cz) + (e_hm + ehe") ( \/}_la(, + hea(jz) .

Similar to the (17), for SDE (20), we have

512 S 513 (22)

3(2) — 1 eh(2A—ez—02)
8 1 1
5513 3513 Su tS12,

S11 512 513
7
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where
s11 = %{e_%e‘j (2+ he + 0)?) (2 + 3h(e + 0)?)
+ 6?0 (2 4 (e - 0)?) (2 + 3h(e — 0)2) | + 4 (1 + 2n€%) + 312 (2 - 0?),
= (e (24 e + o)) (2 + 3he + 0Y)
+e2 (2 4+ (e - 0)?) (2 + 3h(e - 0)?) | ~ 4 (1 + 2n€%) - 312 (& — 0?)’,
s13 = € 2 (2 + e + 0)) (2 + 3h(e + 0)?) — €7 (2 + h(e — 0)?) (2 + Bh(e - 0)?).
For the stability matrix of the scheme EXM (22), we calculate the eigenvalues
r= %eh(“-ez-“z)(s11 ~512)

= }Leh(“*”“z) (4 (1+2ne?) + 312 (e - az)z),

I:= e(A-et~o )(511 + 512 £ 513)

1
8¢
i h(2A~(ex0)?) (2 + h(e + 0)2) (2 + 3h(e £ 0)2)
Now, the numerical MS stability condition test system (20) becomes

max {|T|, T+|} < 1.
Since, I'y > 0 and |I'l < max {I'y}, the asymptotic MS stability of an EXM scheme is converted to

max{Iy} < 1. (23)
Then, the MS stability domain of our integrator was applied to solve the test system (20) become

SMs {(/\ €,0) € R® : condition (23) holds}

The following theorem is dedicated to analyzing the asymptotic MS stability of our scheme (2) employed
in equation (20).

SMS SMS

Theorem 4.8. For any step-size h > 0, S5 2)

Proof. We rewrite condition (23) as follows

(2 + h(e £ 0)2) (2 + 3h(e = 0)2) — 4eh(-2A+(e20P") = gy (2/\ +(e+ 0)2) + 1 (2/\ +(e+ 0)2) (—2/\ +(e+ a)z)

o i (~24 + (e £ o))
+ 812 A(e £ 0)? — 4 .
1755

<0.
Obviously, the proof could be completed by using condition (21). [

In Figure 3, the domains of MS stability of EXM method (2) and test system (20) are shown. It can be seen
from Figure 3 that our approach is asymptotically MS stable for any time step & > 0. It can be observed that
the findings of Figure 3 support the theoretical results of Theorem 4.8.
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Figure 3: Comparison of MS stability regions: scheme (2) (shaded) and test system (20)(gridded).

5. Numerical illustrations

This section examines the applicability and accuracy of the EXM (2) scheme with a comparison of explicit
1.0 order methods Milstein [21] and balanced Milstein (BM) [15], by using six problems. For eight time steps
h=2" m=-4,-5,...,-11, 5000 sample trajectories are used to simulate the root of MS errors (RMSEs)
at end point T = 1. Here, we have used the numerical approximation of schemes with a small time step
Hexact = 271* instead of the unknown exact value.

Example 5.1. The first linear SDEs that we consider are

dZ(t) = aZ(t)dt + BLZHOAW(E), Zo =1, (24)
dZ(t) = aZ(t)dt + BLZ(OAWL () + f2Z(HAW,(E), Zo = 1. (25)

In general, the analytical solution of linear scalar SDE is

k k
Z(t) = Zoexp {[a - % Y, ﬁn] t+ ) ﬁan(t)J.
n=1 n=1

In order to demonstrate the convergence rate of the numerical integrators, we choose coefficients o = 2, 1 = 1 and
a =2,y = Po = 3 for (24) and (25), respectively. These results are reported in Figure 4. Further, we assume
RMSEs = Kh? for some constants K, y and can write

In(RMSEs) ~ In(K) + y In(h). (26)

In Table 1, we presented a least squares fit for the parameters K and y for linear SDEs (24) and (25). We can find
from Table 1 that only the estimated convergence orders of EXM and Milstein methods are close to the theoretical
result of 1.0. In the following experiment, we have changed the coefficients of SDEs (24) and (25) by &« =2, 1 = 1
and a = 2, By = P = 3, respectively, and compared the RMSEs of numerical schemes in Tables 2 and 3. For this aim,
we simulate 5000 sample paths for eight different step-sizes h = 257/100, m = 1,2,...,8 in the final time T = 1.
It can be seen from Tables 2 and 3 that the numerical solution generated with our scheme has the closest trend to an
actual value in the MS sense.
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107k < — © — Milstein scheme 4 10 . — © — Milstein scheme ol
L - —p—BM schems(co=5, c‘=0) e —p—BM scheme(c0=5, c‘=c2=0)
BM scheme(cozs. c‘=4) BM scheme(cozs, c‘=c2=4)
. — — — Reference slope 1.0 . — — — Reference slope 1.0
10 4 ‘—3 ‘—2 -1 10 -4 ‘—3 ‘,2 =
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h h
(a) SDE (24) witha =2, = 1. (b) SDE (25) witha =2, 1 = = L.
Figure 4: Strong convergence order of numerical schemes for Example 5.1.
Table 1: A least squares for the parameters K and y, for Example 5.1.
EXM (2) Milstein BM(cp =5,c1 =0) BM(cg=5,c1 =4)
0.9810 0.9497 0.8933 0.8646
SDE (24) !
In(K) 0.0491 0.1204 0.2597 0.3638
0.9818 0.9623 0.8948 0.8163
SDE (25) !
In(X) 0.0337 0.0953 0.2572 0.3798

Table 2: RMSEs of numerical schemes for SDE (24) with o = 3, 1 = z3'1~

n  EXM (2) Milstein BM(co=5,¢c1 =0) BM(cy =5,c1 =4)
1 3.10e-01 5.31e+00 1.15e+01 1.45e+01
2 191e-01 3.28e+00 7.79e+00 1.12e+00
3 8.76e-02 1.61e+00 4.39e+00 6.56e+00
4 435e-02 8.78e-01 2.43e+00 3.91e+00
5 212e-02 4.15e-01 1.26e+00 2.00e+00
6 1.07e-02 2.12e-01 6.41e-01 1.05e+00
7 527e-03 1.06e-01 3.23e-01 5.35e-01
8 2.74e-03 5.44e-02 1.63e-01 2.75e-01

Table 3: RMSEs of numerical schemes for SDE (25) witha =3, 1 = 4 and > = 1.

n EXM(2) Milstein BM(co =5,c1 =0) BM(co =5, c1 = 4)
1 1.06e-01 4.24e+00 1.15e+01 1.10e+01
2 6.0le-02 2.47e+00 8.65e+00 8.09e+00
3 295¢-02 1.25e¢+00 5.39e+00 4.84e+00
4 149e-02 6.58¢-01 3.59e+00 2.84e+00
5 7.44e-03 3.28e-01 2.40e+00 1.50e+00
6 3.8le-03 1.65e-01 1.71e+00 7.81e-01
7 1.88e-03 8.26e-02 1.19e+00 4.00e-01
8 9.19e-04 4.14e-02 6.49e-01 2.02e-01

2518
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Example 5.2. Next, consider the immigration-death reaction network [12]
05,
U >0,
where ¢, = 4 and ¢, = 0.8. The corresponding chemical Langevin equation is given by
dZ(t) = (@1 — 6Z(E) dt + e, + LZ(EAW(),  Zo = 500. 27)

To compare the RMSEs of the numerical results, one can refer to Figure 5. From Figure 5, the convergence orders 1.0
can be detected for numerical EXM and Milstein schemes. Moreover, it is clear that our method is the closest scheme
to the exact solution. Table 4 has summarized the convergence rate estimation for the numerical schemes in SDE (27).

.74 —*— EXM scheme
— © —Milstein scheme
— > BM scheme(c0=5, c‘=0) E|

BM scheme(c0=5, c,=4)
— — — Reference slope 1.0

107

Figure 5: Strong convergence order of numerical integrators for nonlinear SDE (27).

Table 4: A least squares for the parameters K and y, for Example 5.2.
EXM (2) Milstein BM(cop =5,c1 =0) BM(co =5,c1 =4)
)4 1.0180 1.0269 0.9944 0.9558
In(X) 0.0579 0.0579 0.1329 0.2103

Example 5.3. Consider the 1-dimensional nonlinear SDE
dzZ(t) = = (y1 +732()) (1 - Z2(1)) dt + 2 (1 - Z2(H) dW(), Zo =1/2, (28)
with exact solution is given by [17]

(1 + Zp) exp(=2y1t + 2y, W(t)) + Zp — 1
(1 + Zo) exp(=2y1t + 2y W(H) = Zo+ 1°

Z(t) =

Figure 6 show strong convergence rates of numerical schemes applied to nonlinear SDE (28) for stiff case with
parameter (y1,v2) = (1, 1) and non-stiff cases with parameters (y1,y2) = (1,1/2),(1/2,1/2). Also, Table 5 indicate
the calculated convergence rates of numerical schemes for different parameters of (y1,y2). From numerical results, we
conclude that the obtained strong convergence rates are about 1.0, which agree with the theoretical result.



H. Ranjbar / Filomat 39:8 (2025), 2501-2524

— © — Milstein schem

cheme
—=— BM scheme(c,=5, ¢,=0)

BM scheme(cy=5, ¢,=4)
— — — Reference slope 1.0

107 107 107

(a) Stiff with y1 =y, = 1.

107"
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—&— BM scheme(c,=5, ¢,=0)
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— — — Reference slope 1.0
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(b) Nonstiff withy; = 1,7, = 1.

RMSEs

2520

BM scheme(cy=5, ¢,=4)
— — — Reference slope 1.0

h

107

107"

(c) Nonstiff with yq =y, =1/2.

Figure 6: Strong convergence order of numerical schemes for Example 5.3.

Table 5: A least squares for the parameters %K and y for nonlinear SDE (28).

EXM (2) Milstein BM(cy =5,c1 =0) BM(co=5,c1 =4)
Y 1.0224 1.0042 0.9676 0.8231
yY1=72=1
In(K)  0.0720 0.0387 0.0794 0.3315
1.0184 1.000 0.9763 0.8764
y1=1y,=1/2 4
In(K)  0.0487 0.0118 0.0661 0.2255
Y 1.0086 0.9964 0.9655 0.8561
y1=y2=1/2
In(K)  0.0259 0.0089 0.0922 0.2804

Example 5.4. Consider the SIS epidemic model [18]

dZ(t) = Z(t) (BN — i — y — BZ(1) dt + o Z(H) (N — Z(H)) dW(E), Zo = 10,

with two sets of parameters

(i): N=10,=050=02and p+y =4

(ii): N=10,=06,0=02and u+y =2.

(29)

The simulation outcome is depicted in Figure 7. Figure 7 demonstrates that the numerical schemes achieve the strong
order 1.0 on nonlinear SDE (29). Again Table 6, confirms the estimated convergence rates.

Table 6: A least squares for the parameters % and y for (29).

EXM (2) Milstein BM(cp =5,c1 =0) BM(co =5,c1 =4)
) y 1.0172 1.0460 0.9861 0.8531
Case (i)
In(X) 0.0311 0.0569 0.1433 0.3391
. y 1.0274 1.0306 0.9743 0.8427
Case (ii)
In(X) 0.0379 0.0348 0.1611 0.3802
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—*— EXM scheme

— © — Milstein scheme
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(b) Case (ii)

Figure 7: Strong convergence order of numerical schemes for nonlinear SDE (29).

Example 5.5. Let us consider the following stochastic Brusselator [17]

dZi(t) = (@ = DZi() + aZ2(t) + (1 + Zu(1)* Zo(B)) dt + 0Z1 (H(1 + Zy (H)AW(E),
dZy(t) = (~aZi(t) = aZ}() = (1 + Zy(®))’ Za(t)) dt = oZa()(1 + Zy(H)AW(E),

10°

1

2521

(30)

with a« = 1.9, 0 = 0.1 and initial data (Z1(0), Z2(0)) = (=0.1,0). Figure 8 displays the RMSEs of numerical
integrators. The capability of our approximation scheme can be seen in these graphs.

Z.(

1

—*— EXM scheme

—6— Milstein scheme

— & -BM scheme(cozs. c‘=0)
BM scheme(c,=5, ¢,=4)

“H — — — Reference slope 1.0

Z,(t)

2

—*— EXM scheme

—&— Milstein scheme

— p» -BM scheme(cozﬁ, c‘z(l)
BM scheme(cO:S. c‘:4)

F{ — — — Reference slope 1.0

Figure 8: RMSEs of numerical schemes applied to nonlinear stochastic system (30).

Table 7: A least squares for the parameters K and y for (30).

EXM (2) Milstein BM(co = 5,1 =0) BM(co =5, c; = 4)
70 7 1.0736  1.0273 0.9045 0.8801
1
In(X) 02263  0.0571 0.3672 0.3577
ze ! 0.8084  1.0214 1.0094 0.9528
2
In(X)  0.6073  0.0685 0.1040 0.1889
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Example 5.6. Lastly, we consider the 2-dimensional stiff stochastic system [20]

0 11

dz(t) = ﬁ[ . O]Z(t)dt+ [1 1]Z(t)dW1(t)+g 1

-1

_11] Z(HdW(t). (31)

Figure 9 presents the behavior of the numerical simulation of stochastic system (31) with parameters p = 5, ¢ = 4,
p = 0.5 for 0 < t < 50, starting at Z(0) = (1,0)T and step-size h = 1/10. We can observe that all the approximate
trajectories produced by numerical schemes stay close to the origin (0,0), but the EXM scheme has better stability the
behavior than the other methods.

EXM scheme Milstein scheme
1 T T 150 — T T T
——Z,0 | —7,0
08 - - -%0] 100f : “ ; - - -%0h
06 B [ A
sol il *
‘ b [ n '\
0.4 It ‘h } \/ M
B AT TR T T
02 0 )U\, i ‘\‘ W \‘\
I \ i ”\ n,
ol sof ‘
il K
—02f ‘ I 1
- ! —100f
—0.4} ‘ :
—150{ |
-0.6 I
L \
o8 -200
1 . . . . _o50 . . . .
0 10 20 30 40 50 0 10 20 30 40 50
t t
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1000 ! ! ! . 30 . . . .
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Figure 9: Numerical simulation of stochastic system (31).

6. Summary

This article has addressed the construction of an explicit Milstein-type integrator for SDEs. The strong
convergence of our approach is then proven theoretically, see Theorem 3.2. For linear SDE (9), based on MS
stability analysis of EXM integrator (2), the method is MS stable for all time step /1 > 0, see Theorem 4.4.
Thus the EXM method is MS A-stable. So, the scheme is suitable for the solution of stiff SDEs. It was also
shown that our method is MS L-stable. Furthermore, for two stochastic systems (14) and (20), we prove that
the bi-dimensional EXM method (2) is MS stable for any & > 0. The numerical results obtained through the
EXM scheme (2) and compared to Milstein [21] and BM [15] evidenced that by applying the EXM scheme
(2), the accuracy of the numerical solutions is improved, see Examples 5.1-5.6.

For SDE (1) with a linearly growing and globally Lipschitz continuous drift and diffusion coefficients,
we proved that our scheme strongly converges to the exact solution. In the future, we will investigate the
convergence properties of the designed integrator for SDE (1) with locally Lipschitz continuous coefficient in
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detail. In the examination of the proposed scheme’s MS stability, the stochastic systems under consideration
include a single noise term. Future work will extend this analysis to systems with two noise terms to
investigate the MS stability of the numerical integrator (2). In recent years, the positivity-preserving
property of approximation schemes applied to financial models has garnered significant interest among
researchers. In the future, we aim to explore this property for the EXM method (2).
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