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Abstract. The theory of matrix splittings can be applied to derive iterative solutions for rectangular linear
systems of the form Ax = b. Various comparison results for different subclasses of proper splittings have
been proposed in the literature to enhance the convergence rate of these iterative methods. In this article,
we extend the convergence theory of double proper splittings for rectangular matrices by introducing two
new subclasses: double proper weak regular splitting of type II and double proper weak splitting of type II.
Additionally, we present several comparison results that can be utilized to identify a more effective splitting
among various options.

1. Introduction

The challenge of solving a linear system of equations

Ax = b, A ∈ Rm×n, x ∈ Rn, and b ∈ Rm (1)

is a captivating area of study within matrix theory, numerical analysis, and applied sciences. To derive
numerical solutions for this system, Berman and Plemmons [2] introduced the concept of proper splitting.
A splitting A = U − V of A ∈ Rm×n is called a proper splitting if R(U) = R(A) and N(U) = N(A). Here,
R(B) and N(B) denote the range space and the null space of B ∈ Rm×n, respectively. Various construction
techniques for proper splittings can be found in [3, 13, 20, 25]. Given A = U − V as a proper splitting,
Berman and Plemmons [2] proposed the iterative method

xk+1 = Txk +U†b, k = 0, 1, 2, . . . , (2)

where T = U†V is the iteration matrix and U† represents Moore-Penrose inverse of U [21]. In [2] it is
established that, this iterative method converges to A†b for any initial choice of x0 if and only if the spectral
radius U†V is less than 1 (see Corollary 1, [2]). Therefore, the rate of convergence of the iterative method
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(2) depends on ρ(U†V) and so, the spectral radius of the iteration matrix plays an important role in the
comparison of the rate of convergence of different iterative methods of the same system.

In view of the above, many researchers, including Berman and Plemmons [2], Climent et al. [15], Jena
et al. [18], Mishra [14], Wei et al. [28], Lin et al. [19], obtained several convergence criteria for different
sub-classes of a proper splitting. Here, we mentioned a few of these classes. A proper splitting A = U − V
is called a

(i) proper regular splitting if U† ≥ 0 and V ≥ 0 (Definition 1.1, [18]).

(ii) proper weak regular splitting of type I if U† ≥ 0 and U†V ≥ 0 (Definition 1.2, [18]).

(iii) proper weak regular splitting of type II if U† ≥ 0 and VU† ≥ 0 (Definition 3.5, [6]).

(iv) proper weak splitting of type I if U†V ≥ 0 (Definition 2, [15]).

(iv) a proper weak splitting of type II if VU† ≥ 0 (Definition 2, [15]).

Numerous comparison results for these classes of splittings can be found in [4, 6–9, 14, 18, 20, 25] and the
references therein, making this field rich with possibilities for exploration and advancement.

On the other hand, the method of double splitting for nonsingular matrices was first introduced by
Woźnicki [30], laying the groundwork for further advancements in this area. Subsequent contributions by
Shen and Huang [23], along with Miao and Zheng [24], Song and Song [16], Li and Wu [12], Li et al. [11],
Wang [10], and Shekhar et al. [26, 27], have significantly enriched this theory. A notable advancement came
from Jena et al. [18], who extended the concept to rectangular matrices, broadening its applicability. A
splitting

A = P − R − S (3)

of A ∈ Rm×n is called a double proper splitting if R(A) = R(P) and N(A) = N(P). Building on Woźnicki’s
foundational work, Jena et al. [18] proposed the following iterative method:

x(k+1) = P†Rx(k) + P†Sx(k−1) + P†b, k = 1, 2, . . . . (4)

This can be equivalently expressed as:(
x(k+1)

x(k)

)
=

(
P†R P†S

I O

) (
x(k)

x(k−1)

)
+

(
P†b
O

)
, (5)

where I is the identity matrix and O is the null matrix of appropriate order. It is well-established that the
iterative method (5) converges to A†b for any starting vectors x0 and x1 if and only if the spectral radius of
the iteration matrix,

W =
(
P†R P†S

I O

)
(6)

is less than one, i.e., ρ(W) < 1. In their work, Jena et al. [18] introduced two subclasses of double proper
splittings: double proper regular splitting and double proper weak regular splitting (which we refer to as
double proper weak regular splitting of type I). A double proper splitting A = P − R − S is called a double
proper regular splitting if P† ≥ 0, R ≥ 0 and S ≥ 0 and it is called a double proper weak regular splitting of
type I if P† ≥ 0, P†R ≥ 0 and P†S ≥ 0. The authors further demonstrated that if A† ≥ 0, then the iterative
method (5) associated with either the double proper regular splitting or the double proper weak regular
splitting of type I converges. In 2014, Mishra [14] introduced a broader subclass known as double proper
nonnegative splitting (which we refer to as double proper weak splitting of type I), defined by the conditions
P†R ≥ 0 and P†S ≥ 0. Mishra [14] showed that if A†P ≥ 0, then the iterative method (5) corresponding to
this subclass also converges. To enhance the rate of convergence of (5), various comparison results have
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been established in the literature, notably in works such as [14, 17, 18]. These findings not only advance
the theoretical understanding of double splitting but also provide practical insights that can significantly
improve convergence rates in iterative methods.

In this article, our objective is to extend the theory of double proper slitting by introducing two new
sub-classes: double proper weak regular splitting of type II and double proper weak splitting of type II.
These results broaden and generalize the findings from [26].

The structure of the article is as follows: In Section 2, we introduce the notations, definitions, and some
preliminary results that are essential for deriving the main outcomes. In Section 3, we prove our main
results, where we investigate the convergence of the iterative method (5) related to the newly proposed
sub-classes of double proper splitting. Additionally, this section includes several comparison results that
assist in determining a more efficient splitting among various matrix splittings.

2. Prerequisites

Throughout the articleRm×n represent the set of all real matrices of order m×n. For any A ∈ Rm×n, we use
AT to denote the transpose, R(A) for its range space and N(A) for its null space. A matrix A ∈ Rn×n is called
an EP matrix, if R(A) = R(AT). Let L and M be complementary subspaces of Rn, and let PL,M denote the
projection onto L along M. Then, PL,MA = A if and only if R(A) ⊆ L, and APL,M = A if and only if N(A) ⊇M.
When L⊥M,we write the projection as PL. For a matrix A ∈ Rn×n with the eigenvalues λ1, λ2, . . . , λn, the set
of all eigenvalues is denoted by σ(A), and the spectral radius ρ(A) is defined as max{| λ1 |, | λ2 |, . . . , | λn |}.
A matrix A ∈ Rn×n is said to be convergent if lim

k→∞
Ak = 0. A matrix A ∈ Rn×n is convergent if and only if

ρ(A) < 1. A matrix A = (ai j) ∈ Rm×n is called non-negative if ai j ≥ 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, with
ai j > 0 for at least one i, j. This is written as A ≥ 0. Similarly, A is called positive if ai j > 0 for every i and
j. The same terms and notation apply to vectors. For matrices A,B ∈ Rm×n, A ≥ B means A − B ≥ 0. Some
fundamental results are as follows:

Lemma 2.1. (Theorem 2.1.11, [1])
Let A ∈ Rn×n, A ≥ 0, x ≥ 0, (x , 0) and α be a positive scalar.
(i) If αx ≤ Ax, x ≥ 0, implies α ≤ ρ(A). Moreover, if αx < Ax, then α < ρ(A).
(ii) If Ax ≤ αx, x > 0, implies ρ(A) ≤ α.

Theorem 2.2. (Theorem 2.20, [22])
Let A ∈ Rn×n and A ≥ 0. Then,
(i) A has a nonnegative real eigenvalue equal to its spectral radius.
(ii) To ρ(A), there corresponds a nonzero eigenvector x ≥ 0.

Lemma 2.3. (Theorem 3.15, [22])
For any A ∈ Rn×n, ρ(A) < 1 if and only if (I − A)−1 exists and (I − A)−1 =

∑
∞

k=0 Ak.

Theorem 2.4. (Theorem 2.21, [22])
If A,B ∈ Rn×n and A ≥ B ≥ 0, then ρ(A) ≥ ρ(B).

Theorem 2.5. (Lemma 2.2, [23])

Let A ∈ Rn×n such that A =
(
B C
I 0

)
≥ 0 and ρ(B + C) < 1. Then, ρ(A) < 1.

For A ∈ Rm×n, a matrix X ∈ Rn×m satisfying the four matrix equations known as Penrose equations:
AXA = A, XAX = X, (AX)T = AX and (XA)T = XA is called the Moore-Penrose inverse of A. It always
exists and is denoted by A†. (See [5, 21, 29]). Some well known properties of the Moore-Penrose inverse
of A ∈ Rm×n are: R(A†) = R(AT); N(A†) = N(AT

); AA† = PR(A); A†A = PR(AT). In particular, if x ∈ R(A), then
x = A†Ax. (For more details, see [5]). A ∈ Rm×n is called semimonotone if A† ≥ 0. Recall that the iterative
method (2) is convergent if ρ(H) < 1. In this connection, we have the following results.
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Theorem 2.6. (Theorem 3.7, [6])
Let A = U − V be a proper weak regular splitting of type II. Then, A† ≥ 0 if and only if ρ(U†V) < 1.

Theorem 2.7. (Lemma 3.2, [7])
Let A = U − V be a proper weak splitting of type II. If UA† ≥ 0, then ρ(U†V) < 1.

3. Main Results

We begin this section with the following examples, which serve as motivation for our work.

Example 3.1. Let A =

−12 −2
6 5
−6 2

 =
 2 −2
−1 5
1 2

 −
13 −1

3 0
2 0

 −
 1 1
10 0
5 0

 = P − R − S. Then A − P − R − S is a

double proper splitting of A. Also, P† =
(
0.3490 0.0134 0.3154
0.0134 0.1544 0.1275

)
≥ 0, RP† =

4.5235 0.0201 3.9732
1.0470 0.0403 0.9463
0.6980 0.0268 0.6309

 ≥ 0 and

SP† =

0.3624 0.1678 0.4430
3.4899 0.1342 3.1544
1.7450 0.0671 1.5772

 ≥ 0, but P†R =
(
5.2081 −0.3490
0.8926 −0.0134

)
≱ 0. Hence, A = P − R − S is not a double

proper weak regular splitting of type I.

Example 3.2. Let A =

 2 1
−1 2.5
1 1.5

 =
 2 2
−1 5
1 3

 −
0 1
0 1.5
0 1

 −
0 0
0 1
0 0.5

 = P − R − S. Then A − P − R − S is a double

proper splitting. On the other hand, P† =
(
0.3214 −0.2143 0.1429
0.0357 0.1429 0.0714

)
≱ 0, RP† =

0.0357 0.1429 0.0714
0.0536 0.2143 0.1071
0.0357 0.1429 0.0714

 ≥ 0

and SP† =

 0 0 0
0.0357 0.1429 0.0714
0.0179 0.0714 0.0357

 ≥ 0, but P†S =
(
0 −0.1429
0 0.1786

)
≱ 0. Hence, A = P − R − S is neither double

proper weak regular of type I nor a double proper weak splitting of type I.

From the above examples one can notice that, the theories provided in [4, 14, 17, 18] are not adequate
to ensure the convergence of all type splittings. To overcome with this issues, we now introduced the
following class of a double proper splitting.

Definition 3.3. A double proper splitting A = P − R − S is called a double proper weak regular splitting of type II if
P† ≥ 0, RP† ≥ 0 and SP† ≥ 0.

Definition 3.4. A double proper splitting A = P−R−S is called a double proper weak splitting of type II if RP† ≥ 0
and SP† ≥ 0.

Remark 3.5. A proper weak regular splitting of type II is a proper weak splitting of type II, but not conversely.

By rewriting (3) as

A = P − (R + S), (7)

we derive the following iterative method:

xk+1 = Hxk + P†b, k = 0, 1, 2, . . . , (8)



S. Das et al. / Filomat 39:8 (2025), 2565–2575 2569

where H = P†(R + S) serves as the iteration matrix. If the splitting (3) is a double proper weak splitting of
type II, then the matrices H̃ = (R + S)P† and

W̃ =
(
RP† SP†

I O

)
(9)

are nonnegative. We leverage the nonnegativity and convergence properties of W̃ to analyze the conver-
gence of the iteration matrix W. To proceed, we will begin with the following Lemma.

Lemma 3.6. The matrices W and W̃ defined in (6) and (9), respectively, have the same spectral radius.

Proof. Let x =
(
x1
x2

)
be an eigenvector of W̃ corresponding to a non-zero eigenvalue λ. Then it follows that

W̃x = λx, which can be expressed as(
RP† SP†

I O

) (
x1
x2

)
= λ

(
x1
x2

)
.

From this, we derive the following equations:

RP†x1 + SP†x2 = λx1 (10)
x1 = λx2. (11)

By pre-multiplying (10) and (11) by P†, we obtain

P†R(P†x1) + P†S(P†x2) = λP†x1

P†x1 = λP†x2.

Letting y1 = P†x1 and y2 = P†x2, we can reformulate the system as:

P†Ry1 + P†Sy2 = λy1

y1 = λy2.

This can be expressed in matrix form as
Wy = λy,

where y =
(
y1
y2

)
. Thus, λ is an eigenvelue of W if y , 0. Suppose y = 0. Then we have P†x1 = 0 and P†x2 = 0.

From equation (10), we conclude that λx1 = 0. Since λ , 0, it follows that x1 = 0, which by equation (11)
implies x2 = 0 as well. This leads to a contradiction, as x is an eigenvector. Therefore, we conclude that
y , 0. Consequently, we have σ(W̃)\{0} ⊆ σ(W)\{0}.

Conversely, let µ be a nonzero eigenvalue of W, and let xT =
(
xT

1 , x
T
2

)
be an be an associated eigenvector.

This can be expressed as(
xT

1 , x
T
2

) (P†R P†S
I O

)
= µ

(
xT

1 , x
T
2

)
.

This yields the following equations:

xT
1 P†R + xT

2 = µxT
1 (12)

xT
1 P†S = µxT

2 . (13)

By post-multiplying equations (12) and (13) by P†, we obtain
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xT
1 P†RP† + xT

2 P† = µxT
1 P†

xT
1 P†SP† = µxT

2 P†.

By defining zT
1 = xT

1 P† and zT
2 = xT

2 P†, we can reformulate the system as:

zT
1 RP† + zT

2 = µzT
1

zT
1 SP† = µzT

2 ,

This leads to the equation zTW̃ = µzT, where z =
(
z1
z2

)
. Assuming z = 0 implies that xT

1 P† = 0 and xT
2 P† = 0.

From equation (13), we have µxT
2 = 0. Since µ , 0, it follows that xT

2 = 0, which subsequently leads to xT
1 = 0

from (12), resulting in a contradiction.Thus, z , 0. Therefore, we conclude that W and W̃ have the same set
of non-zero eigenvalues, and consequently, the same spectral radius.

The following result guarantees that the single and double iterative schemes converges simultaneously
in the case of double proper weak splittings of type II.

Theorem 3.7. Let the splitting defined by (3) be a double proper weak splitting of type II. Then the iterative method
(5) is convergent if and only if the iterative method (8) is convergent.

Proof. Assume that the iterative method (5) is convergent, implying that the spectral radius satisfies ρ(W̃) =
ρ(W) < 1. By Lemma 2.3, (I− W̃)−1 exists and (I− W̃)−1

≥ 0. Through block matrix computations, we obtain
the following expression:

(I − W̃)−1 =

(
[I − (R + S)P†]−1 [I − (R + S)P†]−1SP†

[I − (R + S)P†]−1 [I − (R + S)P†]−1(I − RP†)

)
. (14)

Since (I − W̃)−1
≥ 0, we deduce that [I − (R + S)P†]−1

≥ 0. By applying Lemma 2.3, it follows that
ρ((R + S)P†) = ρ(P†(R + S)) < 1.

Conversely, assume that the iterative method (8) is convergent, meaning that ρ(P†(R+S)) = ρ((R+S)P†) <
1. By applying Theorem 2.5 and Lemma 3.6 together, we can conclude that ρ(W̃) = ρ(W) < 1.

If we set U = P and V = R+ S, then by applying Theorem 2.6 and Theorem 3.7, we obtain the following
characterization of a semimonotone matrix via a double proper weak regular splitting of type II.

Theorem 3.8. Let the splitting defined by (3) be double proper weak regular splitting of type II. Then, A† ≥ 0 if and
only if ρ(W) < 1.

From the above result, it follows that when the splitting is either double proper regular or weak regular (of
either type), the condition A† ≥ 0 serves as an equivalent criterion for convergence. However, in the case
of a double proper weak splitting of type II, this condition is not an equivalent criterion for convergence,
as demonstrated by the following example.

Example 3.9. Let A =

1 −1
1 −1
1 −1

 =
2 −2
2 −2
2 −2

 −
1 0.5
1 0.5
1 0.5

 −
0 −1.5
0 −1.5
0 −1.5

 = P − R − S be a proper splitting. Then, A† =

(
0.1667 0.1667 0.1667
−0.1667 −0.1667 −0.1667

)
≱ 0, P† =

(
0.0833 0.0833 0.0833
−0.0833 −0.0833 −0.0833

)
≱ 0,RP† =

0.0416 0.0416 0.0416
0.0416 0.0416 0.0416
0.0416 0.0416 0.0416

 ≥
0 and SP† =

0.1250 0.1250 0.1250
0.1250 0.1250 0.1250
0.1250 0.1250 0.1250

 ≥ 0. Hence, A = P − R − S is a double proper weak splitting of type II.

However, ρ(W) = 0.6781 < 1.
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In the this example, we also observe that PA† =
(
0.6667 0.6667 0.6667
0.6667 0.6667 0.6667

)
≥ 0. This observation leads us

to formulate another result that provides several equivalent criteria for the convergence of double proper
weak splittings of type II, which follows as a consequence of Theorem 2.7 and Theorem 3.7.

Theorem 3.10. Let the splitting defined by (3) be double proper weak splitting of type II. Then the following conditions
are equivalent:
(a) ρ(W) < 1.
(b) ρ(P†(R + S)) = ρ((R + S)P†) < 1.
(c) PA† ≥ 0.
(d) [I − (R + S)P†]−1

≥ 0.

3.1. Comparison Theorems
Comparison theorems are essential for identifying optimal splittings that minimize the spectral radius,

leading to accelerated convergence of the associated iterative schemes. Additionally, these theorems play
a crucial role in evaluating the effectiveness of preconditioners. In this section, we will establish several
important comparison results.

First, we present a comparison between the splittings defined by (3) and (7), assuming that both are
convergent, with the former representing a double proper weak splitting of type II and the latter a proper
weak splitting of type II.

Theorem 3.11. If the splitting defined in (3) is a convergent double proper weak splitting of type II, then ρ(H) ≤
ρ(W) < 1.

Proof. From (14), we have

(I − W̃)−1 =

(
[I − (R + S)P†]−1 [I − (R + S)P†]−1SP†

[I − (R + S)P†]−1 [I − (R + S)P†]−1(I − RP†)

)
≥

(
[I − (R + S)P†]−1 0

0 I

)
which implies ρ((I − W̃)−1) ≥ ρ([I − (R + S)P†]−1) and hence ρ(W̃) = ρ(W) ≥ ρ((R + S)P†) = ρ(H).

For a double proper weak regular splitting of type II, we have the following result.

Corollary 3.12. If the splitting defined in (3) is double proper weak regular splitting of type II and A† ≥ 0, then
ρ(H) ≤ ρ(W) < 1.

Let

A = P1 − R1 − S1 = P2 − R2 − S2 (15)

be two double proper splittings of A ∈ Rm×n with the corresponding iteration matrices defined as

W1 =

(
P†1R1 P†1S1

I 0

)
, W2 =

(
P†2R2 P†2S2

I 0

)
.

Our objective is to find such a matrix W that simplifies the computation and minimizes the spectral radius
of W (for a convergent scheme), ensuring a faster convergence rate for the scheme (5). Several comparison
results have been developed in [4, 14, 17] for double proper regular and double proper weak regular
splittings of type I. In this work, we extend the findings of Shekhar et al. [26], by deriving additional
comparison results for matrices that admit two double proper weak splittings of type II.

Let

W̃1 =

(
R1P†1 S1P†1

I 0

)
and W̃2 =

(
R2P†2 S2P†2

I 0

)
.

We now present the following comparison result.
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Theorem 3.13. Let the splittings defined by (15) be convergent double proper weak splittings of type II. If AP†1 ≥ AP†2
and one of the following conditions holds:
(1) R1P†1 ≥ R2P†2, or
(2) S1P†1 ≤ S2P†2,
then ρ(W1) ≤ ρ(W2) < 1.

Proof. If ρ(W1) = 0, the conclusion holds trivially. Now suppose ρ(W1) , 0. By the definition of W̃1, we

have W̃1 ≥ 0. Hence by Theorem 2.2, there exists a vector x =
(
x1
x2

)
≥ 0 such that W̃1x = ρ(W1)x, which gives

the system of equations:

R1P†1x1 + S1P†1x2 = ρ(W1)x1

x1 = ρ(W1)x2.

Then, it follows that

W̃2x − ρ(W1)x =
(
R2P†2x1 + S2P†2x2 − ρ(W1)x1

x1 − ρ(W1)x2

)
=

(
R2P†2x1 + S2P†2x2 − R1P†1x1 − S1P†1x2

0

)
=

(
(R2P†2 − R1P†1)x1 +

1
ρ(W1) (S2P†2 − S1P†1)x1

0

)
:=

(
∇

0

)
,

where ∇ = (R2P†2 −R1P†1)x1 +
1

ρ(W1) (S2P†2 − S1P†1)x1. Suppose that the first condition R1P†1 ≥ R2P†2 holds. Then

∇ −
1

ρ(W1)
(R2P†2 − R1P†1)x1 −

1
ρ(W1)

(S2P†2 − S1P†1)x1 = (1 −
1

ρ(W1)
)(R2P†2 − R1P†1)x1 ≥ 0.

On the other hand, utilizing the fact that P2P†2 = P1P†1, we obtain

∇ ≥
1

ρ(W1)

(
(R2P†2 − R1P†1)x1 + (S2P†2 − S1P†1)x1

)
=

1
ρ(W1)

(
(R2P†2 + S2P†2)x1 − (R1P†1 + S1P†1)x1

)

=
1

ρ(W1)

(
(R2 + S2)P†2x1 − (R1 + S1)P†1)x1

)
=

1
ρ(W1)

(
(P2 − A)P†2x1 − (P1 − A)P†1x1

)
=

1
ρ(W1)

(
AP†1 − AP†2

)
x1 ≥ 0.

Therefore, we have W̃2x − ρ(W1)x ≥ 0. Consequently, by applying Lemma 2.1 and Lemma 3.6, we arrive at
the desired conclusion. Similarly, if S1P†1 ≤ S2P†2, then

∇ − (R2P†2 − R1P†1)x1 − (S2P†2 − S1P†1)x1 = (
1

ρ(W1)
− 1)(S2P†2 − S1P†1)x1 ≥ 0.
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Consequently, we have:

∇ ≥ (R2P†2 − R1P†1)x1 + (S2P†2 − S1P†1)x1 = (AP†1 − AP†2)x1 ≥ 0,

which leads to W̃2x − ρ(W1)x ≥ 0. Thus, by applying Lemma 2.1 and Lemma 3.6, we conclude that
ρ(W1) ≤ ρ(W2).

It can be observed that the inequality S1P†1−S2P†2 ≤ R2P†2−R†1P2 implies that (S1+R1)P†1 ≤ (S2+R2)P†2, which
translates toAP†1 ≥ AP†2. Therefore, we can derive the following result.

Theorem 3.14. Let the splittings defined by (15) be two convergent double weak splittings of type II. If S1P†1−S2P†2 ≤
R2P†2 − R1P†1 and one of the following conditions
(1) R1P†1 ≥ R2P†2
(2) S1P†1 ≤ S2P†2
holds, then ρ(W1) ≤ ρ(W2) < 1.

Similarly, if the inequalities AP†1 ≥ 0 and P1P†2 ≤ I hold, then pre-multiplying both sides by AP†1 yields
AP†2 ≤ AP†1.Furthermore, if AP†2 ≥ 0 and P2P†1 ≥ I are satisfied, we can conclude that AP†1 ≥ AP†2. Therefore,
Theorem 3.13 can be reformulated with a different set of conditions, which will be presented next.

Theorem 3.15. Let the splittings defined by (15) be two convergent double weak splittings of type II. If P1P†2 ≤ I and
AP†1 ≥ 0 or P2P†1 ≥ I and AP†2 ≥ 0 , and one of the following conditions holds:
(1) R1P†1 ≥ R2P†2, or
(2) S1P†1 ≤ S2P†2,
then ρ(W1) ≤ ρ(W2) < 1.

By applying Theorem 2.4 in conjunction with Lemma 3.6, the following result can be proved.

Theorem 3.16. Let the splittings defined by (15) be two convergent double proper weak splittings of type II. If
R1P†1 ≤ R2P†2 and S1P†1 ≤ S2P†2, then ρ(W1) ≤ ρ(W2) < 1.

The converse of the above results is not necessarily true, as demonstrated by the following example.

Example 3.17. Let A =

 2 3
−1 7.5
1 4.5

 = P1 − R1 − S1 = P2 − R2 − S2 be two double proper splittings, where P1 = 2 4.5
−1 11.25
1 6.75

 , R1 =

0 0.5
0 2
0 1.25

 , S1 =

0 1
0 2
0 1

 , P2 =

 2.4 6
−1.2 15
1.2 9

 , R2 =

 0.4 3
−0.2 7.5
0.2 3.5

 , S2 =

0 0
0 0
0 1

 . Then, R1P†1 =0.0079 0.0317 0.0159
0.0317 0.1270 0.0635
0.0198 0.0794 0.0397

 ≥ 0, S1P†1 =

0.0159 0.0635 0.0317
0.0317 0.1270 0.0635
0.0159 0.0635 0.0317

 ≥ 0, R2P†2 =

0.1429 0.0714 0.1190
0.0357 0.3929 0.1548
0.0952 0.1310 0.1071

 ≥
0 and S2P†2 =

 0 0 0
0 0 0

0.0119 0.0476 0.0238

 ≥ 0. Thus, the splittings A = P1 − R1 − S1 = P2 − R2 − S2 are double

proper weak splittings of type II. We observe that ρ(W1) = 0.5142 ≤ 0.5218 = ρ(W2) < 1, but S1P†1 ≰ S2P†2.

We end this section with the following result which compares the rate of convergence of type I and type II
double proper splittings of a singular matrix A.

Theorem 3.18. Let the splittings defined by (15) be two convergent double proper weak splittings of type I and type
II, respectively, of a semimonotone and EP matrix A ∈ Rn×n. If P†1A ≥ AP†2 and one of the following conditions holds
(1) P†1R1 ≥ R2P†2, or
(2) P†1S1 ≤ S2P†2,
then ρ(W1) ≤ ρ(W2) < 1.
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Proof. Since W1 ≥ 0, by Theorem 2.2, there exists a vector x =
(
x1
x2

)
≥ 0 such that W1x = ρ(W1)x. This leads

to the following system of equations:

P†1R1x1 + P†1S1x2 = ρ(W1)x1

x1 = ρ(W1)x2.

Then, it follows that

W̃2x − ρ(W1)x =
(
R2P†2x1 + S2P†2x2 − ρ(W1)x1

x1 − ρ(W1)x2

)
=

(
R2P†2x1 + S2P†2x2 − P†1R1x1 − P†1S1x2

0

)
=

(
(R2P†2 − P†1R1)x1 +

1
ρ(W1) (S2P†2 − P†1S1)x1

0

)
:=

(
∇

0

)
,

where ∇ = (R2P†2 − P†1R1)x1 +
1

ρ(W1) (S2P†2 − P†1S1)x1.

If P†1R1 ≥ R2P†2 holds, then we have

∇ −
1

ρ(W1)
(R2P†2 − P†1R1)x1 −

1
ρ(W1)

(S2P†2 − P†1S1)x1 = (1 −
1

ρ(W1)
)(R2P†2 − P†1R1)x1 ≥ 0.

Furthermore, since P1 and P2 are EP matrices, we obtain the following expression:

∇ ≥
1

ρ(W1)

(
(R2P†2 − P†1R1)x1 + (S2P†2 − P†1S1)x1

)
=

1
ρ(W1)

(
(R2P†2 + S2P†2)x1 − (P†1R1 + P†1S1)x1

)
=

1
ρ(W1)

(
(R2 + S2)P†2x1 − P†1(R1 + S1)x1

)
=

1
ρ(W1)

(
(P2 − A)P†2x1 − P†1(P1 − A)x1

)
=

1
ρ(W1)

(
(P†1A − AP†2)x1

)
≥ 0.

Consequently, we have W̃2x − ρ(W1)x ≥ 0. By Lemma 2.1, it follows that ρ(W1) ≤ ρ(W̃2) = ρ(W2). Similarly,
if the inequality P†1S1 ≤ S2P†2 holds, then we also conclude that ρ(W1) ≤ ρ(W2).

4. Conclusion

The principal contribution of this paper is the establishment of a theoretical framework that allows
researchers to focus less on the specific type of double splitting encountered during computations. We
propose two new subclasses of double splittings and derive various convergence criteria for the iterative
method (4). The significance of these subclasses is explored, and we present convergence results that validate
their introduction, thereby broadening the applicability of the double iteration scheme (4). Additionally,
we provide several comparison results that guide the selection of the most effective splitting when multiple
options of the same type are available.
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