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On the spectral ν-continuity
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Abstract. The spectrum of elements of Banach algebras can be considered as an application that has as
codomain the space of compact subsets of C with the Hausdorff metric. The essential question to answer,
which opens this line of research, is whether this mapping is continuous, on this line, this paper studies
whether some subsets of the spectrum are ν-continuous at certain operators. Conceptualizing: the spectrum
σ is called ν-continuous if a sequence (Tn) is ν-convergent to T implies σ(Tn)→ σ(T) in the Hausdorffmetric.
However, the results of the present paper demonstrate that special care is required about the zero point
in the spectrum to guarantee this convergence, which is why additional conditions are requisite on this
singular point. For example, it is known that the spectrum is upper semi-ν-continuous, this paper shows
that the spectrum is also lower semi-ν-continuous (hence ν-continuous) at a Fredholm operator for which
0 is an accumulation point of the spectrum, and which satisfies a condition on the spectrum similar to one
imposed by Conway and Morrey. In addition, in this manuscript, it is established that the approximate point
spectrum σap is upper semi-ν-continuous except possibly for the zero point in the spectrum and shows the
conditions on a Fredholm operator to ensure the approximate point spectrum σap is ν-continuous. Finally, it
is shown that the lower semi-ν-continuity of the Weyl spectrum can be obtained by restricting to essentially
G1 operators and if a sequence of p-hyponormal operators Tn (which are uniformly bounded below on
the complement of the kernel) ν-converges to a Fredholm operator T (for which 0 ∈ σap(T)), then σ(Tn)
converges to σ(T).

1. Introduction

Spectral continuity is a relevant subject in Banach-space theory and operator theory. Conway and
Morrey in [7] studied the continuity of the spectrum for bounded operators on Hilbert spaces, in particular,
they are looking for the point of continuity and affirm that it would be interesting to extend the fundamental
theorem of their investigation to Banach spaces. Several authors have studied this topic in Banach spaces
using different types of convergence; in particular, Ahues in [1] proves that the norm convergence implies
the upper and lower semi-continuity of the spectrum at each isolated point.

Convergence in norm is not sufficient to approximate an operator, for example, Nistrom in [1, Proposition
4.6] provides an approximation of a Fredholm integral operator on C0([a, b]), which is not norm convergent.
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The norm convergence condition can be weakened by imposing collectively compact convergence, which
is a characteristic that cannot be omitted in this case. Dealing with this problem, Ahues introduces a “new”
mode of convergence that does not require compactness: the ν-convergence. In Ahues’ paper appears
several useful examples of ν-convergence, in particular: (1) the norm convergence, and the collectively
compact convergence, imply the ν-convergence; (2) the convergence of a modification of the Nyström
approximation is now guaranteed; (3) the operation of addition in the space of bounded operators over a
Banach space (B(X)) is not compatible with ν-convergence, that is, if Tn

ν
→ T and Un

ν
→ U, it is possible

that Tn +Un
ν
↛ T +U; and (4) the ν-convergence is a pseudo-convergence in the sense that can be possible

Tn
ν
→ T and Tn

ν
→ U but T , U, even so, σ(T) = σ(U). Time after, Sánchez et al. in [17] establish that problem

(4) also occurs for the point spectrum and the approximate point spectrum. Also, Sánchez et al. show that
Riesz operators and shift isometries are points of the spectral ν-continuity and investigate the stability of
points of spectral continuity for a sequence of compact operators that ν-converges to a Riesz operator.

Ammar in [3] treats the problem (4) and establishes that the Wolf and Weyl essential spectra of T and
U are equal, then he inspects the relationship between the Wolf and the Weyl essential spectra of Tn and T
for Tn being ν-convergent to T. Moreover, he proves if T is a bounded Fredholm linear operator, then it is
ν-upper semi-continuous at T.

In this paper, in Section 2, we study the ν-continuity of the spectral function over arbitrary unital Banach
algebras and show that if this type of Banach algebra is abelian, then the spectral function is ν-continuous.
We also demonstrate the ν-continuity of this function over a certain set RA in the algebra A, see (2). In
section 3, the study is made on the ν-continuity of the spectrum and of the approximate point spectrum in
the algebra of bounded linear operators defined on a Banach space, which is also exhibited that the compact
self-adjoint operators are ν-continuous. An interesting result in this section is that for the particular case
of a Hilbert space H, the ν-continuity of the spectrum is equivalent under certain conditions to the usual
continuity (in norm) of the spectrum; furthermore, it is proved that the approximate point spectrum is
upper semi-ν-continuous in every Fredholm operator, and then sufficient conditions are given to guarantee
the ν-continuity, this may be possible by the extension of a result of Conway and Morrel from Hilbert spaces
to Banach spaces. On the other hand, due to the work of Luecke in [12], it is known that the Weyl spectrum
is continuous if applied to essentially G1 operators; section 4 is dedicated to establishing that, in this case,
also the Weyl spectrum is ν-continuous. In this same context, Djordjević in [9] and Hwang in [11] show the
spectrum over the class of p-hyponormal operators is continuous, so this article ends with an adaptation of
Djordjevic’s idea to prove the ν-continuity of the spectrum over this specific class of operators.

2. Spectral continuity on complex Banach algebras

Let A be a complex Banach algebra with identity 1A. For x ∈ A the resolvent of x is defined by
ρ(x) = {λ ∈ C : x − λ1A is invertible inA} and the spectrum of x is given by σ(x) = C \ ρ(x). The spectral
radius r(x) of x is the number r(x) = max{|λ| : λ ∈ σ(x)} and it holds that r(x) = lim

n→∞
∥xn
∥

1
n = inf

n
∥xn
∥

1
n .

A sequence (xn) inA is said to be ν−convergent to x, denoted by xn
ν
→ x, if (∥xn∥) is bounded, ∥(xn−x)x∥ →

0 and ∥(xn − x)xn∥ → 0. The ν-convergence is a pseudo-convergence in the sense that it is possible to have
xn

ν
→ x and xn

ν
→ y but x , y, see for instance [1, Example 1]. The connection between norm convergence

and ν-convergence is as follows: if xn
n
→ x then xn

ν
→ x, also, if xn

ν
→ x and x is right invertible, then xn

n
→ x.

A function τ defined on A whose values are non-empty compact sets in C is said to be continuous
(ν-continuous, respectively) at x, if τ(xn) → τ(x) with respect to the Hausdorff metric, for all sequence (xn)
in A such that xn

n
→ x (xn

ν
→ x, respectively). It is clear that if τ is ν-continuous at x, then τ is continuous

at x. The function τ is said to be upper semi-continuous (upper semi-ν-continuous, respectively) at x, if
lim sup τ(xn) ⊆ τ(x) for all sequence (xn) inA such that xn

n
→ x (xn

ν
→ x, respectively). Also, τ is said to be

lower semi-continuous (lower semi-ν-continuous, respectively) at x, if τ(x) ⊆ lim inf τ(xn) for all (xn) in A
such that xn

n
→ x (xn

ν
→ x, respectively).
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Remark 2.1. Let τ be a function defined onA whose values are non-empty compact sets in C such that τ(y) ⊆ σ(y)
for all y ∈ A. Then

1. τ is continuous at x ∈ A if and only if τ is upper and lower semi-continuous at x.
2. τ is ν-continuous at x ∈ A if and only if τ is upper and lower semi-ν-continuous at x.

The following theorem is proved in [1, Corollary 2.7].

Theorem 2.2. For each x ∈ A, σ is upper semi-ν-continuous at x.

In the following proposition, we will use the notation σB(x) for the spectrum of x ∈ B concerning a given
subalgebra B ofA. A character on an abelian Banach algebra B is a non-zero homomorphism φ : B → C.
The set of all characters on B is denoted byM(B). In [13, Theorems 4 and 6], it is established that if B is an
unital abelian Banach algebra then

1. φ(x) ∈ σB(x) for all x ∈ B and φ ∈ M(B);
2. for every λ ∈ σB(x), there exists φ ∈ M(B) such that φ(x) = λ;
3. for each φ ∈ M(B), ∥φ∥ = 1.

In [15, Theorem 4], Newburgh proves that commutativity implies the spectral continuity: if the elements
of a sequence (xn) in a Banach algebra A commute with their limit, i.e. if xn

n
→ x and xnx = xxn, then

σ(xn) → σ(x). The following proposition gives an essential condition to extend that result for the ν-
convergence: 0 must be an accumulation point in the spectrum of a.

Proposition 2.3. Let a ∈ A and (an) be a sequence in A such that ana = aan and anam = aman for all n,m ∈ N. If
an

ν
→ a and 0 ∈ acc σ(a), then σ(an)→ σ(a).

Proof. By Theorem 2.2, σ is upper semi-ν-continuous at a, thus lim sup σA(an) ⊆ σA(a). Hence, we only need
to prove that σA(a) ⊆ lim inf σA(an).

ConsiderB0 the subalgebra ofAwhich consists of all linear combinations of finite products of elements
in {an : n ∈ N} ∪ {a, 1A}. From hypothesis, B0 is commutative. Thus by Zorn’s lemma, there exists B the
maximal abelian subalgebra of A such that B0 ⊆ B. Therefore by [14, Exercise 8, p.8], σA(a) = σB(a) and
σA(an) = σB(an) for all n ∈ N. Let λ ∈ σA(a) with λ , 0. Then there exists φ ∈ M(B) such that φ(a) = λ.
Observe that

∥(φ(an) − φ(a))φ(a)∥ = ∥φ((an − a)a)∥ ≤ ∥φ∥∥(an − a)a∥ → 0.

Thus ∥(φ(an) − φ(a))λ∥ → 0, which implies that φ(an) → λ. Now, since φ(an) ∈ σB(an) (= σA(an)) for all
n ∈N, it follows that λ ∈ lim inf σA(an). Consequently, since 0 ∈ acc σA(a),

σA(a) = σA(a) \ {0} ⊆ lim inf σA(an).

Remember, an elementary Cauchy domain is an open bounded connected subset of Cwhose boundary
is the union of a finite number of nonintersecting Jordan curves. A finite union of elementary Cauchy
domains having disjoint closures is called a Cauchy domain. Let D be a Cauchy domain, if each curve
involved in the boundary of D is oriented in such a way that points in D lie to the left as the curve is traced
out, then the oriented boundary C of D is called a Cauchy contour. The interior of the Cauchy contour C is
defined as int(C) = D and the exterior of C is defined by ext(C) = C \ (D ∪ C).

A set Λ ⊆ σ(a) is a spectral set for a if Λ is closed and open in σ(a). We set C(a,Λ) the set of all Cauchy
contours C separating Λ from σ(a) \ Λ, i.e. Λ ⊆ int(C) and σ(a) \ Λ ⊆ ext(C). It is clear that if C ∈ C(a,Λ),
then C ⊆ ρ(a). For any a ∈ A, Λ a spectral set for a and C ∈ C(a,Λ), define

p(a,Λ) = −
1

2πi

∫
C

(a − z)−1dz.

The element p(a,Λ) does not depend on the choice of C ∈ C(a,Λ).
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Remark 2.4. Let a ∈ A, Λ a spectral set for a and C ∈ C(a,Λ). If p = p(a,Λ), then

1. p2 = p and pa = ap;
2. Λ = ∅ if and only if p(a,Λ) = 0.

Proposition 2.5. Let p, q ∈ A be such that p2 = p. If p , 0 and r(p − q) < 1 then q , 0.

Proof. Since r(p− q) < 1 it follows that (p− q)− 1A is invertible. Suppose that q = 0, then p− 1A is invertible.
Thus there exists z ∈ A such that (p− 1A)z = 1A. This implies that p(p− 1A)z = p1A and so (p2

− p)z = p, i.e.
0 = (p − p)z = p, which is a contradiction.

Proposition 2.6. If a, b ∈ A and λ ∈ ρ(b) with λ , 0, then

[(a − b)(b − λ1A)−1]2 =
1
λ

[
(a − b)b(b − λ1A)−1(a − b) − (a − b)a + (a − b)b

]
(b − λ1A)−1.

Proof. Since (b−λ1A)(b−λ1A)−1 = 1 it follows that b(b−λ1A)−1
−λ(b−λ1A)−1 = 1A. Therefore (b−λ1A)−1 =

1
λ [b(b − λ1A)−1

− 1A]. Thus,

[(a − b)(b − λ1A)−1]2

= (a − b)(b − λ1A)−1(a − b)(b − λ1A)−1

= (a − b)
1
λ

[
b(b − λ1A)−1

− 1A
]
(a − b)(b − λ1A)−1

=
1
λ

[
(a − b)b(b − λ1A)−1(a − b) − (a − b)a + (a − b)b

]
(b − λ1A)−1.

Proposition 2.7. Let a, b ∈ A. If λ ∈ ρ(b) and ∥[(a − b)(b − λ1A)−1]2
∥ < 1, then λ ∈ ρ(a).

Proof. By the spectral radius theorem, r
(
(a − b)(b − λ1A)−1

)
≤ ∥[(a − b)(b − λ1A)−1]2

∥
1
2 < 1 and so −1 ∈

ρ
(
(a − b)(b − λ1A)−1

)
. Then (a − b)(b − λ1A)−1 + 1A is invertible. Therefore

a − λ1A = a − b + b − λ1A =
[
(a − b)(b − λ1A)−1 + 1A

]
(b − λ1A)

is invertible.

Theorem 2.8. [1, Proposition 2.9] Let a ∈ A, Λ be a spectral set for a, C ∈ C(a,Λ) and (an) be a sequence inA such
that an

ν
→ a. Then

1. There exists n0 ∈N such that for every n ≥ n0, C lies in ρ(an).
2. If Λn := σ(an) ∩ int(C) for all n ≥ n0, then Λn is a spectral set for an and C ∈ C(an,Λn). Further, if 0 ∈ ext(C)

then p(an,Λn) ν
→ p(a,Λ).

Conway and Morrey prove the following lemma, widely used in spectral approximation under norm
convergence in Hilbert spaces ([7, Lemma 1.5]). They state that the proof can be found in the literature, but
it is unknown for Banach spaces. However, this has been achieved for unital Banach algebras now, utilizing
ν−convergence, although the point 0 has been omitted.

Lemma 2.9. Let a ∈ A and (an) be a sequence in A such that an
ν
→ a. If U is an open set for which 0 < U and U

contains a component of σ(a), then there exits n0 ∈N such that U contains a component of σ(an) for all n ≥ n0.
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Proof. Let Ω be a component of σ(a) and U be an open set of C such that 0 < U and Ω ⊆ U. Since
Ω ∩ [σ(a) \U] = ∅, σ(a) \U is closed and σ(a) is compact, it follows that there exists Λ , ∅ open and closed
set in σ(a) such that Ω ⊆ Λ and Λ ∩ [σ(a) \ U] = ∅. This implies that Λ ⊆ U. From [1, Theorem 1.21], there
exists a Cauchy domain D such that

Λ ⊂ D and D ⊂ U ∩ [C \ (σ(a) \Λ)]. (1)

Let C be the boundary of D oriented in a way that C is a Cauchy contour. It is clear by (1) that C ∈ C(a,Λ).
Then from Theorem 2.8, there exits n1 ∈N such that for every n ≥ n1, C lies in ρ(an). Further, ifΛn := σ(an)∩D
for all n ≥ n1 then since 0 < U we have that

[r(p − pn)]2
≤ ∥(p − pn)2

∥ ≤ ∥(pn − p)pn∥ + ∥(pn − p)p∥ → 0,

where pn = p(an,Λn) and p = p(a,Λ). Thus there exists n0 ∈ N with n0 ≥ n1 such that r(p − pn) < 1 for all
n ≥ n0. Since Λ , ∅we have from Remark 2.4 that p , 0. Therefore, by Proposition 2.5, pn , 0 for all n ≥ n0.
Thus by Remark 2.4, Λn , ∅ for all n ≥ n0. This implies, since Λn is both open and closed in σ(an), that there
exists Ωn a component of σ(an) such that Ωn ⊆ Λn. Observe that Λn ⊆ D ⊆ U. Thus Ωn ⊆ U. Therefore U
contains a component of σ(an) for all n ≥ n0.

Remark 2.10. From Lemma 2.9 we have that if λ ∈ iso σ(a) with λ , 0, then λ ∈ lim inf σ(an) for all sequence (an)
inA such that an

ν
→ a.

We define

RA =
{
a ∈ A : ∥(a − λ1A)−1

∥ = r((a − λ1A)−1) for all λ ∈ ρ(a)
}
. (2)

If H is a Hilbert space andA = B(H), then normal, subnormal, and hyponormal operators are elements of
RA.

Theorem 2.11. Let a ∈ A and {an}n∈N be a sequence in RA such that an
ν
→ a. If 0 is an accumulation point of σ(a),

then σ(an)→ σ(a).

Proof. Let λ ∈ σ(a) \ {0}. Suppose that λ < lim inf σ(an). Then there exist ϵ > 0 such that Bϵ(λ) ∩ σ(an) = ∅
for infinite number of n’s. Without loss of generality assume that this holds for all n. This implies that
ϵ < d(λ, σ(an)) = d(0, σ(an − λ1A)) and so 0 < σ(an − λ1A). By the spectral mapping theorem,

σ
(
(an − λ1A)−1

)
= {µ−1 : µ ∈ σ(an − λ1A)}.

Therefore,

∥(an − λ1A)−1
∥ = r((an − λ1A)−1) = max{|µ|−1 : µ ∈ σ(an − λ1A)}

=
1

min{|µ| : µ ∈ σ (an − λ1A)}
=

1
d(0, σ(an − λ1A))

<
1
ϵ
.

Thus by Proposition 2.6, ∥[(a− an)(an−λ1A)−1]2
∥ ≤

1
|λ|

[
∥(a− an)an∥

1
ϵ (∥a∥+ ∥an∥)+ ∥(a− an)a∥+ ∥(a− an)an∥

]
1
ϵ .

Now, since an
ν
→ a, it follows that ∥(a − an)a∥ → 0, ∥(a − an)an∥ → 0 and {∥an∥}n∈N is bounded. Therefore,

∥[(a − an)(an − λ1A)−1]2
∥ → 0. Then there exists n∗ ∈N such that ∥[(a − an∗ )(an∗ − λ1A)−1]2

∥ < 1.
Consequently, by Propposition 2.7, λ ∈ ρ(a), which is a contradiction. Therefore λ ∈ lim inf σ(an).
Now, since 0 is an accumulation point of σ(a), it follows that σ(a) = σ(a) \ {0} ⊆ lim inf σ(an) ⊆

lim inf σ(an).
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3. Spectral continuity in the algebra B(X)

Let X be a Banach space and B(X) be the algebra of all bounded linear operators defined on X. For
T ∈ B(X), let N(T) and R(T) denote the null space and the range of the mapping T. Let α(T) = dim N(T) and
β(T) = dim X/R(T), if these spaces are finite dimensional, otherwise let α(T) = ∞ and β(T) = ∞. If the range
R(T) of T ∈ B(X) is closed and α(T) < ∞, then T is said to be an upper semi-Fredholm operator (T ∈ Φ+(X)).
Similarly, if β(T) < ∞, then T is said to be a lower semi-Fredholm operator (T ∈ Φ−(X)). If T ∈ Φ−(X) ∪ Φ+(X)
then T is called a semi-Fredholm operator (T ∈ Φ±(X)) and for T ∈ Φ−(X) ∩Φ+(X) we say that T is a Fredholm
operator (T ∈ Φ(X)). For T ∈ Φ±(X), the index of T is defined by i(T) = α(T) − β(T). It is well known that
the index is a continuous function on the set of semi-Fredholm operators. This property also holds for the
ν-convergence. See [17, Theorem 3.4].

For T ∈ B(X) let ρs f (T) be denote the set of λ ∈ C such that T − λ ∈ Φ±(X), and for k ∈ Z ∪ {−∞,∞}, let
ρk

s f (T) be the set of λ ∈ ρs f (T) such that i(T − λ) = k. Put

ρ−s f (T) = ∪
−∞≤k≤−1

ρk
s f (T), ρ+s f (T) = ∪

1≤k≤∞
ρk

s f (T), ρ±s f (T) = ρ−s f (T) ∪ ρ+s f (T).

The semi-Fredholm spectrum, the approximate point spectrum, the surjective spectrum, the point
spectrum, the Weyl spectrum, and the set Riesz points of T ∈ B(X) are defined by σs f (T) = C \ ρs f (T),
σap(T) = {λ ∈ C : T − λ is not bounded below}, σs(T) = {λ ∈ C : T − λ is not surjective}, σp(T) = {λ ∈ C : λ is
an eigenvalue of T}, σw(T) = {λ ∈ C : T − λ is not a Fredholm operator of index zero} and π0(T) = {λ ∈ C : λ
is an isolated eigenvalue of T of finite algebraic multiplicity}, respectively.

Let K(X) denote the set of all compact linear operators in B(X). If π : B(X)→ B(X)/K(X) is the canonical
homomorphism, then the essential spectrum of an operator T ∈ B(X), σe(T), is the spectrum of π(T) in the
Calkin algebra B(X)/K(X).

An operator T ∈ B(X) is said that satisfies Browder’s theorem if

σ(T) \ σw(T) = π0(T).

Remark 3.1. Let T ∈ B(X) and (Tn) be a sequence in B(X) such that Tn
ν
→ T. The following inclusions are holding:

1. π0(T) ⊆ lim infπ0(Tn). See, [1, Corollary 2.13].
2. [iso σ(T)] \ {0} ⊆ lim inf σ(Tn). See Remark 2.10.

Moreover, if T ∈ Φ(X) then

3. ρ+s f (T) ⊆ lim inf σap(Tn). See, [17, Theorem 3.6].

4. ρ−s f (T) ⊆ lim inf σs(Tn).

5. ρ±s f (T) ⊆ lim inf σw(Tn).

Proposition 3.2. Let T ∈ Φ(X) and (Tn) be a sequence in B(X) such that Tn
ν
→ T. If Γ =

{
λ ∈ σ(T) : for every

ϵ > 0, there exist points µ1, µ2 ∈ B(λ, ϵ) such that T − µ1,T − µ2 ∈ Φ±(X) and i(T − µ1) , i(T − µ2)
}
, then

Γ ⊆ lim inf σs f (Tn)

Proof. Let λ ∈ Γ and ϵ > 0. Then there exist µ1, µ2 ∈ B(λ, ϵ) such that T − µ1,T − µ2 ∈ Φ±(X) and
i(T − µ1) , i(T − µ2). Since Tn

ν
→ T, it follows by [17, Theorem 3.4], that there exists N ∈ N such that

i(Tn−µi) = i(T−µi) for i = 1, 2 and for all n ≥ N. LetΛ = {µ1+ t(µ2−µ1) : t ∈ [0, 1]}. Take n ≥ N and suppose
that for every γ ∈ Λ, Tn − γ ∈ Φ±(X). By the continuity of the index, it follows that for every γ ∈ Λ, there
exists rγ > 0 such that i(Tn − z) = i(Tn − γ) for all z ∈ B(γ, r). The compactness of Λ implies the existence of

γ1, · · · , γm such that Λ ⊆
m
∪

k=1
B(γk, rk). Then i(T − µ1) = i(T − µ2), which is a contradiction. Therefore there

exists γ∗ ∈ Λ such that Tn − γ∗ < Φ±(X). Thus B(λ, ϵ) ∩ σs f (Tn) , ∅. Consequently, λ ∈ lim inf σs f (Tn).
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A classical characterization of the continuity of the spectrum in Hilbert spaces given by [7, Theorem
3.1] is the following: σ is continuous at T if and only if for each λ ∈ σ(T) \ ρ±s f (T) and ϵ > 0, the ball B(λ, ϵ)
contains a component of σs f (T) ∪ π0(T). The condition on the right along with two additional ones implies
the ν-continuity of the spectrum:

Theorem 3.3. Let T ∈ B(X) be such that 0 ∈ accσ(T) and for each λ ∈ σ(T) \ ρ±s f (T) and ϵ > 0, the ball B(λ, ϵ)
contains a component of σs f (T) ∪ π0(T). If one of the following conditions holds

1. ρ±s f (T) = ∅;
2. T ∈ Φ(X);

then σ is ν-continuous at T.

Proof. First observe that σ(T) \ σw(T) = π0(T) ∪ int[σ(T) \ σw(T)]. If we suppose that int[σ(T) \ σw(T)] , ∅,
then there exist λ ∈ C and r > 0 such that B(λ, r) ⊆ int[σ(T) \ σw(T)]. This implies that λ < ρ±s f (T) thus from
hypothesis B(λ, r) contains a component C of σs f (T) ∪ π0(T). Consequently,

∅ , C ⊆ int[σ(T) \ σw(T)] ∩ [σs f (T) ∪ π0(T)],

which is a contradiction. Therefore int[σ(T) \ σw(T)] = ∅ and so T satisfies Browder’s theorem.
Let (Tn) be a sequence in B(X) such that Tn

ν
→ T. By Theorem 2.2, σ is upper semi-ν-continuous at T. Let

λ ∈ σ(T) \ {0}. If λ < ρ±s f (T) then there exists δ > 0 such that B(λ, δ)∩ρ±s f (T) = ∅ and 0 < B(λ, δ). Let ϵ > 0 with
ϵ < δ, from hypothesis, the ball B(λ, ϵ) contains a component Ω of σs f (T) ∪ π0(T). By [16, Lemma 3.6], Ω is
a component of σ(T). Therefore by Lemma 2.9, there exists n0 ∈ N such that B(λ, ϵ) contains a component
Ωn of σ(Tn) for all n ≥ n0. Thus B(λ, ϵ) ∩ σ(Tn) , ∅ for all n ≥ n0. Consequently, λ ∈ lim inf σ(Tn).

Now, if λ ∈ ρ±s f (T) then assuming hypothesis (2) we obtain by Remark 3.1 (5) that λ ∈ ρ±s f (T) ⊆

lim inf σ(Tn). Consequently, σ(T) = σ(T) \ {0} ⊆ lim inf σ(Tn). Thus σ is lower semi-ν-continuous at T.

The self-adjoint operators are not points of ν-continuity of the spectrum, (see [16, Example 2.9]), however
by Theorem 3.3, the compact self-adjoint operators are.

Example 3.4. Let αnk = (1 − 1
n )exp(2πi k

n ) for all n ∈ N and 1 ≤ k ≤ n, and consider A : ℓ2(N) → ℓ2(N) the
diagonal operator defined by

A =


α11

α21
α22

. . .

 .
Then π0(A) = {αnk |n ∈N, 1 ≤ k ≤ n}, σ(A) = {αnk |n ∈N, 1 ≤ k ≤ n}∪ {λ ∈ C : |λ| = 1}, σs f (A) = {λ ∈ C : |λ| =
1} and ρ±s f (A) = ∅. Therefore by Theorem 3.3, σ(A) \ {0} ⊆ lim inf σ(An) ⊆ lim sup σ(An) ⊆ σ(A) for all An

ν
→ A.

Corollary 3.5. Let H be a Hilbert space and T ∈ B(H) be such that 0 ∈ accσ(T). If one of the following conditions
holds

1. ρ±s f (T) = ∅;
2. T ∈ Φ(H);

then, σ is continuous at T if and only if σ is ν-continuous at T.

Proof. It is clear that the ν-continuity of σ at T implies the continuity of σ at T. Now, if σ is continuous at
T, then by [7, Theorem 3.1], for each λ ∈ σ(T) \ ρ±s f (T) and ϵ > 0, the ball B(λ, ϵ) contains a component of
σs f (T) ∪ π0(T). Therefore, by Theorem 3.3, σ is ν-continuous at T.
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Theorem 3.6. Let T ∈ B(X) be such that T ∈ Φ(X) or ρ−s f (T) = ∅. If (Tn) is a sequence in B(X) such that Tn
ν
→ T

then
[lim sup σap(Tn)] \ {0} ⊆ σap(T).

Proof. Consider (Tn) a sequence in B(X) which is ν−convergent to T. First we suppose that ρ−s f (T) = ∅. Take
λ ∈ [lim sup σap(Tn)] \ {0}, then λ ∈ lim sup σ(Tn). From Theorem 2.2, λ ∈ σ(T). If λ < σap(T) then R(T − λ) is
closed, α(T − λ) = 0 and β(T − λ) > 0. Consequently, i(T − λ) < 0 i.e. λ ∈ ρ−s f (T) which is a contradiction.

Now, we suppose that T ∈ Φ(X). Let D,E be closed subspaces of X with dim E < ∞ such that

X = N(T) ⊕D and X = R(T) ⊕ E. (3)

Let λ ∈ lim sup σap(Tn) with λ , 0. There exist an increasing sequence of natural numbers (nk) and
points λnk ∈ σap(Tnk ) such that λnk → λ. Suppose that λ < σap(T). Then T − λ ∈ Φ+(X) and α(T − λ) = 0. By
(3), R(T|D) = R(T) and so T|D is bounded below, therefore by [18, Theorem 5.26], (T − λ)T|D ∈ Φ+(D,X) and
α((T − λ)T|D) = 0.

On the other hand, observe that

(Tnk − λnk )T|D = (T − λ)T|D + (Tnk − T)T|D + (λ − λnk )T|D.

From ∥(Tn − T)T∥ → 0 we have that (Tnk − λnk )T|D converges in norm to (T − λ)T|D. Consequently by [18,
Theorem 5.23], there exists k0 ∈N such that every k ≥ k0,

(Tnk − λnk )T|D ∈ Φ+(D,X) and α((Tnk − λnk )T|D) = 0. (4)

Suppose that for each k ≥ k0,
N(Tnk − λnk ) ∩ E , {0}.

Take vk ∈ N(Tnk − λnk ) ∩ E with ∥vk∥ = 1 for all k ≥ k0. Since dim E < ∞ it follows that F := {e ∈ E : ∥e∥ = 1} is
a compact set. Therefore we may assume without loss of generality that there exists v ∈ F such that vk → v.
Observe that

∥(Tnk − T)Tnk∥ ≥ ∥(Tnk − T)Tnk vk∥

= ∥(Tnk − T)λnk vk∥

= |λnk |∥λnk vk − Tvk∥,

for all k ≥ k0, and |λnk |∥λnk vk − Tvk∥ → |λ|∥λv − Tv∥. This implies that

|λ|∥λv − Tv∥ = lim |λnk |∥λnk vk − Tvk∥ ≤ lim ∥(Tnk − T)Tnk∥ = 0,

and so ∥λv − Tv∥ = 0, i.e. Tv = λv. Consequently, λ ∈ σp(T)(⊆ σap(T)), which is a contradiction. Therefore
there exists k′ ≥ k0 such that N(Tnk′ − λnk′ ) ∩ E = {0}. Now, let y ∈ R(T) ∩ N(Tnk′ − λnk′ ). There exists x ∈ X
such that y = Tx and by (3) there are nx ∈ N(T) and dx ∈ D such that x = nx + dx. Thus (Tnk′ − λnk′ )Tdx =
(Tnk′ − λnk′ )Tx = (Tnk′ − λnk′ )y = 0. Therefore, by (4), dx = 0 and so y = 0. Thus, R(T) ∩ N(Tnk′ − λnk′ ) = {0}.
Consequently,

X = R(T) ⊕N(Tnk′ − λnk′ ) ⊕ E. (5)

Then by (3) and (5),

dim E = dim X/R(T) = dim[N(Tnk′ − λnk′ ) ⊕ E]
= dim N(Tnk′ − λnk′ ) + dim E.

Hence dim N(Tnk′ − λnk′ ) = 0 and so N(Tnk′ − λnk′ ) = {0}. From (5),

R(Tnk′ − λnk′ ) = (Tnk′ − λnk′ )T(D) + (Tnk′ − λnk′ )(E),

which implies that R(Tnk′ − λnk′ ) is closed. Therefore λnk′ < σap(Tnk′ ), a contradiction. Consequently,
λ ∈ σap(T).
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The following proposition is a generalization of [7, Proposition 1.3] to the case of Banach spaces, the
proof is similar to the one given by Conway, however, for the sake of completeness, we will give its proof.

Proposition 3.7. Let T ∈ B(X). If C is a component of σs f (T) such that C ∩ ρ±s f (T) = ∅, then C is a component of
σe(T).

Proof. Let C be a component of σs f (T) such that C ∩ ρ±s f (T) = ∅. Then there exists ϵ1 > 0 such that

(C)ϵ1 ∩ ρ±s f (T) = ∅. Observe that

σe(T) = σs f (T) ∪ ρ±∞s f (T). (6)

Let D be a component of σe(T) such that C ⊆ D. Then by (6),

D = (σs f (T) ∩D) ∪ (ρ±∞s f (T) ∩D).

We set K = σs f (T)∩D and show that for every ϵ > 0, K ⊆ (C)ϵ. Suppose the opposite, that there exists ϵ2 > 0
such that K ⊈ (C)ϵ2 . Let r = min{ϵ1, ϵ2}, then

(C)r ∩ ρ±s f (T) = ∅ and K \ (C)r , ∅. (7)

Define U = {K \ A : A is open and closed set in K with C ⊆ A}. Since quasi-components and components
coincide for compact Hausdorff spaces, it follows thatU is an open cover of K \ (C)r. By the compactness
of K \ (C)r, there exist A1, · · · ,An open and closed sets in K with C ⊆ Ai, i = 1 · · · ,n, such that

K \ (C)r ⊆
n
∪
i=1

(K \ Ai) = K \
n
∩
i=1

Ai. (8)

We set A0 =
n
∩
i=1

Ai and B0 = K \ A0. Then A0, B0 are compact sets such that K = A0 ∪ B0, A0 ∩ B0 = ∅,

C ⊆ A0 ⊆ (C)r, A0 , ∅, and by (7) and (8), B0 , ∅. Therefore

D = A0 ∪ [B0 ∪ (ρ±∞s f (T) ∩D)] and A0 ∩ [B0 ∪ (ρ±∞s f (T) ∩D)] = ∅.

This implies that D is disconnected, which is a contradiction. Thus for every ϵ > 0, C ⊆ K ⊆ (C)ϵ. Then
K is connected, and so K = C. Consequently, D = C ∪ (ρ±∞s f (T) ∩ D). Since D is connected, C , ∅ and

C ∩ (ρ±∞s f (T) ∩D) = ∅, it follows that ρ±∞s f (T) ∩D = ∅. Therefore D = C.

Conway and Morrel in [8, Theorem 5.1] characterized the continuity of the approximate point spectrum in
Hilbert spaces through the following conditions:

1. For each λ ∈ σ(T) \ ρ±s f (T) and ϵ > 0, the ball B(λ, ϵ) contains a component of σs f (T) ∪ π0(T),

2. ρ−s f (T) ∩ σp(T) = ∅,

3. ρ−∞s f (T) = intρ−∞s f (T), and

4. for every −∞ < k ≤ −1 and for each λ ∈ intρk
s f (T) \ ρk

s f (T) and ϵ > 0, the ball B(λ, ϵ) contains a
component of σs f (T).

If we adapt some of these conditions, it is possible to guarantee now the ν-continuity of the approximate
point spectrum on Banach spaces:

Theorem 3.8. Let T ∈ B(X) be such that for every ϵ > 0 and λ ∈ σ(T) \ρ±s f (T), the ball B(λ, ϵ) contains a component
of σs f (T) ∪ π0(T). If either (1) or (2) of the following conditions holds:
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1. ρ±s f (T) = ∅;

2. T ∈ Φ(X), σp(T) ∩ ρ−s f (T) = ∅ and ∂σ(T) = ∂σap(T),

then
σap(T) \ {0} = [lim inf σap(Tn)] \ {0} = [lim sup σap(Tn)] \ {0}

for all Tn
ν
→ T. Moreover, if 0 ∈ accσap(T) then

σap(Tn)→ σap(T).

Proof. Similarly to Theorem 3.3, it follows that T satisfies Browder’s theorem. From conditions either (1) or
(2) we have by Theorem 3.6 that

[lim sup σap(Tn)] \ {0} ⊆ σap(T) \ {0}.

We show that σap(T) \ {0} ⊆ [lim inf σap(Tn)] \ {0}. Take λ ∈ σap(T) with λ , 0. Suppose that λ ∈
σs f (T) \ ρ±s f (T). Let ϵ > 0, then there exists 0 < ϵ1 < ϵ such that B(λ, ϵ1) ∩ ρ±s f (T) = ∅ and 0 < B(λ, ϵ1). From
hypothesis, we have that for every 0 < r < ϵ1, the ball B(λ, r) contains a component Ωr of σs f (T) ∪ π0(T). If
Ωr ⊆ π0(T), for all 0 < r < ϵ1, then λ ∈ π0(T) and so by Remark 3.1 (1), λ ∈ lim infπ0(Tn)(⊆ lim inf σap(Tn)).
Now, if there exists 0 < r < ϵ1 such that Ωr ⊆ σs f (T) then by Proposition 3.7, Ωr is a component of σe(T).
Therefore, B(λ, ϵ1) is an open set such that 0 < B(λ, ϵ1) and contains a component of σ(π(T)). Since Tn

ν
→ T

we have that π(Tn) ν
→ π(T) in the Calkin algebra B(X)/K(X), thus by Lemma 2.9, there exists n0 ∈ N such

that B(λ, ϵ1) contains a component Ωn of σ(π(Tn)) for all n ≥ n0. Consequently

∅ , ∂Ωn ⊆ ∂σe(Tn) ∩ B(λ, ϵ),

for all n ≥ n0. On the other hand, since σe(T) = σs f (T) ∪ ρ±∞s f (T) and ρ±∞s f (T) ⊆ int σe(T), it follows that
∂σe(T) = σe(T) \ int σe(T) ⊆ σe(T) \ ρ±∞s f (T) ⊆ σs f (T). Therefore σs f (Tn) ∩ B(λ, ϵ) for all n ≥ n0. This implies
that

λ ∈ lim inf σs f (Tn)(⊆ lim inf σap(Tn)).

Suppose now that λ < σs f (T) \ ρ±s f (T), then λ ∈ ρs f (T) ∪ ρ±s f (T). This implies that i(T − λ) = 0 or

λ ∈ ρ+s f (T)∪ρ−s f (T). If i(T−λ) = 0, then since T satisfies Browder’s theorem it follows thatλ ∈ π0(T). Therefore
λ ∈ lim infπ0(Tn)(⊆ lim inf σap(Tn)). Observe that if condition (1) holds, then the proof is concluded. We
assume now that (2) holds. If λ ∈ ρ+s f (T), then by Remark 3.1 (3), λ ∈ lim inf σap(Tn). Suppose that λ ∈ ρ−s f (T).
We claim thatλ ∈ ∂σap(T), indeed ifλ ∈ int σap(T), then there exists ϵ2 > 0 such that B(λ, ϵ2) ⊆ σap(T). The ball
B(λ, ϵ2) meets ρ−s f (T), which implies that there exists ξ ∈ B(λ, ϵ2) such that ξ ∈ ρ−s f (T). Since σp(T)∩ρ−s f (T) = ∅,
it follows that T − ξ is injective and has closed range, hence ξ < σap(T), which is a contradiction. Therefore,
λ ∈ ∂σap(T) and by hypothesis λ ∈ ∂σ(T). Consequently, for every r > 0, the ball B(λ, r) contains two points
w1,w2 such that i(T − w1) , i(T − w2). Thus, by Proposition 3.2, λ ∈ lim inf σs f (Tn) (⊆ lim inf σap(Tn)).

Example 3.9. The operator A given in Example 3.4 satisfies the hypotheses of the previous theorem:
Then σap(A) \ {0} = [lim inf σap(An)] \ {0} = [lim sup σap(An)] \ {0}, for all An

ν
→ A.

4. On a certain class of operators

We say that an operator T ∈ B(H) is essentially G1 if ∥(π(T) − z)−1
∥ = 1

d(z,σe(T)) , for all z < σe(T). In [12,
Theorem 6] it is shown that the restriction of the Weyl spectrum on the class of essentially G1 operators
is continuous. This is also true for ν-continuity with an additional condition for 0, as the following three
theorems state.
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Theorem 4.1. Let T ∈ B(H) and (Tn) be a sequence of essentially G1 operators such that Tn
ν
→ T. If 0 is an

accumulation point of σe(T), then σe(Tn)→ σe(T).

Proof. It is an immediate consequence of Theorem 2.11. Indeed, ifA = B(H)/K(H) the Calkin algebra, then
π(Tn) ν

→ π(T) inA and π(Tn) ∈ RA for all n ∈N, thus σ(π(Tn))→ σ(π(T)), i.e. σe(Tn)→ σe(T).

Corollary 4.2. Let T ∈ Φ(H) be such that 0 < σw(T) or 0 ∈ accσw(T). If (Tn) is a sequence of essentially G1 operators
such that Tn

ν
→ T then σw(Tn)→ σw(T).

Proof. From [3, Theorem 3.3] we have that lim sup σw(Tn) ⊆ σw(T). Let λ ∈ σw(T) \ {0}. If λ ∈ σe(T) then λ ∈
lim inf σe(Tn) ⊆ lim inf σw(Tn). If λ < σe(T) then λ ∈ ρ±s f (T), therefore by Remark 3.1 (5), λ ∈ lim inf σw(Tn).

Corollary 4.3. Let T ∈ Φ(H) be such that satisfies Browder’s theorem. If 0 ∈ accσw(T) and (Tn) is a sequence of
essentially G1 operators such that Tn

ν
→ T, then σ(Tn)→ σ(T).

Proof. Let λ ∈ σ(T). If λ ∈ σw(T) then, by Corollary 4.2, λ ∈ lim inf σw(T) ⊆ lim inf σ(T). If λ < σw(T)
then since T satisfies Browder’s theorem it follows that λ ∈ π0(T). Therefore, by Remark 3.1 (1), λ ∈
lim infπ0(Tn) ⊆ lim inf σ(Tn).

Let 0 < p ≤ 1, an operator A ∈ B(H) is called p-hyponormal, if (A∗A)p
− (AA∗)p

≥ 0. For the case p = 1 the
operator A is called hyponormal. In [9] and [11], Djordjevic et al. and independently Hwang et al. prove
that the restriction of the spectrum on the class of p-hyponormal operators is continuous. The proof of
the following theorem is an adaptation of the idea of [9] for the case of ν-convergence. Note first that if
0 < p < 1

2 and A ∈ B(H) is a p-hyponormal operator, then by [6], N(A) ⊆ N(A∗), which implies that N(A) is
invariant for both A and A∗. Therefore

A =
[
0 0
0 B

]
, (9)

on N(A) ⊕N(A)⊥, where B = A|N(A)⊥ and 0 < σp(B). From [19, Lemma 4], B is also p-hyponormal. We claim
that 0 < σ(|B|), indeed if 0 ∈ σ(|B|)(= σap(|B|)) then there exists a sequence (xm) of unit vectors such that
|B|xm → 0. This implies that Bxm → 0, thus 0 ∈ σap(B), but since R(A) is closed i.e. R(B) is closed, it follows
that 0 ∈ σp(B), which is a contradiction.

Theorem 4.4. Let 0 < p < 1/2. If Tn,T are operators in B(H) such that

1. Tn
ν
→ T,

2. T ∈ Φ(H) and Tn is p-hyponormal for all n ∈N,
3. the sequence (∥|Bn|

−1
∥) is bounded, where the operators Bn are as in (9),

then σ(Tn)→ σ(T).

Proof. First observe that ∥TnT − T2
∥ = ∥(Tn − T)T∥ → 0, thus TnT n

→ T2, which implies that TnT ∈ Φ(H), for
all n large. Thus we may suppose that R(Tn) is closed for all n ∈ N. We show that there exist a sequence
(Sn) of hyponormal operators and a sequence (Xn) of invertible operators such that Sn = XnTnX−1

n , for all
n ∈N, and (∥Xn∥), (∥X−1

n ∥) are bounded.

From (9) we have that Tn =

[
0 0
0 Bn

]
on N(Tn) ⊕ N(Tn)⊥, 0 < σp(Bn), Bn is p-hyponormal and 0 < σ(|Bn|).

Consider the polar decomposition Bn = Un|Bn| and define B̂n = |Bn|
1/2Un|Bn|

1/2. From [2, Theorem 2], B̂n is
(p + 1

2 )-hyponormal. Observe that if x ∈ N(B̂n) then |Bn|
1/2Un|Bn|

1/2x = 0 and so Bn|Bn|
−1
|Bn|

1/2x = 0 which
implies that |Bn|

−1
|Bn|

1/2x = 0 because 0 < σp(Bm), hence x = 0. Thus N(B̂n) = {0} i.e. 0 < σp(B̂n). This implies
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that 0 < σ(|̂Bn|). Let B̂n have the polar decomposition B̂n = Vn |̂Bn|, then by [2, Theorem 1], the operator B̃n,
defined by B̃n = |̂Bn|

1/2Vn |̂Bn|
1/2, is hyponormal. Define

Xn =

[
1 0
0 |̂Bn|

1/2
|Bn|

1/2

]
and Sn =

[
0 0
0 B̃n

]
.

Then Sn is hyponormal, Xn is invertible and Sn = XnTnX−1
n . From condition (3) we have that (∥X−1

n ∥) is
bounded. Also it is clear that (∥Xn∥) is bounded.

We show that σ(T) ⊆ lim inf σ(Tn). Take λ ∈ σ(T) \ {0} and suppose that λ < lim inf σ(Tn). Then we may
assume that there exists ϵ > 0 such that B(λ, ϵ)∩σ(Tn) = ∅ for all n ∈N. This implies that Tn−λ is invertible.
In a similar way to proof of Theorem 4.1, we have that∥∥∥∥[(Tn − T)(Tn − λ)−1

]2∥∥∥∥ ≤ 1
|λ|

[
∥(Tn − T)Tn∥∥(Tn − λ)−1

∥∥Tn − T∥

+ ∥(Tn − T)T∥ + ∥(Tn − T)Tn∥
]
∥(Tn − λ)−1

∥. (10)

Since Tn and Sn are similar, it follows that σ(Tn) = σ(Sn). Therefore, d(λ, σ(Sn)) ≥ ϵ and Sn − λ is
invertible. Note that (Tn − λ)−1 = X−1

n (Sn − λ)−1Xn. Moreover, since Sn is hyponormal it follows that
∥(Sn − λ)−1

∥ = 1
d(λ,σ(Sn)) ≤

1
ϵ . Thus the right term of (10) is bounded by

1
|λ|

[
∥(Tn − T)Tn∥

M1M2

ϵ
∥Tn − T∥ + ∥(Tn − T)T∥ + ∥(Tn − T)Tn∥

]M1M2

ϵ
, (11)

where M1,M2 are constants such that ∥Xn∥ ≤M1 and ∥X−1
n | ≤M2, for all n ∈N. Since Tn

ν
→ T it follows that

the expression in (11) tends to zero. Proceeding similarly to the final part of the proof of Theorem 4.1, we
obtain that T − λ is invertible, which is a contradiction.

Remark 4.5. The conclusion of Theorem 4.4 holds if we replace the hypothesis by the following conditions:

1. Tn
ν
→ T, T∗(Tn − T) n

→ 0 and T∗n(Tn − T) n
→ 0;

2. T ∈ Φ(H) and {0} , N(T) ⊆ N(Tn) for all n ∈N;
3. T,Tn are p-hyponormal operators.

Indeed, from condition (1), |Tn|
2
− |T|2 = T∗nTn − T∗T = T∗n(Tn − T) + [T∗(Tn − T)]∗ n

→ 0, thus |Tn|
1/2 n
→ |T|1/2.

Since 0 ∈ σp(T), it follows that T = 0 ⊕ B on N(T) ⊕ N(T)⊥ with 0 < σ(|B|). Then there exists α > 0 such
that α∥y∥ ≤ ∥|B|1/2y∥ for all y ∈ N(T)⊥. This implies by condition (2) that for 0 < ϵ < α, there exists N ∈ N
such that for every n ≥ N, (α − ϵ)∥y∥ ≤ ∥|Bn|

1/2y∥ for all y ∈ N(Tn)⊥. Consequently, ∥(|Bn|
1/2)−1

∥ ≤
1
α−ϵ , for all

n ≥ N.

Berberian in [4] shows that for every Hilbert space H, there exists a Hilbert space K ⊃ H and a faithful
∗−representation T → T◦ from B(H) to B(K): (S + T)◦ = S◦ + T◦, (λT)◦ = λT◦, (ST)◦ = S◦T◦, (T∗)◦ = (T◦)∗,
(IH)◦ = IK and ∥T◦∥ = ∥T∥ such that

1. T ≥ 0 if and only if T◦ ≥ 0,
2. σp(T◦) = σap(T◦) = σap(T).

Remark 4.6. Observe that in the previous theorem, σp(Bn) = σap(Bn) due to R(Tn) is closed. In [9] the authors use
the Berberian extension T◦n of a p-hyponormal operator Tn and state that if 0 ∈ σp(T◦n), then

σp(Bn) = σap(Bn), (12)

where T◦n = 0 ⊕ Bn on N(Tn) ⊕ N(Tn)⊥ and 0 < σp(Bn), without the need for R(T◦n) to be closed. This fact was also
established in [10], page 586, line 20. The authors claim that

σap(Bλ) = σp(Bλ), (13)
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for all non-zero λ ∈ σp(A◦), where A ∈ C(i), and this collection is defined as the set of all operators T ∈ B(Hi) for
which σ(T) = {0} implies T is nilpotent and T◦ satisfies the property:

T◦ =
[
λ Xλ
0 Bλ

]
on N(T◦ − λ) ⊕N(T◦ − λ)⊥

at every non-zero λ ∈ σp(T◦) for some operators Xλ and Bλ such that λ < σp(Bλ) and σ(T◦) = {λ} ∪ σ(Bλ). However,
equalities (12) and (13) are not necessary hold. We prove only that (13) is false: It is clear that σap(Bλ) \ {λ} = σp(Bλ)
and α(Bλ − λ) = 0, but R(Bλ − λ) is not necessarily closed. Indeed, consider a normal operator A ∈ B(Hi) such that
σ(A) = [0, 1] (for example, the multiplication operator A : L2([0, 1])→ L2([0, 1]) defined by A( f )(x) = x f (x)). Then
A ∈ C(i). We show that for every λ ∈ σp(A◦), R(Bλ − λ) is not closed. By contradiction, suppose that there exists
λ ∈ σp(A◦) such that R(Bλ − λ) is closed. Then Bλ − λ is a semi-Fredholm operator such that α(Bλ − λ) = 0. By [5,
Theorem 4.2.1], there exists ϵ > 0 such that if |γ − λ| < ϵ then Bλ − γ ∈ Φ+(N(A◦ − λ)⊥) and α(Bλ − γ) = 0. This
implies that R(A◦ − γ) = (λ − γ)N(A◦ − λ) ⊕ R(Bλ − γ) is closed and α(A◦ − γ) = α((λ − γ)I) + α(Bλ − γ) = 0 for
all γ ∈ B(λ, ϵ) with γ , λ. Therefore, λ ∈ iso σap(A◦). On the other hand, since A is a normal operator it follows
that σ(A) = σap(A) = σap(A◦). Thus, λ ∈ iso σ(A), which is a contradiction, because σ(A) = [0, 1]. Consequently,
the equality (13) is not true. This affects the proof of the main result in the paper [10].
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