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Abstract. This paper delves into the realm of fuzzy quasi-metric spaces, emphasizing the identification of
fixed points for specific mappings within this unique framework. We have formulated fixed-point theorems
designed for various mapping types in these spaces, underscoring their practical relevance and applicability.
Moreover, we have uncovered principles akin to Kransnoselski’s theorems, specifically tailored to fuzzy
quasi-metric spaces. Our research further investigates the stability of fixed points under certain conditions,
providing a comprehensive analysis of their behavior. To elucidate our findings, we have incorporated
illustrative examples, which serve to clarify and exemplify the theoretical concepts discussed. This inclusion
of examples not only enhances understanding but also demonstrates the practical implementation of our
theorems. Through our work, we aim to contribute significantly to the recent advancements in the study
of fuzzy quasi-metric spaces and fixed-point theory. Our findings offer valuable insights and extend
the current knowledge base, paving the way for future research and applications in this evolving field.
Ultimately, our paper stands as a testament to the ongoing progress and innovation in fuzzy quasi-metric
space theory, reflecting its growing importance and potential for further exploration.

1. Introduction

A contraction mapping, also known as an antithesis mapping, is a fundamental concept in the context
of fuzzy quasi-metric spaces. This type of mapping is crucial for establishing fixed-point theorems and
understanding the properties of these spaces. In a fuzzy quasi-metric space, a contraction mapping serves
to demonstrate the existence and properties of points that contradict certain conditions or relationships
within the space (see [13, 17]).

Essentially, a contraction mapping identifies points where the behavior or properties of elements in
the space seem to oppose or contradict what one might expect based on the space’s structure or defined
relationships. These mappings are particularly useful in dealing with nonlinear and complex systems
where conventional metric spaces may not apply due to their stricter properties (see [14]).

The study of contraction mappings is vital in various mathematical and scientific fields, including
nonlinear analysis, optimization, control theory, and mathematical modeling. By utilizing contraction
mappings, researchers can gain insights into the existence and behavior of solutions, fixed points, and
critical points in fuzzy quasi-metric spaces, thus contributing to the understanding of complex systems and
providing valuable tools for solving practical problems (see [15]).
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In summary, a contraction mapping in a fuzzy quasi-metric space helps identify and study points that
contradict expected behaviors or relationships within the space, making it a valuable concept in various
areas of mathematics and science.

In their work, Kramosil and Michalek introduced and explored the concept of a fuzzy metric space,
significantly connecting it to a category of probabilistic metric spaces known as (generalized) Menger spaces
(see [11]). Subsequently, George and Veeramani undertook a more robust examination of metric fuzziness
(see [5], with additional references in [7]). It is commonly recognized that each metric gives rise to a fuzzy
metric according to George and Veeramani’s perspective. Conversely, every fuzzy metric space as defined
by George and Veeramani, as well as Kramosil and Michalek, gives rise to a topology that can be metrized
(see [6] and [9]).

On the other hand, it is widely recognized that quasi-metric spaces provide a valuable framework for
addressing and resolving numerous challenges in topological algebra, approximation theory, theoretical
computer science, and more, as detailed in [12, 19].

In their publication [9], two distinct concepts of fuzzy quasi-metric spaces are introduced, extending the
analogous notions found in the works of Kramosil and Michalek and George and Veeramani to the realm
of quasi-metrics. The authors establish several fundamental properties of these spaces, demonstrating that
each quasi-metric naturally gives rise to a fuzzy quasi-metric, and conversely, every fuzzy quasi-metric
leads to the creation of a quasi-metrizable topology. These findings provide a valuable foundation for
deriving numerous characteristics and properties of fuzzy quasi-metric spaces.

In a recent publication by V. Gregori et al.[4], a clear and precise notion of completeness is introduced.
Additionally, they propose a method for constructing the completion of a specific class of T2-fuzzy quasi-
metric spaces. This construction is influenced by similar principles originally introduced by Doitchinov, as
detailed in [2].

In a recent development, Romaguera [16] introduced comprehensive fixed-point theorems applicable to
both left and right complete Hausdorff KM-fuzzy quasi-metric spaces. These theorems have been utilized
to derive characterizations of these specific forms of fuzzy quasi-metric completeness.

Recently, S. U. Rehman and colleagues introduced a groundbreaking concept in their work referenced as
[13]. This novel concept involves rational type fuzzy-contraction mappings within the framework of fuzzy
metric spaces. The authors established a series of fixed-point results by applying the rational type fuzzy-
contraction conditions and provided illustrative examples to substantiate their findings. This innovative
concept holds significant promise within the realm of fuzzy fixed-point theory and exhibits potential for
generalization to various types of contractive mappings in fuzzy metric spaces, as also indicated in [14, 15].

The significance of this study lies in its exploration of fixed-point theorems within fuzzy quasi-metric
spaces, offering new theoretical insights and practical applications. By developing theorems for various
mappings and identifying conditions for the stability of fixed points, the research advances the under-
standing of fuzzy quasi-metric spaces. The inclusion of examples not only clarifies the concepts but also
demonstrates the practical relevance of the theorems. This study contributes to the broader field of fuzzy
quasi-metric spaces, fostering further innovation and exploration, while providing a solid foundation for
future research and potential applications in related mathematical fields.

In this research, we explore fuzzy quasi-metric spaces and find fixed points for certain mappings in this
context. We develop fixed-point theorems for several kinds of mappings, emphasizing their usefulness
and importance in practice. Furthermore, we explore the stability of fixed points under specific conditions
and reveal concepts akin to Krasnoselskii’s theorems, modified for fuzzy quasi-metric spaces. To elucidate
and illustrate the theoretical notions, examples are provided. By providing insightful information and
expanding the body of knowledge, our work greatly advances fuzzy quasi-metric spaces and fixed-point
theory, opening the door for further study and applications.

The structure of the paper is as follows, we begin in the next part by discussing and thoroughly examining
the fundamental concepts and preliminary results of fuzzy quasi-metric (quasi-normed) spaces. Theorems
about fixed points that apply to various kinds of mappings that contract in the fuzzy quasi-metric space are
covered in section 3. Examining the fixed point theorem in relation to fuzzy quasi-metric spaces is the focus
of Section 4. A number of fixed point theorems that bear similarities to Kransnoselski’s contributions in the
field of FM-spaces are covered in the concluding section. We also study the effect of parameter changes on
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continuity at fixed places.

2. Preliminaries And Notations

Let’s revisit the concept of a quasi-metric defined on a set X. A quasi-metric on X is a real-valued
function denoted as d and defined on X � X, where the following conditions hold for all x, y, z P X: (i)
dpx, xq � 0; (ii) dpx, zq ¤ dpx, yq � dpy, zq.

In accordance with contemporary terminology, as elucidated in Section 11 of [12], when we refer to a
quasi-metric on X, we imply a quasi-metric d on X that satisfies the specific condition that dpx, yq � dpy, xq �
0 if and only if x � y. If the quasi-metric d adheres to the even stricter condition that dpx, yq � 0 if and only
if x � y, we classify it as a T1 quasi-metric on X.

Let’s remember, as mentioned in reference [18], that a continuous t-norm can be defined as a binary
operation denoted as γ : r0, 1s � r0, 1s Ñ r0, 1s. This operation should satisfy the condition that the set
pr0, 1s,¤, γq forms an ordered Abelian topological monoid with unit 1.

Definition 2.1. A fuzzy quasi-metric space can be defined as a structured trio denoted as pX,M, γq, where X represents
a nonempty set, γ is a continuous t-norm, and M is a fuzzy set defined over X�X� p0, 1q. This definition is subject
to the following conditions, which hold true for all elements x, y, z P X, and positive values s and t:

(FQM1) Mpx, y, tq ¡ 0;
(FQM2) Mpx, y, tq � 1 if and only if x � y;
(FQM3) Mpx, z, t� sq ¥ γpMpx, y, tq,Mpy, z, sqq;
(FQM4) Mpx, y, �q : r0,8q Ñ r0, 1s is left continuous.

Condition (FQM2) is equivalent to the following:

Mpx, x, tq � 1 for all x P X and t ¡ 0, and Mpx, y, tq   1 for all x � y and t ¡ 0,

We can call pM, γq a fuzzy quasi-metric on the set X when we have a fuzzy quasi-metric space represented
as pX,M, γq. Sometimes this may be simplified to say that pX,Mq is a fuzzy quasi-metric space, or just
that M is a fuzzy quasi-metric, where there is no possibility of misunderstanding. According to George
and Veeramani’s definition [5], a fuzzy quasi-metric M is categorized as a fuzzy metric if it meets the
requirement that Mpx, y, tq � Mpy, x, tq for all values of t ¡ 0.

We will often rely on the following two widely recognized facts without explicitly stating them:

(a) Mpx, y, �q is nondecreasing for all x, y P X.
(b) If r ¡ s we can find t such that γpr, tq ¡ s, where r, s, t P p0, 1q.

Example 2.2. Consider the quasi-metric space pX, dq as discussed in [3]. Let’s define a function γpa, bq for all a and
b within the closed interval r0, 1s as γpa, bq � ab. Additionally, we can define the function Md on the product space
X � X � p0,8q as follows:

Mdpx, y, tq �
t

t� dpx, yq
.

Now, pX,Mdq constitutes a fuzzy quasi-metric space, and the operation pMd, �q is commonly referred to as the
(standard) fuzzy quasi-metric that arises from the quasi-metric d, as detailed in references [5] and [9].

As mentioned in [17], other examples of fuzzy quasi-metrics can be investigated by exploring fuzzy metrics.
Naturally, a T1-topology, represented by τM, arises for each given fuzzy quasi-metric M defined on the set
X. A basis of open sets of the type tBMpx, r, tq : x P X, r P p0, 1q, t ¡ 0u is used to create this topology, where
BMpx, r, tq � ty P X : Mpx, y, tq ¡ 1� ru for all r P p0, 1q.

When we have a quasi-metric space pX, dq, the topology induced by the quasi-metric d coincides with
the topology denoted as τMd generated by the fuzzy quasi-metric pMd, γq.
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A topological space pX, τq is said to admit a compatible fuzzy quasi-metric if there exists a fuzzy quasi-
metric M defined on X such that τ � τM. The previous result implies that every topological space that can be
endowed with a quasi-metric topology also permits a compatible fuzzy quasi-metric. Conversely, for a given
fuzzy quasi-metric space pX,Mq, the family tUn : n PNu, where Un �

 
px, yq P X � X : Mpx, y, 1

n q ¡ 1� 1
n

(
,

constitutes a countable basis for a quasi-uniformity UM on X that aligns with τM, as stated in [9]. Conse-
quently, the topological space pX, τMq is amenable to a quasi-metric structure, as detailed in [3].

Definition 2.3. [1] A fuzzy quasi-norm on a real linear space X is a pair pN, γq such that γ is a continuous t-norm
and N is a fuzzy set in X � p0,8q satisfying the following conditions: for any x, y P X,

(QFN1) Npx, 0q � 0;
(QFN2) Npx, tq � Np�x, tq � 1, for all t ¡ 0 if and only if x � θ;

(QFN3) Npλx, tq � N
�

x, t
|λ|

	
, for all λ, t ¡ 0;

(QFN4) Npx� y, t� sq ¥ γpNpx, tq,Npy, sqq, for all t, s ¡ 0;
(QFN5) Npx, �q : r0,8q Ñ r0, 1s is left continuous;
(QFN6) limtÑ8 Npx, tq � 1.

”Evidently, the function Npx, �q exhibits monotonicity for every x in the set X.” ”A fuzzy quasi-norm

pN, γq earns the label ’fuzzy norm’ if it satisfies the property:Npcx, tq � N
�

x, t
|c|

	
for all x in X and all c in

the real numbers except zero.” ”Let pN, γq be a fuzzy quasi-norm, define the following:

N�1px, tq � Np�x, tq and Nspx, tq � mintNpx, tq,N�1px, tqu.

These definitions apply to all x in X and t greater than zero. Then, N�1px, tq becomes a fuzzy quasi-norm,
and Nspx, tq becomes a fuzzy norm on the space X.” ”In case pN, γq serves as a fuzzy quasi-norm (or fuzzy
norm) on X, we dub the triple pX,N, γq as a fuzzy quasi-normed space (or a fuzzy normed space).”

Every fuzzy quasi-norm pN, γq defined on the set X induces a topology denoted as τN. This topology
possesses a foundational set consisting of open balls centered at each point x in X, defined as follows:

Bpxq � tBNpx, r, tq : r P p0, 1q, t ¡ 0u ,

where

BNpx, r, tq � ty P X : Npy� x, tq ¡ 1� ru .

It’s evident that the topology τN is T0 and satisfies the first countability axiom. Additionally, due to
the property x � BNpθ, r, tq � BNpx, r, tq, the topology τN exhibits translational invariance. In terms of
convergence in this topology, a sequence xn in X converges to the point x with respect to τN (denoted as
xn

τNÝÑ x) if and only if limnÑ8 Npxn � x, tq � 1, for all t ¡ 0.

3. Fixed point theorems for Contraction mapping in fuzzy quasi-metric space

Here we introduce fixed point theorems for several contraction type mappings in the framework of a
fuzzy quasi-metric space.

Definition 3.1. Consider a fuzzy quasi-metric space denoted as pX,Mq. A mapping T : X Ñ X qualifies as a
contraction mapping in this context if, and only if, there exists a value α P p0, 1q satisfying the following condition
for all ξ, ς P X and t ¡ 0:

MpTξ,Tςq ¥ M
�
ξ, ς,

t
α



(1)

This condition characterizes the property of T being a contraction mapping on pX,Mq.
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Lemma 3.2. Consider a fuzzy quasi-metric space denoted as pX,M, γq, where γ is a continuous t-norm. Suppose
we have a mapping T : X Ñ X that is a contraction mapping, satisfying condition (1). In such a case, one of the
following two situations holds: (i) The mapping T possesses a unique fixed point. Or (ii) For any initial point ξ0 P X,
the supremum of the set tGξ0ptq : t P Ru is less than 1, where Gξ0 � inftMpξ0, ξm, tq : ξm � Tξm�1,m PNu.

Proof. Suppose there exists a point ξ0 P X such that sup tGξ0ptq : t P Ru � 1. Under this condition, we can
establish the following inequality:

Mpξn, ξn�m, tq ¥ M
�
ξ0, ξm,

t
αn



.

Since Gξ0 is non-decreasing, it follows that:

lim
nÑ8

Mpξn, ξn�m, tq � 1

for all t ¡ 0, independent of m. In other words, the sequence ξn is a Cauchy sequence within the complete
fuzzy quasi-metric space pX,Mq. Consequently, there exists a point ξ� P X to which the sequence ξn
converges. To demonstrate that Tξ� � ξ�, we can observe that for every n PN:

MpTξ�, ξ�, tq ¥ γ

�
M

�
Tξ�, ξn,

t
2



,M

�
ξn, ξ

�,
t
2




¥ γ

�
M

�
ξ�, ξn�1,

t
2



,M

�
ξn, ξ

�,
t
2




.

Therefore, for all t ¡ 0, we have:

MpTxi�, ξ�, tq ¥ lim
nÑ8

γ

�
M

�
ξ�, ξn�1,

t
2



,M

�
ξn, ξ

�,
t
2




¥ 1.

Hence, ξ� serves as the unique fixed point of T, and the proof is concluded. ■

The proof of the following result is straightforward, and therefore, we will not provide it here.

Theorem 3.3. Consider a complete fuzzy quasi-metric space denoted as pX,M, γq, and let T : X Ñ X be a contraction
mapping that satisfies condition (1). In this context, it can be concluded that T possesses a fixed point within the space
X.

As a reminder, a function ψ : R� Ñ R� is considered to satisfy condition pΦq if it meets the following
criteria: it is strictly increasing, ψp0q � 0, and limnÑ8 ψnptq � 8 for all t ¡ 0, where ψnptq represents the
n-th iteration of the function ψptq.

Theorem 3.4. Let’s consider a fuzzy quasi-metric space represented as pX,M, γq, where γ is a continuous t-norm that
satisfies suptPr0,1s γpt, tq � 1. Within this context, we have a mapping denoted as T : X Ñ X, which is a contraction
mapping and adheres to the following conditions:

(a) For each x P X, the supremum over t P R of Gxptq is equal to 1, where

Gxptq � inf
nPN

Mpx,Tnx, tq.

(b) For each x P X, there exists mpxq PN such that for any y P X and t P R�, the inequality (2) holds, where Φptq
is a left-continuous function satisfying condition pΦq.

MpTmpxqx,Tmpxqy, tq ¥ γpMpx, y, ψptqq,Mpx,Tmpxqx, ψptqq,

Mpx,Tmpxqy, ψptqq, (2)

Under these conditions, the following conclusions can be drawn:
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(i) For any initial point ξ0 P X, the sequence ξn defined by ξn � Tmpξn�1qξn�1 for n P N converges to some
ξ� P X.

(ii) Furthermore, if there exists t� P R� such that Mpξ�,Tmpξ�qξ�, t�q � 1, then ξ� serves as the unique fixed
point of T within X, and the iterative sequence Tnξ0 converges to ξ�.

Proof. (i) We establish the fact that the sequence ξn forms a Cauchy sequence within the set X. For any
given n PN, if we denote mpξiq as mi for i PN, then, as implied by equation (2), we can conclude that:

Mpξi,Tnξi, tq ¥ γ
 

Mpξi�1,Tnξi�1, ψptqq,Mpξi�1,Tmi�1�nξi�1, ψptqq

Mpξi�1,Tmi�1�nξi�1, ψptqq
(

¥ Gξi�1pψptqq.

Hence, we find that Gξiptq ¥ Gξi�1pψptqq ¥ � � � ¥ Gξ0pψptqq. Consequently, we obtain:

Mpξi, ξi� j, tq � Mpξi,Tmi� j�1�����miξi, tq

¥ Gξiptq ¥ Gξ0pψ
iptqq. (3)

Given that the distribution function is non-decreasing, suptPR Gξ0ptq � 1, and ψiptq Ñ 8 as i Ñ 8 for all
t ¡ 0, we can conclude that Gξ0pψ

iptqq Ñ 1 as i Ñ8. This implies that the sequence ξn is a Cauchy sequence
in X. Since X is a complete space, it follows that ξn converges to ξ� P X.
(ii) We begin by establishing that ξ� serves as a fixed point of Tmpξ�q. Let’s denote mpξ�q as m�. Based on
the assumption, there exists t� P R such that Mpξ�,Tm�ξ�, tq � 1. We can represent this as follows:

t0 � inf
!

t : Mpξ�,Tm�ξ�, tq � 1
)
. (4)

It is evident that t0 ¤ t�. Next, we aim to demonstrate that t0 � 0. Indeed, if t0 ¡ 0, considering the left
continuity of ψ, we can find t1 and t2 in the positive real numbers with 0   t2   t1   t0 such that ψpt2q ¡ t0.
Subsequently, from equation (4), we deduce the following:

Mpξ�,Tm�ξ�, t1q   1, Mpξ�,Tm�ξ�, ψpt2qq � 1.

Conversely, it can be inferred from

Mpξ�,Tm�ξ, ϕpt2qq ¥ γpMpξ�, ξi, ψpt2q � t0q,Mpξi,Tm�ξi, t0q

¥ γpMpξ�, ξi, ψpt2q � t0q,Gξ0pψ
ipt0qqq

Ñ 1 pi Ñ8q

that

MpTm�ξi,Tm�ξ�, t2q ¥ γtMpξ�, ξi, ψpt2qq,Mpξ�,Tm�ξi, ψpt2qqu

Ñ 1 pi Ñ8q.

Since

Mpξ�,Tm�ξi, t1 � t2q ¥ γ

�
M

�
ξ�, ξi,

t1 � t2

2



,Gξ0

�
ψi

�
t1 � t2

2





Ñ 1 pi Ñ8q,

we have

Mpξ�,Tm�ξ�, t1q ¥ γ
�

Mpξ�,Tm�ξi, t1 � t2q,MpTm�ξi,Tm�ξ�, t2q
	

Ñ 1 pi Ñ8q,

This contradicts the condition Mpξ,Tm�ξ,t1q   1. Thus, we can conclude that t0 � 0, which implies
Mpξ,Tm�ξ�, tq � 1 for all t ¡ 0, or in other words, Tm�ξ� � ξ�.
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Next, we aim to prove that ξ� is the unique fixed point of Tm� . Suppose, for the sake of argument, that
η� is also a fixed point of Tm� . Then, for any t ¡ 0, we have:

Mpξ�, η�, tq � MpTm�ξ�,Tm�η�, tq
¥ γ tMpξ�, η�, ψptqq,Mpξ�, ξ�, ψptqq,Mpξ�, η�, ψptqqu
� Mpξ�, η�, ψptqq
¥ � � �

¥ Mpξ�, η�, ψiptqq Ñ 1 pi Ñ8q,

i.e., ξ� � η�. Thus, the fixed point of Tm� is unique.
Finally, we prove that ξ� is also the unique fixed point of T and Tnξ0 Ñ ξ�. In fact, since Tm�ξ� � ξ�,
Tm�Tξ� � Tξ�. Noting that ξ� is the unique fixed point of Tm� , thus we have ξ� � Tξ�. The uniqueness
of the fixed point ξ� is obvious.
For any n P N, n ¡ m�, we may write it by n � km� � s, 0 ¤ s   m�. For any t ¡ 0, by (2), we have, for all
t ¡ 0,

Mpξ�,Tnξ0, tq � MpTm�ξ�,Tkm��sξ0, tq

¥ γ
!

Mpξ�,Tpk�1qm��sξ�, ψptqq,Mpξ�,Tnξ0, ψptqq
)

¥ � � �

¥ γ
!

Mpξ�,Tpk�1qm��sξ0, ψptqq,Mpξ�,Tnξ0, ψ
iptqq

)
Ñ 1 pk Ñ8q.

Letting i Ñ8, we obtain, for all t ¡ 0,

Mpξ�,Tnξ0, tq ¥ Mpξ�,Tpk�1qm��sξ0, ψptqq
¥ � � �

¥ Mpξ�,Tsξ0, ψ
kptqq

Ñ 1 pk Ñ8q.

This implies that Tnξ0 Ñ ξ� as k Ñ8. This completes the proof. ■

Theorem 3.5. Consider a fuzzy quasi-metric space denoted as pX,M, γq, and let the t-norm γ satisfy the condition
that for any t0 P p0, 1s, γpt, t0q is continuous at t � 1. Within this framework, we have a mapping T : X Ñ X that
adheres to the following conditions:

(i) for each ξ P X, suptPR Gξptq � 1,
(ii) For each ξ P X, there exists mpξq P N such that for all η P X and t P R�, the inequality given below holds,

where k P p0, 1q is a constant:

MpTmpxqx,Tmpxqy, tq ¥ γ

"
M

�
x, y,

t
k



,M

�
x,Tmpxqy,

t
k



,M

�
x,Tmpxqy,

t
k


*
,

Under these conditions, it can be concluded that T possesses a unique fixed point ξ� P X, and for any initial
point ξ0 P X, the iterative sequence tTnξ0u converges to the point ξ0.

Proof. Initially, it’s important to observe that, based on the assumption regardingγ, we have suptPp0,1q γpt, tq �
1. By considering ψptq � t

k , we can confirm that it fulfills the conditions outlined in Theorem 3.4.
Subsequently, we aim to establish that, for every t P R�,

Mpξ�,Tm�ξ�, tq � 1.
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Indeed, for any t ¡ 0, we can observe that

Mpξ�,Tm�ξ�, tq ¥ γ

�
M

�
ξ�, ξi,

t
2



,Gξ0

�
t

2ki




Ñ 1 pi Ñ8q.

Choosing k1 from the interval pk, 1q, we obtain 0   k
k1
  1, and

M
�

Tm�ξi,Tm�ξ�,
k
k1

t



¥ γ

"
M

�
ξ�, ξi,

t
k1



,M

�
ξ�,Tm�ξ�,

t
k1



,M

�
ξ�,Tm�ξi,

t
k1


*
,

for all t ¡ 0. As M
�
ξ�, ξi, t

k1

	
Ñ 1 and M

�
ξ�,Tm�ξi, t

k1

	
Ñ 1 as i Ñ 8, we can deduce that there exists a

natural number n such that for i ¡ N, the following holds:

M
�

Tm�ξi,Tm�ξ�,
k
k1

t


¥ M

�
ξ�,Tm�ξ�,

t
k1



, t ¡ 0.

Conversely, we can observe that

M
�
ξ�,Tm�ξ�, t

	
¥ γ

�
M

�
ξ�,Tm�ξi,

�
1�

k
k1



t


,M

�
Tm�ξi,Tm�ξ0,

k
k1

t




¥ γ

�
M

�
ξ�,Tm�ξi,

�
1�

k
k1



t


,M

�
ξi,Tm�ξ�,

k
k1

t




.

Taking the limit as i Ñ8 in the preceding expression, we obtain, for all t ¡ 0,

M
�
ξ�,Tm�ξ�, t

	
¥ M

�
ξ�,Tm�ξ�,

t
k1



¥ � � �

¥ M

�
ξ�,Tm�ξ�,

t

k j
1

�
Ñ 1 p j Ñ8q.

As a result, we find that M
�
ξ�,Tm�ξ�, t

	
� 1 for all t ¡ 0. Referring to Theorem 3.4, we can now draw the

desired conclusion. This concludes the proof. ■

Example 3.6. Let X �
 

22n
: n PN

(
Y t2u and let γ be the usual product. Consider a fuzzy set M : X2 � p0,8q

given by the formula Mpx, y, tq � t
t�dpx,yq for each t ¡ 0, where

dpx, yq �
" x

y , if x ¤ y;
y
x , if y ¤ x.

For every positive value of t, the triple pX,M, γq forms a complete fuzzy quasi-metric space. Now, let’s examine a
mapping ψ defined as ψptq � t

4 for t in the set of positive real numbers, and introduce a function T : X Ñ X as
follows:

Tp22n
q � 22n�1

for n PN, Tp2q � 2.

Straightforward computations demonstrate that the conditions stated in Theorem 3.5 are satisfied. Consequently, it
can be concluded that T is a fuzzy contractive mapping with the contraction constant k � 1{2, and it is evident that
the number 2 serves as the exclusive fixed point of T.
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4. Fixed point Theorems for mappings in fuzzy quasi-metric space and applications

This section aims to introduce the concept of a fuzzy quasi-metric space and investigate whether fixed
points exist for mappings in such spaces. We give a number of fixed-point theorems that are applicable
to mappings in fuzzy quasi-metric spaces as a concrete example. The results presented in this section
supplement and expand on certain recent discoveries found in the literature.

Now let’s apply a partial order ”¤” on the set D� in the way shown below: D� � tψ : ψ P D, ψptq �
0, , for all t ¤ 0u, whereD is the set containing all distribution functions.

For any two elements M1 and M2 in D�, we define M1 ¤ M2 if and only if M1ptq ¥ M2ptq for all
t P R. Henceforth, we denote this ordered set as W � pD�,¤q. It is evident that W satisfies the following
conditions:

pW1q there exists a minimal element θdef
� H P W, i.e., θ � H ¤ w for all w P W,

pW2q for any M1,M2 P W, the supremum

suptM1,M2u
def
� inftM1ptq,M2ptqu,

pW3q If we define an additive operation on W”� ” : W3 �W, i.e., for any M1,M2,M3,M4 P W, define

pM1 �M2 �M3qptq
def
� sup

r�s�l�t
γpM1prq,M2psq,M3plqq,

where ∆ is a continuous t-norm, it easy to show that M1 �M2 �M3 P W and
(a) M1 �M2 �M3 � M1 �M3 �M2 � M3 �M1 �M2, F� θ � θ� F � F,
(b) if M1 ¤ M2, then M1 �M3 �M4 ¤ M2 �M3 �M4,

pW4q if tMnu is a sequence in W and Mn�1 ¤ Mn, n P N, then we define the limit operation (denote by
Mn Ñ M or lim Mn � M) having the following properties:

(i) if Mn � M, n PN, then Mn Ñ M,
(ii) if Mn Ñ M, M1

n Ñ M1 and M2
n Ñ M2, then Mn �M1

n �M2
n Ñ M�M1 �M2,

(iii) if Mn Ñ F,Mn Ñ F1, Mn ¤ M1
n, n PN, then M ¤ M1.

Definition 4.1. Consider a nonempty set X with a self-mapping T. We define a point x P X as a periodic point of T if
there exists a positive integer k such that Tkx � x. The smallest positive integer that fulfills this condition is referred
to as the periodic index of x.

We give some fixed point theorem in a fuzzy quasi-metric spaces.

Theorem 4.2. Let pX,Mq be a fuzzy quasi-metric space, and consider a self-mapping T of X. If, for any x P X and
for any positive integer n ¥ 2 that satisfies the condition:

Tix � T jx, 0 ¤ i   j ¤ n� 1 (5)

we also have:

MpTnx,Tix, tq ¡ min
1¤ j¤n

MpT jx, x, tq, t ¡ 0, i � 1, 2, � � � ,n� 1. (6)

Then, T possesses a fixed point within X if and only if there exist integers m and n with m ¡ n ¥ 0, along with a
point x P X satisfying:

Tmx � Tnx. (7)

If this condition holds, then Tnx serves as a fixed point of T within the space X.
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Proof. Let x� P X be a fixed point of T, denoted as Tx� � x�. In this case, (7) holds true with m � 1 and
n � 0.
Conversely, assuming the existence of a point x P X and two integers m and n, where m ¡ n ¥ 0, satisfying
(7), we can establish the following without loss of generality: Let m be the smallest integer for which
Tkx � Tnx, where k ¡ n. We define y � Tnx and p � m � n, which leads to Tpy � y. Additionally, p is the
smallest integer satisfying Tky � y, where k ¥ 1. Next, we aim to demonstrate that y is a fixed point of T.
Suppose the opposite. In that case, p ¥ 2, and we have:

Tiy � T jy, 0 ¤ i   j ¤ p� 1.

By referring to (6), we derive the following:

Mpy,Tiy, tq � MpTpy,Tiy, tq ¡ min
1¤ j¤p

tMpT jy, y, tqu

¥ min
1¤ j¤p�1

tMpT jy, y, tqu, i � 1, 2, � � � , p� 1 and t ¡ 0.

it follows that
min

1¤ j¤p
tMpy,T jy, tqu ¡ min

1¤ j¤p
tMpT jy, y, tqu, for all t ¡ 0

This conclusion contradicts our initial assumption. Therefore, we can conclude that y � Tnx is indeed a
fixed point of T, thus completing the proof. ■

Theorem 4.3. Consider a fuzzy quasi-metric space pX,Mq with a self-mapping T. Assuming that for any distinct
points x and y in X, the following condition holds for all t ¡ 0:

MpTx,Ty, tq ¡ mintMpx, y, tq,Mpx,Tx, tq,Mpy,Ty, tq,
Mpx,Ty, tq,Mpy,Tx, tqu. (8)

Under these conditions, the mapping T possesses a fixed point in X if and only if there exists a periodic point x for T.
Furthermore, when this condition is met, the point x is the unique fixed point of T within X.

Proof. Suppose that we have a periodic index k for the point x, and we define a set A as follows:

A � tx,Tx, � � � ,Tk�1xu.

Now, let’s assume that x is not a fixed point of T. In this case, all the points in set A must be distinct.
Consequently, for any pair of integers i and j from the set 0, 1, 2, � � � , k � 1 where i � j, we can conclude
that:

Ti�1x � T j�1x px � Tkx, as i � 0 or j � 0q.

Now, utilizing the condition stated in (8), we can deduce the following inequality:

MpTix,T jx, tq ¡ mintMpTi�1x,T j�1x, tq,MpTi�1x,Tix, tq,MpT j�1x,T jx, tq,
MpTi�1x,T jx, tq,MpT j�1x,Tix, tqu

¡ min
0¤i, j¤k�1

mintMpTix,T jx, tqu for all t ¡ 0.

Applying property (W4), we obtain:

min
0¤i, j¤k�1

mintMpTix,T jx, tqu ¡ min
0¤i, j¤k�1

mintMpTix,T jx, tqu,

which is a contradiction. Therefore, we conclude that x � Tx. It is evident that x is the unique fixed point
of T within X. This concludes the proof of the sufficiency condition. The necessity condition is self-evident.
Thus, the proof is complete. ■

The subsequent theorem can be readily derived from Theorem 4.3.
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Theorem 4.4. Consider a fuzzy quasi-metric space pX,Mq with a self-mapping T. Assuming the existence of a
positive integer p such that, for any distinct points x and y in X and for all t ¡ 0, the following condition holds:

MpTpx,Tpy, tq ¡ mintMpx, y, tq,Mpx,Tpx, tq,Mpy,Tpy, tq,
Mpx,Tpy, tq,Mpy,Tpx, tqu. (9)

Under these conditions, the mapping T has a fixed point in X if and only if there exists a periodic point x for T.
Moreover, when this condition is met, the point x is the unique fixed point of T within X.

Theorem 4.5. Consider a fuzzy quasi-metric space pX,Mqwith a self-mapping T. Assuming the existence of positive
integers p and q, for any distinct points x and y in X and for all t ¡ 0, the following inequality holds:

MpTpx,Tqy, tq ¡ mintMpx, y, tq,Mpx,Tpx, tq,Mpy,Tqy, tq,
Mpx,Tqy, tq,Mpy,Tpx, tqu. (10)

Under these conditions, the mapping T has a fixed point in X if and only if there exists a periodic point x of T with a
periodic index k that satisfies the following condition:

k � 2|p2 � q2|, (11)

Here, p � p1k � p2 and q � q1k � q2, where 0 ¤ p2, q2   k, and p1, q1 are non-negative integers. If this condition is
met, then this point x serves as the unique fixed point of T within X.

Proof. The necessity condition is self-evident.
Now, for the sufficiency part: Let’s assume that k is the periodic index of the point x, and define the set

A as follows:
A � tx,Tx, � � � ,Tk�1xu.

Suppose that x is not a fixed point of T. In this case, all the points in set A must be distinct. For any integers
i and j, where 0 ¤ i   j   k, due to the properties Tp2pAq � A and Tq2pAq � A, we can find Tn1 x, Tn2 x, Tm1 x,
and Tm2 x within A such that the following conditions are satisfied:

Tp2pTn1 xq � Tix, Tq2pTn2 xq � T jx, (12)

Tq2pTm1 xq � Tix, Tp2pTm2 xq � T jx (13)

Now, let’s prove that at least one of the statements Tn1 x � Tn2 x or Tm1 x � Tm2 x is true. Suppose for the sake
of contradiction that both of these statements are false. This would mean that n1 � n2 and m1 � m2. By
using (12) and (13), we can derive the following equations:

p2 � n1 � a1k � i, q2 � n1 � a2k � j, (14)

q2 �m1 � b1k � i, p2 �m1 � b2k � j, (15)

where a1, a2, b1, and b2 are in the range p0, 1q. Without loss of generality, let’s assume that p2 ¡ q2. From
(14) and (15), and considering that i   j, it follows that a1 � 1, a2 � 0, and:

p1� b1 � b2qk � 2p j� iq. (16)

Since 0 ¤ i   j   k, we must have b1 � b2. From (14)-(16), it becomes evident that k � 2pp2 � q2q, which
contradicts (11). Without loss of generality, we can assume that Tn1 x � Tn2 x. Since Tix � Tp2pTn1 xq �
TppTn1 xq and T jx � Tq2pTn2 xq � TqpTn2 xq, it follows from (10) that:

MpTix,T jx, tq ¡ mintMpTn1 x,Tn2 x, tq,MpTn1 x,Tix, tq,MpTn2 x,T jx, tq
,MpTn1 x,T jx, tq,MpTn2 x,Tix, tqu
¡ min

0¤i, j¤k�1
tMpTix,T jx, tqu
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for all t ¡ 0. Using property (W4), we then arrive at the contradiction:

min
0¤i, j¤k�1

tMpTix,T jx, tqu ¡ min
0¤i, j¤k�1

tMpTix,T jx, tqu

This contradiction leads us to conclude that x � Tx. Furthermore, it is evident that x is the unique fixed
point of T in X. This concludes the proof. ■

The proofs of the following results share a similar approach, so we will skip the detailed proof.

Theorem 4.6. Let pX,Mq be a fuzzy quasi-metric space, and let T be a self-mapping of X. Assume that for every
x P X, there exists a positive integer ppxq such that for all y P X, where x � y, and for every t ¡ 0, the following
inequality holds:

MpTppxqx,Tppxqy, tq ¡ mintMpx, y, tq,Mpx,Tppxqx, tq,Mpy,Tppxqy, tq,

Mpx,Tppxqy, tq,Mpy,Tppxqx, tqu.

Under these conditions, the mapping T has a fixed point in X if and only if there exists a periodic point x of T with a
periodic index k. For this point x, which belongs to the set A � tx,Tx, . . . ,Tk�1xu, the following conditions must be
satisfied: for any pair of distinct elements u and v in A, there exist x1 and y’ in A, where x1 is not equal to y’, and they
satisfy the following equations:

Tppx1qx1 � u, Tppx1qy1 � v.

If these conditions are met, then point x is the unique fixed point of T within X.

Theorem 4.7. Consider a fuzzy quasi-metric space pX,Mq with a self-mapping T. Suppose that for any given x P X
where x � y, there exists a positive integer ppx, yq such that for all t ¡ 0, the following inequality holds:

MpTppx,yqx,Tppx,yqy, tq ¡ mintMpx, y, tq,Mpx,Tppx,yqx, tq,Mpy,Tppx,yqy, tq,

Mpx,Tppx,yqy, tq,Mpy,Tppx,yqx, tqu.

Under these conditions, the mapping T has a fixed point in X if and only if there exists a periodic point x of T with a
periodic index k. For this point x, which belongs to the set A � x,Tx, . . . ,Tk�1x, the following conditions must be
satisfied: for any pair of distinct elements u and v in A, there exist x1 and y’ in A, where x1 is not equal to y’, and they
satisfy the following equations:

Tppx1,y1qx1 � u, Tppx1,y1qy1 � v.

If these conditions are met, then point x is the unique fixed point of T within X.

5. Fixed point theorems of Kransnoselski’s type in fuzzy quasi-metric spaces

In functional and nonlinear analysis, Krasnoselskii’s fixed-point theorems are essential because they
specify the requirements for a mapping to have a fixed point in a space. These theorems are modified to
include parameters in parameterized metric spaces (PM-spaces), and the continuity of fixed points with
respect to these parameters is important in mathematical modeling, control theory, and optimization. In
physics, it helps to understand phase transitions; in economics, it helps to understand equilibria when
economic factors change; and in control systems, it helps to evaluate stability and performance. The
significance of fixed-point theorems in a variety of applications is examined in this section as it relates to
fuzzy quasi-metric spaces.

Several fixed point theorems of Kransnoselski’s nature in the framework of FM-space will be presented
in this section. We will also discuss how fixed points show continuity with respect to changing factors.

To begin, let’s demonstrate the following definition.

Definition 5.1. Let pX,N, γq be a fuzzy quasi-normed space equipped with a continuous t-norm γ, and let A be a
nonempty subset of X. A mapping T : X Ñ X is said to be compact if TpAq is a compact subset of X.
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Lemma 5.2. Consider a complete fuzzy quasi-metric space denoted as pX,M, γq, with the added condition that the
family tΨnpγ,uqunPN exhibits equicontinuity at the point u � 1. Now, suppose we have a mapping φ : X Ñ X, and
for each element x P X, there exists a natural number npxq P N such that, for all y P X and u ¡ 0, the following
inequality holds:

Mpφnpxqpxq, φnpxqpyq, kuq ¥ Mpx, y,uq,

where k P p0, 1q. Additionally, defineΨ1pγ,uq as γpu,uq andΨnpγ,uq as:

Ψnpγ,uq � γpγp� � �γl      jh      n
n�times

pγpu,uq,u, q, � � � ,uqq, n � 2, 3, � � � , , , u P r0, 1s.

Under these conditions, it can be concluded that φ possesses a unique fixed point denoted as x�, and for every x P X,
limnÑ8 φnpxq � x�.

Proof. By Theorem 3.5, it suffices to prove that for every x0 P X,

sup
u

Gx0puq � 1,

where Gx0puq � infnPNMpx0, φnpx0q,uq.
Let m PN and snpx0q   m ¤ ps� 1qnpx0q. Then for every u ¡ 0,

Mpφnpx0q, x0,uq ¥ γpMpφnpx0q, φ
npx0qpx0q, kuq,Mpφnpx0qpx0q, x0,u� kuqq

¥ γpMpφm�npx0qpx0q, x0,uq,Mpφnpx0qpx0q, x0,u� kuqq

¥ γpγp� � �γl      jh      n
n�times

pMpφm�npx0qpx0q, x0,uq,Mpφnpx0qpx0q, x0,u� kuqq,

� � � ,Mpφnpx0qpx0q, x0,u� kuqqq.

If 1puq � minr�1,2,��� ,npx0qtMpφrpx0q, x0,u� kuqu, then we have

Mpφmpx0q, x0,uq ¥ Ψspt, 1puqq, m PN.

Since limuÑ8 1puq � 1 and the family tΨspt,uqunPN is equicontinuous,

Mpφmpx0q, x0,uq ¡ 1� λ

for every m ¥ npu, λq and λ P p0, 1q and so supu Gx0puq � 1. This complete the proof. ■

Subsequently, we provide an illustration of a t-norm γwhere the family tψspt,uqusPN demonstrates equicon-
tinuity specifically at the point u � 1.

Example 5.3. Consider a continuous t-norm denoted as rγ and a set of intervals Im � r1 � 2m, 1 � 2�m�1s for
m � 0, 1, 2, . . .. If we define the mapping γ : r0, 1s � r0, 1s Ñ r0, 1s as follows:$&%

1� 2�m � 2�m�1rγp2m�1px� 1� 2�mq,
2m�1py� 1� 2�mqq, px, yq P

�
mPNYt0u I2

m,
mintx, yu, px, yq R

�
mPNYt0u I2

m,

then the family tψspt,uqusPN demonstrates equicontinuity specifically at the point u � 1.

The subsequent lemma holds significant utility in the upcoming sections, and its details can be referenced
in [10].
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Lemma 5.4. Let X represent a Hausdorff topological vector space, K be a nonempty, closed, and convex subset of X,
φ : X Ñ X be an affine and continuous mapping, and ψ : K Ñ X be a continuous mapping. Additionally, assume
that ψpKq is compact, and the following conditions hold:

(a) For any y within the closure of the convex hull of ψpKq (denoted as coψpKq), there is precisely one solution,
denoted as xpyq, in K for the equation z � φz� y. Furthermore, the set txpyquyPψpKq is compact.

(b) For every V belonging to the collectionU of neighborhoods of zero in X and every x within the closure of ψpKq,
there exists a U inU such that copx�Uq X ψpKq � x� V.

Under these circumstances, there exists a point x within the set K such that x � φx� ψx.

Utilizing Lemma 5.4, we aim to establish a fixed point theorem in the style of Kransnoselski for fuzzy
quasi-normed spaces.

Theorem 5.5. Consider a complete fuzzy quasi-normed space pX,N, γq equipped with a continuous t-norm γ. Let K
be a closed, convex, and fuzzy bounded subset of X, and let φ : X Ñ X be a linear continuous mapping. Additionally,
consider a continuous mapping ϑ : K Ñ X such that ϑpKq is compact, and ensure the following conditions are met:

(a) There exists n PN and k P p0, 1q such that for any ε ¡ 0 and all x, y P K, the inequality holds:

Npφnpxq � φnpyq, kεq ¥ Npx� y, εq.

(b) The set inclusion φpKq � copKq � K is satisfied.
(c) For any ε ¡ 0, δ P p0, 1q, and x P ϑpKq, there exist ε1 ¡ 0 and δ1 P p0, 1q such that:

copx�Upε1, δ1qq Y ϑpKq � x�Upε, δq.

Under these conditions, there exists a point x P K such that x � φx� ϑx.

Proof. From Theorem 6 in reference [14], we can deduce that for every y P copKq, there exists an element
ηy P K satisfying the equation ηy � φpηyq � y. This result implies the existence of a mapping Γy : K Ñ K
defined as Γypxq � φx � y for y P copKq and x P K. Notably, this mapping Γy satisfies the condition
Γn

ypxq � Γn
ypzq � φnpxq � φnpzq for x, z P K, given the linearity of φ and the fact that K is a fuzzy bounded

subset of X, which implies that supx DKpxq � 1, where DKpxq � supt x infp,qPK Npp� q, tq for x P R.
Hence, there exists a unique element ηy such that Γypηyq � ηy for y P copKq. Now, we aim to demonstrate

that the mapping η : ϑpKq Ñ K is continuous. Let us denote the sets of all continuous mappings from X and
K as CpϑpKq,Xq and CpϑpKq,Kq, respectively. Then, the triplet pCpϑpKq,Xq, rN, γq forms a complete fuzzy
quasi-normed space, where the mapping rN : CpϑpKq,Xq Ñ D� is defined as follows:

rNpx̃, tq � sup
δ t

inf
yPϑpKq

Npx̃pyq, δq

for every x̃ P CpϑpKq,Xq. If we define the mapping

pΓ : CpϑpKq,Kq Ñ CpϑpKq,Xq

as ppΓx̃qpyq � φpx̃pyqq � y for every y P ϑpKq and x̃ P CpϑpKq,Kq, then we can express

ppΓnx̃qpyq � φnpx̃pyqq �
n�1̧

j�0

φ jy,

and it’s straightforward to observe that

ÑppΓnx̃1 � pΓnx̃2, kuq ¥ Ñpx̃1 � x̃2,uq, , , u ¡ 0
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for every x̃1, x̃2 P CpϑpKq,Xq. This is due to the fact that

sup
ε¡0

inf
x̃1,x̃2PCpϑpKq,Kq

Ñpx̃1 � x̃2, εq � 1,

as established in [14, Theorem 6]. Consequently, it follows that there exists a unique element x̃� P CpϑpKq,Kq
such that pΓx̃� � x̃�. Subsequently, x̃�pyq � ηy for every y P ϑpKq, and this leads to the conclusion that the
mapping η is continuous.

Moreover, since the set ϑpKq is compact, condition (a) from Lemma 5.4 is satisfied. This completes the
proof. ■

Corollary 5.6. Let’s consider a complete fuzzy quasi-normed space pX,N, γq equipped with a continuous t-norm γ.
Additionally, assume that the family tΨnpγ,uqunPN exhibits equicontinuity at the point u � 1. We also have a linear
continuous mapping φ : X Ñ X and a compact mapping ϑ : K Ñ X that satisfy conditions (a) and (b) in Theorem
5.5. Under these conditions, there exists a point x P K such that x � φx� ϑx.

Proof. We will now establish that condition (c) in Theorem 5.5 is indeed satisfied. Let’s assume that ε ¡ 0
and δ P p0, 1q. Our objective is to demonstrate the validity of the following inclusion:

coUpε, δ1q � Upε, δq, (17)

where δ1 P p0, 1q is chosen to ensure the following implication:

u ¥ 1� δ1 ñ Ψnpγ,uq ¡ 1� δ, n PN.

This implication holds due to the equicontinuity of the family Ψnpγ,uqnPN at the point u � 1 and the
existence of such a δ1. Now, let’s take an arbitrary point x P co Upε, δ1q. This means that there exist
λi P r0, 1s, xi P Upε, δ1q for i � 1, 2, � � � ,n such that

°n
i�1 λi � 1 and x �

°n
i�1 λixi. We can proceed with the

following calculations:

Npx, εq ¥ N

�
ņ

i�1

λixi,
ņ

i�1

λiε

�

¥ γ

�
N

�
n�1̧

i�1

λixi,
n�1̧

i�1

λiε

�
,Npλnxn, λnεq

�

� γ

�
N

�
n�1̧

i�1

λixi,
n�1̧

i�1

λiε

�
,Npxn, εq

�

¥ γ

�
γ

�
N

�
n�2̧

i�1

λixi,
n�2̧

i�1

λiε

�
,Npxn�1, εq

�
,Npxn, εq

�
¥ γpγp� � �γpγl         jh         n

n�times

pNpx1, εq,Npx2, εq,Npx3, εq, � � � ,Npxn, εqqqq

¥ Ψnpγ, 1� δ1q ¡ 1� δ,

which implies that x P Upε, δq. Thus, we have successfully established the inclusion in equation (17). This
concludes the proof. ■

The consistency of stationary points with respect to different parameters will then be examined. Suppose
we have a metrizable topological space C, a subset ∆ � C, a mapping T : E � ∆ Ñ X, where E is a subset
of X, and a full fuzzy quasi-metric space X. Moreover, suppose that the mapping Tλx Ñ Tpx, λq has a
fixed point xpλq P E for all λ P ∆. Next, we want to prove a theorem showing that the fixed points of the
mappings Tλ depend continuously on the parameter λ P ∆.
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Let A be a fuzzy bounded subset of the fuzzy quasi-metric space pX,M, γq, and let γ be the continuous
t-norm. The definition of the function αA is as follows:

αApxq � suptε : ε ¡ 0, there exists a covering tA ju jPJ

� J is finite, A �
¤
jPJ

A j,DA jpxq ¥ εu, x P R

This function is commonly referred to as Kuratowski’s fuzzy number or Kuratowski’s function (see [18,
Chapter X, page 242]). Kuratowski’s function possesses the following properties:

(i) If H � A � B � X, then αApxq ¥ αBpxq for all x P R.
(ii) αApxq � αĀpxq for all x P R.

(iii) A subset A in X is compact if and only if αApxq � Hpxq for all x P R, where Hpxq is another function
defined by

Hpxq �
"

1, if t ¡ 0;
0, if t ¤ 0.

Definition 5.7. Consider a topological space denoted as Y, a subset ∆ of another topological space S, and a mapping
Φ : ∆ Ñ 2Y. We designate the multifunction Φ as ”upper semicontinuous” at a specific point λ0 P ∆ if and only if
the following condition holds: For every open set G in Y that encompasses Φpλ0q, there exists an open neighborhood
Upλ0q of λ0 in S such that ΦpUpλ0q X ∆q � G.

Theorem 5.8. Assume we have a complete fuzzy quasi-metric space denoted as pX,M, γq with a continuous t-norm
γ. Additionally, consider a complete metrizable topological space C, a subset ∆ within C, and a closed, fuzzy bounded
subset E of X. We are given a mapping T : E� ∆Ñ X that satisfies the following conditions:

(a) The function Tp�, λq is continuous for each λ P ∆, and there exists a subset ∆0 � ∆ such that for every λ0 P ∆0,
Tp�, λq is continuous at px, λ0q for every x P E.

(b) For each λ P ∆, the equation x � Tpx, λq has a solution in E.
(c) For every subset E1 � E where αE1   H, there exists an open neighborhood B � BpEq of ∆0 such that, for any

precompact set ∆1 � ∆Y B, the inequality αTpE1,∆1q ¡ αE1 holds.

Under these conditions, we can conclude that Φ is upper semicontinuous at each λ P ∆0, where Φpλq is defined as the
set of solutions to the equation

Φpλq � tx : x P E, x � Tpx, λqu.

Proof. Assume that Φ does not exhibit upper semicontinuity at a specific point λ0 P ∆. In such a case, there
exists an open set O containing Φpλ0q, and for any given ε ¡ 0 and δ within the interval p0, 1q, we can find
a λε,δ P ∆ such that:

Mpλε,δ, λ0, εq ¡ 1� δ, and Φpλε,δq � O.

This means that for any small positive ε and δ values, we can identify a λε,δ in ∆ such that Φ exceeds a
threshold of 1� δ at ε distance from λ0, and the set of points within Φpλε,δq is not entirely contained within
the open set O.

Let’s assume we have a sequence of decreasing positive values: ε1 ¡ ε2 ¡ � � � ¡ εn ¡ � � � with
limnÑ8 εn � 0, and another sequence of decreasing values: δ1 ¡ δ2 ¡ � � � ¡ δn ¡ � � � with limnÑ8 δn � 1. If
we define λ1n � λεn,δn , then we can conclude that limnÑ8 λ1n � λ0. Indeed, consider any ε ¡ 0 and δ P p0, 1q.
There exists some positive integer n0 such that εn   ε and δ   δn for all n ¥ n0. Consequently,

Mpλ1n, λ0, εq ¥ Mpλ1n, λ0, εnq, n ¥ n0.

Since Mpλ1n, λ0, εnq ¡ 1� δn for all n PN and δ   δn for all n ¥ n0, it follows that

Mpλ1n, λ0, εq ¥ 1� δ, n ¥ n0.



M.H.M. Rashid / Filomat 39:9 (2025), 2953–2971 2969

This implies that limnÑ8 λ1n � λ0. Now, let’s consider the fact thatΦpλ1nq � O for each n PN. Therefore, we
can find xn P Φpλ1nqzO for each n PN. Define a set E1 � txn : n PNu. To show that the set E1 is precompact,
let’s assume the opposite, that is, αE1   H. For this, we choose a positive integer k such that

∆1 � tλ1n : n ¥ ku � BpE1q.

Now, ∆1 is precompact. Since xn P Φpλ1nq for every n P N, it follows that xn � Tpxn, λ1nq for all n P N. This
implies that

αE1 � αxn:n¥k ¥ αTpE1,∆1q ¡ αE1 .

So, we conclude that αE1 � H, which means that Ē1 is a compact set. As we have txnu � E1 � Ē1, it implies
the existence of a subsequence, which we’ll still denote as txnu, converging to a point x0 P Ē1. Consequently,
tpxn, λnqu Ñ px0, λ0q. Therefore, tTpxn, λnqu Ñ Tpx0, λ0q. Thus, we can deduce that x0 � Tpx0, λ0q, which
means that x0 belongs to the set Φpλ0q. However, for each n P N, it is known that xn is not in C. Since Cc,
the complement of C, is a closed set, it follows that x0 is also not in C. This, in turn, implies that x0 belongs
to Φpλ0q. Therefore, we have reached a contradiction. This concludes the proof. ■

To illustrate Theorem 5.8 with an example involving fractional differential equations, let’s examine a
specific fractional differential equation and show how it aligns with the framework of a fuzzy quasi-metric
space.

Example 5.9. (Fractional Differential Equation) Consider the following fractional differential equation involving
the Caputo fractional derivative of order α, where 0   α   1:

D
αxptq � �kxptq

with the initial condition xp0q � x0. Here, k is a positive constant. This type of fractional differential equation can be
used to model various physical processes with memory and hereditary properties.

(i) Space X and Fuzzy Quasi-Metric M:

• Let X be the space of continuous functions Cpr0, 1s,Rq.

• Define the fuzzy quasi-metric M on X as follows:

Mpx, y, tq �
t

t� }x� y}8
,

where }x� y}8 � supsPr0,1s |xpsq � ypsq|.

• the t-norm γ is given by γpa, bq � minta, bu.

(ii) topological Space C and Subset ∆:

• Let C be the space of continuous functions on r0, 1s.

• Let ∆ be a compact interval of possible values for the parameter k, say ∆ � rk1, k2s � R.

(iii) Set E: Let E � X be a closed, fuzzy bounded subset of Cpr0, 1s,Rq. For simplicity, consider E to be the set of
functions bounded by a certain norm, say

E � tx P Cpr0, 1s,Rq : }x}8 ¤ Mu

for some M ¡ 0.
(iv) Mapping T: Define the mapping T : E� ∆Ñ X by

pTpx, kqqpsq � x0Eαp�ksαq,

where Eα is the Mittag-Leffler function, which is the solution to the given fractional differential equation.
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Verifying Conditions of the Theorem:
Condition (a):

• The function Tp�, λq is continuous for each λ P ∆.

• For a subset ∆0 � ∆, Tp�, λq is continuous at px, λ0q for every x P E.

Condition (b): For every subset E1 � E where αE   H, there exists an open neighborhood B � BpEq of ∆0 such that
for any precompact set ∆1 � ∆Y B, the inequality αTpE1,∆1q ¡ αE1 holds.
Conclusion: Under these conditions, we can conclude that Φ is upper semicontinuous at each λ P ∆0, where Φpλq is
defined as the set of solutions to the equation:

Φpλq � tx : x P E, x � Tpx, λqu.

Thus, in the context of this fractional differential equation, the theorem guarantees that the set of solutions Φpλq will
be upper semicontinuous at each λ P ∆0. This means that small changes in the parameter λ will not cause abrupt
changes in the solution set, ensuring the stability of solutions under parameter variations.

Utilizing Theorem 5.8, we will now establish a theorem regarding the existence of a solution for the
system given by x � Hpx, yq and y � Kpx, yq.

Theorem 5.10. Assume that pX1,N1, γ1q and pX2,N2, γ2q are both complete fuzzy quasi-normed spaces equipped
with continuous t-norms γ1 and γ2. Additionally, consider that U is a closed and fuzzy bounded subset of X1, and V
is a closed and convex subset of X2. We have two mappings, H : U � V Ñ U and K : U � V Ñ V, which are both
compact mappings, and they satisfy the following conditions:

(a) For every element v in the set V, the equation u � Hpu, vq possesses a unique solution, denoted as upvq, which
belongs exclusively to the set U.

(b) For every v P V, the function Hp�, vq exhibits continuity, and for each u P U, the function Hpu, �q also
demonstrates continuity.

(c) For any subset U1 � U with αU1   H and any precompact set V1 � V, we can deduce that:

αHpU1,V1q ¡ αU1 .

(d) For any given ε ¡ 0, δ P p0, 1q, and any element x belonging to the set V, there exists ε1 ¡ 0 and δ1 P p0, 1q
such that:

convex hull ppx�UX2pε
1, δ1qq X KpU,Vqq � x�UX2pε, δq.

In that case, there is at least one pair pu, vq P U � V satisfying the following system of equations:

u � Hpu, vq, v � Kpu, vq.

Proof. Following Theorem 5.8, we can conclude that the function η : v Ñ ηv, defined as ηv � Hpηv, vq for
v P V, is continuous. Now, if we define the function G : V Ñ V as Gv � Kpηv, vq for v P V, then the function
G is compact and satisfies all the conditions necessary for Rzepecki’s fixed point theorem. Consequently,
we can affirm that ΦpGq � H. For any v P ΦpGq, we have u � ηv. This completes the proof. ■

6. Conclusion and Future Work

This paper has focused on the study of fuzzy quasi-metric spaces, particularly in the context of identi-
fying fixed points for specific mappings within this framework. We have developed tailored fixed-point
theorems that accommodate various types of mappings, ensuring their practical relevance in applications.
Additionally, akin to Kransnoselski’s theorems, we have established analogous rules applicable to these
spaces, further enriching their theoretical foundation. Moreover, our research has explored the stability of
fixed points under specific conditions, providing insights into the robustness of our findings. To elucidate
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these theoretical advancements, we have included illustrative examples that demonstrate the practical im-
plications of our results. In conclusion, this paper contributes to the ongoing developments in the field of
fuzzy quasi-metric spaces by presenting novel fixed-point theorems and exploring their applications.

Future research directions emerging from this paper include extending the applicability of the developed
fixed-point theorems to broader fuzzy quasi-metric spaces and related structures such as fuzzy metric
spaces or probabilistic metric spaces. Further investigations will explore the stability of fixed points under
varied conditions and assess their robustness to perturbations in mappings or the space itself. Practical
applications in fields like computer science, economics, and engineering will be pursued, leveraging the
developed theories to address specific problems. Comparative studies will evaluate the effectiveness and
scope of the fixed-point theorems against alternative methodologies in solving problems within fuzzy
quasi-metric spaces, highlighting their respective strengths and limitations. Additionally, exploration of
novel properties of fixed points beyond stability, such as convergence rates and uniqueness under specific
conditions, will be undertaken. Empirical validation through computational experiments will substantiate
theoretical findings, affirming the reliability and applicability of the developed theorems. Furthermore,
efforts will focus on creating educational resources that clarify the concepts and practical uses of fixed-point
theorems in fuzzy quasi-metric spaces, catering to both academic and practical audiences. These endeavors
aim to build upon the foundational contributions of this paper, fostering continued advancements in the
field.
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