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Abstract. In this article, for a third-order equation with multiple characteristics, boundary value problems
in three-dimensional space in semi-bounded domains are formulated and studied. The uniqueness of the
solution is proven by the method of energy integrals. The existences of solutions is proved by the method
of separation of variables. The solutions are constructed explicitly in the form of an infinite series, and the
possibility of term-by-term differentiation of the series with respect to all variables is justified.

1. Introduction

Third-order partial differential equations are considered when solving problems in the theory of non-
linear acoustics and in the hydrodynamic theory of space plasma and fluid filtration in porous media
[1],[2].

In the work [3], taking into account the properties of viscosity and thermal conductivity of the gas, a
third-order equation with multiple characteristics was obtained from the Navier-Stokes system, containing
the second derivative with respect to time

uxxx + uyy −
ν
y

uy = uxuxx, ν = const.

This equation when ν = 1 describes an axisymmetric flow, and when ν = 0 it describes a plane-parallel flow
[4].

The first results on a third-order equation with multiple characteristics were obtained in the works of
H. Block [5], E. Del Vecehio [6].

L. Catabriga in the work [7] for equation D2n+1
x u − D2

yu = 0 constructed a fundamental solution in the
form of a double improper integral and studied the properties of the potential and solved boundary value
problems.
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In the works [8],[9], fundamental solutions of a third-order equation with multiple characteristics were
constructed, containing second derivatives with respect to time, expressed through degenerate hypergeo-
metric functions, their properties were studied, and estimates were found for |t| → ∞.

In works [10], [11], [12], [13], [14], [15], [16], boundary value problems for third-order equations were
studied.

2. Statement of the problem

In the domains D+ =
{
(x, y, z) : 0 < x < +∞, 0 < y < q, 0 < z < r

}
and D− = {(x, y, z) : −∞ < x < 0, 0 <

y < q, 0 < z < r}, consider the equation

L [u] ≡
∂3u
∂x3 −

∂2u
∂y2 −

∂2u
∂z2 = 0, (1)

where q > 0, r > 0 - constant real numbers, and for it, we will study the following problems.

Problem 2.1. Find a solution to equation (1) in the domain D+ from class C3,2,2
x,y,z (D+) ∩ C2,1,1

x,y,z (D+ ∪ Γ1), having a
limited second derivative with respect by x, as x → +∞ and uy,uz ∈ L2 (D+), satisfying the following boundary
conditions:

αu (x, 0, z) + βuy (x, 0, z) = 0,
γu

(
x, q, z

)
+ δuy

(
x, q, z

)
= 0,

u
(
x, y, 0

)
= u

(
x, y, r

)
= 0,

0 < x < +∞, (2)

u
(
0, y, z

)
= ψ1

(
y, z

)
, lim

x→+∞
u
(
x, y, z

)
= lim

x→+∞
ux

(
x, y, z

)
= 0,uni f ormly limited by 0 ≤ y ≤ q, 0 ≤ z ≤ r, (3)

where Γ1 = ∂D+ - boundary of the domain D+, α, β, γ, δ ∈ R\{0}, and ψ1
(
y, z

)
- a given sufficiently smooth

function, moreover
α
∂ jψ1 (0, z)
∂y j + β

∂ j+1ψ1 (0, z)
∂y j+1

= 0, γ
∂ jψ1

(
q, z

)
∂y j + δ

∂ j+1ψ1
(
q, z

)
∂y j+1

= 0,

∂4ψ1
(
y, r

)
∂y4 =

∂4ψ1
(
y, 0

)
∂y4 = 0,

∂6ψ1
(
y, r

)
∂y4∂z2 =

∂6ψ1
(
y, 0

)
∂y4∂z2 = 0,

j = 0, 2. (4)

Problem 2.2. Find a solution to equation (1) in the domain D− from class C3,2,2
x,y,z (D−) ∩ C2,1,1

x,y,z (D− ∪ Γ2), having
bounded first and second derivatives with respect by x, as x → −∞ and uy,uz ∈ L2 (D−) , satisfying the boundary
conditions for −∞ < x < 0 (2) and

u
(
0, y, z

)
= ψ2

(
y, z

)
,ux

(
0, y, z

)
= ψ3

(
y, z

)
, lim

x→−∞
u
(
x, y, z

)
= 0, uni f ormly limited by 0 ≤ y ≤ q, 0 ≤ z ≤ r, (5)

where Γ2 = ∂D− - boundary of the domain D−, α, β, γ, δ ∈ R\{0} and ψi
(
y, z

)
, i = 2, 3 - given sufficiently smooth

functions, moreover
α
∂ jψi (0, z)
∂y j + β

∂ j+1ψi (0, z)
∂y j+1

= 0, γ
∂ jψi

(
q, z

)
∂y j + δ

∂ j+1ψi
(
q, z

)
∂y j+1

= 0, j = 0, 2,

∂4ψi
(
y, 0

)
∂y4 =

∂4ψi
(
y, r

)
∂y4 = 0,

∂6ψi
(
y, 0

)
∂y4∂z2 =

∂6ψi
(
y, r

)
∂y4∂z2 = 0, i = 2, 3.

(6)

We note that semi-bounded domains in the plane were studied in [17], [18], [19], [20], and in three-
dimensional space for a second-order equation in [21], [22] some well-posed boundary value problems
were studied. And also in works [23], [24] in finite domains, other boundary value problems in three-
dimensional space were studied, and in works [25], [26] boundary value problems for a fourth-order
equation in three-dimensional space were considered.
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3. Uniqueness of solution

Theorem 3.1. If the Problem 2.1 and Problem 2.2 have solutions, then if conditions αβ < 0, γδ > 0 are met, they
are unique.

Proof. Let us assume conversely, that is, let Problems 2.1 (2.2) has two solutions u1
(
x, y, z

)
and u2

(
x, y, z

)
.

Then, the function u
(
x, y, z

)
= u1

(
x, y, z

)
− u2

(
x, y, z

)
satisfies equation (1) with homogeneous boundary

conditions. Then, let us prove u
(
x, y, z

)
≡ 0 is D+ (D−).

For this purpose, we multiply both sides of equation (1) by u, and then, we get

u L[u] ≡
∂
∂x

(
u uxx −

1
2

u2
x

)
−
∂
∂y

(
u uy

)
+ u2

y −
∂
∂z

(u uz) + u2
z = 0. (7)

Integrate equality (7) in the domain Dd =
{(

x, y, z
)

: 0 < x < d, 0 < y < q, 0 < z < r
}
, where d > 0,

and we have
q∫

0

r∫
0

u
(
d, y, z

)
uxx

(
d, y, z

)
dydz −

q∫
0

r∫
0

u
(
0, y, z

)
uxx

(
0, y, z

)
dydz−

−
1
2

q∫
0

r∫
0

u2
x
(
d, y, z

)
dydz +

1
2

q∫
0

r∫
0

u2
x
(
0, y, z

)
dydz −

d∫
0

r∫
0

u
(
x, q, z

)
uy

(
x, q, z

)
dxdz+

+
d∫

0

r∫
0

u (x, 0, z) uy (x, 0, z) dxdz −
d∫

0

q∫
0

u
(
x, y, r

)
uz

(
x, y, r

)
dxdy+

+
d∫

0

q∫
0

u
(
x, y, 0

)
uz

(
x, y, 0

)
dxdy +

#
Dd

u2
y
(
x, y, z

)
dxdydz+

+
#
Dd

u2
z
(
x, y, z

)
dxdydz = 0.

(8)

If d → +∞, then Dd → D+. Moreover, taking into account the homogeneous boundary conditions of
Problem 2.1, for x→ +∞ and uy,uz ∈ L2 (D+), from (8) we obtain

1
2

q∫
0

r∫
0

u2
x
(
0, y, z

)
dydz −

β

α

+∞∫
0

r∫
0

u2
y (x, 0, z)dxdz+

δ
γ

+∞∫
0

r∫
0

u2
y
(
x, q, z

)
dxdz+

+
#
D+

u2
y
(
x, y, z

)
dxdydz +

#
D+

u2
z
(
x, y, z

)
dxdydz = 0.

Taking into account conditionsαβ < 0, γδ > 0,we obtain uy
(
x, y, z

)
= 0 and uz

(
x, y, z

)
= 0, i.e. u

(
x, y, z

)
=

f (x) in D+. Putting into equation (1), we have f ′′′ (x) = 0. Hence, f (x) = C1x2+C2x+C3. From the conditions
(3), we get f (0) = 0, lim

x→+∞
f (x) = lim

x→+∞
f ′ (x) = 0, then, C1 = 0, C2 = 0 and C3 = 0, hence we have that

f (x) = 0. Therefore, u
(
x, y, z

)
≡ 0 in D+ ∪ Γ1. As this result, and therefore, we attain u1

(
x, y, z

)
= u2

(
x, y, z

)
.

Now, integrating the equality (7) in the domain Dc =
{(

x, y, z
)

: c < x < 0, 0 < y < q, 0 < z < r
}
, where

c < 0, we have
q∫

0

r∫
0

u
(
0, y, z

)
uxx

(
0, y, z

)
dydz −

q∫
0

r∫
0

u
(
c, y, z

)
uxx

(
c, y, z

)
dydz−

−
1
2

q∫
0

r∫
0

u2
x
(
0, y, z

)
dydz +

1
2

q∫
0

r∫
0

u2
x
(
c, y, z

)
dydz −

0∫
c

r∫
0

u
(
x, q, z

)
uy

(
x, q, z

)
dxdz+

+
0∫

c

r∫
0

u (x, 0, z) uy (x, 0, z) dxdz −
0∫

c

q∫
0

u
(
x, y, r

)
uz

(
x, y, r

)
dxdy+

+
0∫

c

q∫
0

u
(
x, y, 0

)
uz

(
x, y, 0

)
dxdy +

#
Dc

u2
y
(
x, y, z

)
dxdydz+

+
#
Dc

u2
z
(
x, y, z

)
dxdydz = 0.
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If c → −∞, then Dc → D−. Moreover, taking into account the homogeneous boundary conditions of
Problem 2.2, for x→ −∞ and uy,uz ∈ L2 (D−), we obtain

1
2

lim
c→−∞

q∫
0

r∫
0

u2
x
(
c, y, z

)
dydz −

β

α

0∫
−∞

r∫
0

u2
y (x, 0, z)dxdz+

δ
γ

0∫
−∞

r∫
0

u2
y
(
x, q, z

)
dxdz+

+
#
D−

u2
y
(
x, y, z

)
dxdydz +

#
D−

u2
z
(
x, y, z

)
dxdydz = 0.

As above, it easily follows from here that u
(
x, y, z

)
≡ 0 in D− ∪ Γ2.

The proof has been completed.

4. Existence of the solution

Theorem 4.1. If
∂7ψi

(
y, z

)
∂y4∂z3 ∈ C

[
0 < y < q, 0 < z < r

]
, i = 1, 2, 3, and these functions satisfy the conditions (4)

and (6) then the solutions to the Problem 2.1 and Problem 2.2 exists.

Proof. In order to prove the existence of a solution to the Problem 2.1 (Problem 2.2), we look for it in the
form

u
(
x, y, z

)
= X (x) V

(
y, z

)
. (9)

Putting (9) into equation (1) and separating the variables, with respect to function X(x) we obtain the
equation:

X′′′ + λX = 0, (10)

and for function V
(
y, z

)
- the following boundary value problem:

Vyy + Vzz + λV = 0,
αV (0, z) + βVy (0, z) = 0,
γV

(
q, z

)
+ δVy

(
q, z

)
= 0,

V
(
y, 0

)
= V

(
y, r

)
= 0,

(11)

where λ is the separation parameter. Let us find the eigenvalues and eigenfunctions of problem (11). Let’s
put

V
(
y, z

)
= Y

(
y
)

Z (z) . (12)

Substituting (12) into equation (11), separating the variables, we have the problems
Y′′ + νY = 0,
αY (0) + βY′ (0) = 0,
γY

(
q
)
+ δY′

(
q
)
= 0,

(13)

{
Z′′ + µZ = 0,
Z (0) = Z (r) = 0, (14)

where ν > 0 and µ > 0 are constants related by λ = ν + µ.
It is known from [20] that the eigenvalues of problem (13) exist only for νn > 0 and νn = O

(
n2

)
, and the

corresponding eigenfunctions have the form

Yn(y) =
(
α sin

√
νny − β

√
νn cos

√
νny

)
An,
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where An are arbitrary constants, and for problem (14) we obtain

Zm (z) = Am sin
√
µmz,

where Am are arbitrary constants and µm =
(mπ

r

)2
.

Taking into account (12), we define

Vn,m
(
y, z

)
= An,mYn(y) sin

mπz
r
, (15)

where An,m are some constant factors. We choose them as in [20], so that the norm of function Vn,m
(
y, z

)
is

equal to one. Orthogonality
{
Vn,m

}
is easy to check

q∫
0

r∫
0

V2
n,m

(
y, z

)
dydz = A2

n,m

q∫
0

(
α sin

√
νny − β

√
νn cos

√
νny

)2
dy

r∫
0

sin2
(mπ

r
z
)

dz = 1,

∥∥∥Vn,m

∥∥∥2
=

q∫
0

(
α sin

√
νny − β

√
νn cos

√
νny

)2
dy

r∫
0

sin2
(mπ

r
z
)

dz =

=

[
1
2

(
α2q + β2qνn − αβ

)
+

(
β2√νn

4
−

α2

4
√
νn

)
sin 2

√
νnq+

+
αβ

2
cos 2

√
νnq

]
r
2
.

Then, as a solution to the spectral problem (13), (14), we take the functions

Vn,m
(
y, z

)
=

1∥∥∥Vn,m

∥∥∥2 Yn(y) sin
mπz

r
, (16)

which correspond to the eigenvalues

λn,m = νn +
(
πm

r

)2
,n,m ∈ N.

The possibilities of expanding given functions according to (16) were proven in [20], [27]. The general
solution to equation (10) has the form:

Xn,m (x) = C1n,me−kn,m x + e
1
2 kn,m x

(
C2n,m cos

√
3

2
kn,mx + C3n,m sin

√
3

2
kn,mx

)
, (17)

where
kn,m =

3
√
λn,m =

3
√
νn + µm.

Further, from the statement of the Problem 2.1 it follows that

lim
x→+∞

Xn,m (x) = lim
x→+∞

X′n,m (x) = 0.

Therefore, in (17) it is necessary to consider that C2n,m = C3n,m = 0. Then, the function (17) takes the form

Xn,m (x) = C1n,me−kn,mx. (18)

Now, by virtue of (9), we search for the solution to the Problem 2.1 in the form

u
(
x, y, z

)
=

+∞∑
n,m=1

C1n,me−kn,mxVn,m(y, z). (19)
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The function defined by the formal series (19) satisfies conditions (2).
Assuming temporarily that the series in (19) and its derivatives converge uniformly and requiring the

function u
(
x, y, z

)
defined by series (19), to satisfy the boundary conditions (3), we obtain

u
(
0, y, z

)
= ψ1(y, z) =

+∞∑
m,n=1

C1n,mVn,m(y, z),

where C1n,m - the Fourier coefficients of the function ψ1(y, z), that is

C1n,m = ψ1n,m =
1∥∥∥Vn,m

∥∥∥2

q∫
0

r∫
0

ψ1
(
y, z

)
Yn(y) sin

mπz
r

dydz. (20)

Substituting C1n,m into (19), we get

u
(
x, y, z

)
=

+∞∑
n,m=1

ψ1n,me−kn,mxVn,m(y, z). (21)

Now, we prove that the series (21) and its derivatives uxxx,uyy and uzz converge uniformly in the domain
D+ ∪ Γ1, then function u

(
x, y, z

)
, defined by the series (21), gives a solution to the Problem 2.1.

Let us prove the absolute and uniform convergence of the series (21). From (21) we have

∣∣∣u (
x, y, z

)∣∣∣ ≤M
+∞∑

n,m=1

∣∣∣ψ1n,mYn(y)
∣∣∣. (22)

In what follows the maximum value of all found positive known numbers in estimates will be denoted
by M.

We estimate the expression
∣∣∣ψ1n,mYn(y)

∣∣∣:
∣∣∣ψ1n,mYn(y)

∣∣∣ ≤ ∣∣∣ψ1n,m

∣∣∣ ∣∣∣Yn
(
y
)∣∣∣ = ∣∣∣Yn

(
y
)∣∣∣ 1∥∥∥Vn,m

∥∥∥2

q∫
0

r∫
0

∣∣∣ψ1
(
y, z

)∣∣∣ ∣∣∣Yn
(
y
)∣∣∣ dydz,

∣∣∣Yn
(
y
)∣∣∣ = ∣∣∣α sin

√
νny − β

√
νn cos

√
νny

∣∣∣ ≤ √
α2 + β2νn.

Then, we have ∣∣∣ψ1n,mYn(y)
∣∣∣ ≤ α2 + β2νn∥∥∥Vn,m

∥∥∥2

q∫
0

r∫
0

∣∣∣ψ1
(
y, z

)∣∣∣ dydz.

Let us prove that the expression
α2 + β2νn∥∥∥Vn,m

∥∥∥2 as n,m→∞ (that is as νn →∞) is bounded:

α2 + β2νn∥∥∥Vn,m

∥∥∥2 =
α2 + β2νn[

1
2
(
α2q + β2qνn − αβ

)
+

(
β2√νn

4
−

α2

4
√
νn

)
sin 2

√
νnq +

αβ

2
cos 2

√
νnq

]
r
2

.

For n,m→∞ holds

lim
n,m→∞

α2 + β2νn∥∥∥Vn,m

∥∥∥2 =
4β2

β2qr
=

4
qr
.
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Hence, we conclude that for any νn the inequality

∣∣∣ψ1n,mYn(y)
∣∣∣ ≤ 4

qr

q∫
0

r∫
0

∣∣∣ψ1
(
y, z

)∣∣∣ dydz

is true. Let, taking into account condition (4) and integrating by parts (20), we obtain

∣∣∣ψ1n,mYn(y)
∣∣∣ ≤M

∣∣∣∣ψ(7)
1n,m

∣∣∣∣
n4m3 . (23)

Taking these estimates into account, from (22) we have

∣∣∣u(x, y, z)
∣∣∣ ≤M

+∞∑
n,m=1

∣∣∣∣ψ(7)
1n,m

∣∣∣∣
n4m3 < ∞,

It follows that the series (21) converges absolutely and uniformly.
Now, we prove that the derivatives of the series (21) included in equation (1) also converge absolutely

and uniformly in the domain D+ ∪ Γ1. To do this, from (21), we calculate the derivatives by y and z, and we
attain

∂2u
∂y2 = −

+∞∑
n,m=1

νnψ1n,me−kn,mxVn,m(y, z),

∂2u
∂z2 = −

(
π
r

)2 +∞∑
n,m=1

m2ψ1n,me−kn,mxVn,m(y, z).

Let us estimate the resulting equalities and, taking into account (23), for x > 0, we have∣∣∣∣∣∣∂2u
∂y2

∣∣∣∣∣∣ ≤M
+∞∑

n,m=1

∣∣∣∣ψ(7)
1n,m

∣∣∣∣
n2m3 < ∞,

∣∣∣∣∣∣∂2u
∂z2

∣∣∣∣∣∣ ≤M
+∞∑

n,m=1

∣∣∣∣ψ(7)
1n,m

∣∣∣∣
n4m

.

Using the Cauchy-Bunyakovsky and Bessel inequality, we obtain∣∣∣∣∣∣∂2u
∂z2

∣∣∣∣∣∣ ≤M

√√
+∞∑

m,n=1

∣∣∣∣ψ(7)
1n,m

∣∣∣∣2
√√

+∞∑
n,m=1

( 1
n4m

)2

≤M

∥∥∥∥∥∥∂7ψ1(y, z)
∂y4∂z3

∥∥∥∥∥∥ < ∞,
where

+∞∑
n,m=1

∣∣∣∣ψ(7)
1n,m

∣∣∣∣2 ≤ ∥∥∥∥∥∥∂7ψ1(y, z)
∂y4∂z3

∥∥∥∥∥∥2

L2(0<y<q,0<z<r)
,
+∞∑
m=1

1
m2 =

π2

6
.

Consequently, the series of the corresponding functions
∂2u
∂y2 ,

∂2u
∂z2 converges absolutely and uniformly.

The absolute and uniform convergence of the partial derivative with respect to the variable x up to the third

order of the series (21) follows from

∣∣∣∣∣∣∂3u
∂x3

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∂2u
∂y2

∣∣∣∣∣∣ +
∣∣∣∣∣∣∂2u
∂z2

∣∣∣∣∣∣ and what was proved above.

If the domain D− is considered, that is, the Problem 2.2, then lim
x→−∞

Xn,m (x) = 0. Therefore, in (17), there
must be C1n,m = 0. Then, the function (17) has the form

Xn,m (x) = e
1
2 kn,m x

(
C2n,m cos

√
3

2
kn,mx + C3n,m sin

√
3

2
kn,mx

)
. (24)
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By virtue of (9), we search for the solution to the Problem 2.2 in the form

u
(
x, y, z

)
=

+∞∑
n,m=1

e
1
2 kn,mx

[
C2n,m cos

√
3

2
kn,mx + C3n,m sin

√
3

2
kn,mx

]
Vn,m(y, z). (25)

Requiring the series (25) to satisfy the boundary conditions (5), we obtain

u
(
0, y, z

)
= ψ2

(
y, z

)
=

+∞∑
m,n=1

C2n,mVn,m(y, z),

ux
(
0, y, z

)
= ψ3

(
y, z

)
=

+∞∑
m,n=1

1
2

kn,m

[
C2n,m +

√

3C3n,m

]
Vn,m(y, z),

where

C3n,m =
2

√
3kn,m

ψ3n,m −
1
√

3
ψ2n,m,

ψin,m =
1∥∥∥Vn,m

∥∥∥2

q∫
0

r∫
0
ψi

(
y, z

)
Yn(y) sin

mπz
r

dydz, i = 2, 3,

 (26)

ψ2n,m and ψ3n,m - the Fourier coefficients of the functions ψ2
(
y, z

)
and ψ3

(
y, z

)
.

Putting the values C2n,m and C3n,m in the series (25), we get

u
(
x, y, z

)
=
+∞∑

n,m=1
e

1
2 kn,mx

ψ1n,m
2
√

3
cos

( √
3

2
kn,mx +

π
6

)
+ ψ2n,m

2
√

3kn,m
sin

√
3

2
kn,mx

Vn,m(y, z). (27)

Now, we prove that the series (27) and its derivatives uxxx,uyy and uzz converge uniformly in the domain
D− ∪ Γ2, then function u

(
x, y, z

)
, defined by the series (27), gives a solution to the Problem 2.2.

Let us prove the absolute and uniform convergence of the series (27). From (27) we have

∣∣∣u (
x, y, z

)∣∣∣ = +∞∑
n,m=1

∣∣∣∣∣∣e 1
2 kn,mx

ψ2n,m
2
√

3
cos

( √
3

2
kn,mx +

π
6

)
+ ψ3n,m

2
√

3kn,m
sin

( √
3

2
kn,mx

) Vn,m(y, z)

∣∣∣∣∣∣ ≤
≤M

+∞∑
n,m=1

[∣∣∣ψ2n,mYn(y)
∣∣∣ + 1

kn,m

∣∣∣ψ3n,mYn(y)
∣∣∣]. (28)

Integrating (26) by parts, taking into account condition (6) and kn,m =
3
√
λn,m = 3

√
νn + µm ≥

3

√
2π2

qr
3
√

nm,

we obtain

∣∣∣ψ2n,mYn(y)
∣∣∣ ≤M

∣∣∣ψ(7)
2n,m

∣∣∣
n4m3 ,

∣∣∣ψ3n,mYn(y)
∣∣∣ ≤M

∣∣∣ψ(7)
3n,m

∣∣∣
n

13
3 m

10
3

. (29)

Taking these estimates into account, from (28) we have

∣∣∣u (
x, y, z

)∣∣∣ =M

 +∞∑
n,m=1

∣∣∣ψ(7)
2n,m

∣∣∣
n4m3 +

+∞∑
n,m=1

∣∣∣ψ(7)
3n,m

∣∣∣
n

13
3 m

10
3

 < ∞,
It follows that the series (27) converges absolutely and uniformly.
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Now, we prove that the derivatives of the series (27) included in equation (1) also converge absolutely
and uniformly in the domain D+ ∪ Γ1. To do this, from (27), we calculate the derivatives by y and z, and we
attain

∂2u
∂y2 = −

+∞∑
n,m=1

νne
1
2 kn,mx

ψ1n,m
2
√

3
cos

( √
3

2
kn,mx +

π
6

)
+ ψ2n,m

2
√

3kn,m
sin

√
3

2
kn,mx

Vn,m(y, z),

∂2u
∂z2 = −

+∞∑
n,m=1

m2e
1
2 kn,mx

[
ψ2n,m

2
√

3
cos

( √
3

2
kn,mx +

π
6

)
+ ψ3n,m

2
√

3kn,m
sin

( √
3

2
kn,mx

) Vn,m(y, z).

Let us estimate the resulting equalities and, taking into account (29), for x < 0, we have∣∣∣∣∣∣∂2u
∂y2

∣∣∣∣∣∣ ≤M

 +∞∑
n,m=1

∣∣∣ψ(7)
2n,m

∣∣∣
n2m3 +

+∞∑
n,m=1

∣∣∣ψ(7)
3n,m

∣∣∣
n

7
3 m

10
3

 < ∞,
∣∣∣∣∣∣∂2u
∂z2

∣∣∣∣∣∣ ≤M

 +∞∑
n,m=1

∣∣∣ψ(7)
2n,m

∣∣∣
n4m

+

+∞∑
n,m=1

∣∣∣ψ(7)
3n,m

∣∣∣
n

13
3 m

4
3

 ,
Using the Cauchy-Bunyakovsky and Bessel inequality, we obtain∣∣∣∣∣∣∂2u

∂z2

∣∣∣∣∣∣ ≤M


√√

+∞∑
m,n=1

∣∣∣ψ(7)
2n,m

∣∣∣2 √√
+∞∑

n,m=1

( 1
n4m

)2

+

+∞∑
n,m=1

∣∣∣ψ(7)
3n,m

∣∣∣
n

13
3 m

4
3

 ≤M


∥∥∥∥∥∥∂7ψ2(y, z)
∂y4∂z3

∥∥∥∥∥∥
L2(0<y<q,0<z<r)

+

+∞∑
n,m=1

∣∣∣ψ(7)
3n,m

∣∣∣
n

13
3 m

4
3

 < ∞,
where

+∞∑
n,m=1

∣∣∣ψ(7)
2n,m

∣∣∣2 ≤ ∥∥∥∥∥∥∂7ψ2(y, z)
∂y4∂z3

∥∥∥∥∥∥2

L2(0<y<q,0<z<r)
,
+∞∑
m=1

1
m2 =

π2

6
.

Consequently, the series of the corresponding functions
∂2u
∂y2 ,

∂2u
∂z2 converges absolutely and uniformly.

The absolute and uniform convergence of the partial derivative with respect to the variable x up to the third

order of the series (27) follows from

∣∣∣∣∣∣∂3u
∂x3

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∂2u
∂y2

∣∣∣∣∣∣ +
∣∣∣∣∣∣∂2u
∂z2

∣∣∣∣∣∣ and what was proved above.

The proof of Theorem 4.1 is complete.
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