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Abstract. For a topological space X, the group of autohomeomorphisms is denoted byH(X). It is a well-
established fact that even if two topological spaces X and Y have isomorphic autohomeomorphism groups,
it does not necessarily imply that X and Y are homeomorphic. A space X is considered homogeneous if its
autohomeomorphism group,H(X), acts transitively on X, via the action

H(X) × X −→ X
(1, x) 7−→ 1(x).

The degree of homogeneity of X, denoted as dH(X), is defined as the cardinality of the quotient set
X/H(X) relative to the aforementioned action.

Regarding the Khalimsky topology defined on the set of integers, this topology, denoted by K , is the
topology generated by the family{
{x − 1, x, x + 1} : x is an even integer

}
,

as a subbase. The space (Z,K ), known as the Khalimsky line or digital line, will be denoted by KL (or
KL1). The digital line is notably influential in digital image processing and computer graphics. For recent
advancements in digital topologies on Zn, see [3], [10], [11], and [12].

The aim of this paper is the construction of a sequence of Alexandroff topologies, {Kp : p ∈ N}, on the
set of integers Z. This provides new digital topologies with the following properties:

- H(Z,Kp) is isomorphic toH(Z,K ).

- For each positive integer p, (Z,Kp) is topologically embedded in (Z,Kp+1).

The degree of homogeneity, Krull dimension, inductive dimension and the height of (Z,Kp) are also
computed.

1. Introduction

For a topological space X, we letH(X) denote the group of autohomeomorphisms of X. A classic query,
originating from Ulam [27], inquires if spaces X and Y are homeomorphic when their autohomeomorphism
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groups H(X) and H(Y) are algebraically isomorphic. Although simple examples demonstrate that the
answer is generally no, there are specific instances where the answer is yes. For example, as detailed by
Whittaker [28], in the context of compact manifolds, if there exists a group isomorphismφ : H(X) −→ H(Y),
then there exists a homeomorphism ω : X −→ Y such that φ(h) = ωhω−1, for all h ∈ H(X).

A space X is said to be homogeneous ifH(X) acts transitively on X by the action

H(X) × X −→ X
(1, x) 7−→ 1(x).

The degree of homogeneity of X, denoted by dH(X), is defined by the cardinality of the quotient set X/H(X)
according to the aforementioned action. When dH(X) = n, X is referred to as 1

n -homogeneous.
It is noteworthy that the authors of [21] provided significant insights for the autohomeomorphism group

of certain typical Alexandroff spaces.
The main goal of this paper is to develop new Alexandroff topologies, denoted by Kp, on Z such that

K1 = K andH(K ) is identical toH(Kp), for each integer p, and that each topologyKp is embedded within
Kp+1.

Let us review some fundamental concepts that will be utilized consistently in this paper.
An adjacency relation on a non-empty set V is defined as a symmetric and irreflexive binary relation π.

If for any two elements x and y in V, there exists a finite sequence of elements x0, . . . , xn from V such that
x = x0, y = xn, and (x j, x j+1) ∈ π for j ∈ {0, 1, . . . ,n−1}, then the pair (V, π) is called a digital space, as described
by Herman [13]. In this context, if (x, y) ∈ π, then x and y are considered to be π-connected.

In a topological space X, two distinct points x and y are said to be adjacent when the subspace consisting
of {x, y} is connected. The set of all points y that are adjacent to x, denoted byAX(x), is called the adjacency
set of x. This specific type of adjacency relation is known as the topological adjacency in the space X.

Points x and y in a space are adjacent precisely when x , y, and either y ∈ N(x) or x ∈ N(y), where
N(x) denotes the intersection of all open sets in X that contain x. An alternative equivalent condition is that
x , y, and either y ∈ {x} or x ∈ {y}. Therefore, the adjacency set of x in X,AX(x), can be expressed as:

AX(x) = (N(x) ∪ {x}) \ {x}.

An Alexandroff topology is a topology where the intersection of any family of open sets is also open.
This kind of topologies were initially introduced and explored by Alexandroff in 1937 [1], under the
designation “Diskrete Räume”. In Steiner’s work [26], Alexandroff spaces were studied under the term
“principal spaces”.” Steiner demonstrated that in the lattice of topologies on any set, each topology possesses
a principal topology complement.

Alexandroff spaces are known for their versatile properties, finding applications in various fields such
as the “geometry of the computer screen” and digital topology. Alexandroff topological spaces with the
T0-separation axiom have connections with partial orders. For recent developments in Alexandroff spaces
and insights into how topology and ordered sets are applied in information theory, one can refer to: [16],
[2] and [20].

Consider a preorder (i.e. a reflexive and transitive binary relation) ≤ on a set X. For an element x in X,
we denote :

- the set {y ∈ X : y ≤ x} by (↓ x], and

- the set {y ∈ X : x ≤ y} by [x ↑).

The topology on X, with base B = {(↓ x] : x ∈ X}, is denoted byA(≤). It is clear thatA(≤) constitutes an
Alexandroff topology. This topology,A(≤), is termed as the Alexandroff topology induced by the preorder ≤. In
this topology, the closure of a singleton set {x} is given by [x ↑) for every element x in X.

In a topological space X, the preorder ≤T defined by the condition

x ≤T y if and only if y ∈ {x}
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is known as the preorder induced by the topology of X; it is also called the opposite specialization order.
If (X,T ) is an Alexandroff space and ≤T is the preorder induced by T , then T = A(≤T ).
Let Alex be the category with objects the Alexandroff spaces and with arrows the continuous maps. We

let also Pord be then the category with objects the preordered sets and with arrows the preorder preserving
maps. Then Alex and Pord are isomorphic.

It is a well-established fact that if π is the topological adjacency on an Alexandroff space X, then (X, π)
constitutes a digital space if and only if X is π-connected as per [13, Theorem 4.2.2.].

The digital analog of the Euclidean topology on the real line, invented by Efim Khalimsky, features
notably in this context (refer to [18], [17] and [19], for more information).

The Khalimsky line refers to the set of integers Z equipped with the topology K such that a subset U of
Z isK -open if and only if whenever 2n ∈ U, then 2n− 1, 2n+ 1 ∈ U. It follows that the Khalimsky topology
is Alexandroff and for every n ∈ Z, the following properties hold.

- If n is odd, then {n} isK -open,N(n) = (↓ n] = {n}, and {n} = {n − 1,n,n + 1} = [n ↑).

- If n is even, then {n} isK -closed,N(n) = (↓ n] = {n − 1,n,n + 1}, and {n} = {n} = [n ↑).

Defining ≤1 as the ordering induced by the Khalimsky topologyK , the relation x ≤1 y holds true if and
only if either x = y or y is even and x ∈ {y− 1, y+ 1}. In this context, the partially ordered set (poset) (Z,≤1)
can be visualized as follows:

2n

2n − 1 2n + 1

2(n + 1)

2(n + 1) + 1
. . .

. . .

. . .

. . .

Figure 1: The poset (Z,≤1).

The Khalimsky line, represented by the set of integersZ equipped with the Khalimsky topologyK , will
be denoted by KL.

A point x of a connected topological space X is called a cut-point if the subspace X \ {x} is disconnected,
A cut-point space is defined as a connected space in which every point is a cut-point. This space is considered
a minimal cut-point space if none of its proper subspaces qualifies as a cut-point space. According to [15],
there exists only one unique minimal cut-point space, when considered up to homeomorphism, namely the
Khalimsky line.

For {a, b} ⊂ Zwith a ≤ b, the notation [a, b]Z is considered as {t ∈ Z : a ≤ t ≤ b}. The set {t ∈ Z : a ≤ t < b}
will be denoted by [a, b)Z.

In the subsequent definition, we will introduce the concept of the p-Khalimsky topology.

Definition 1.1. Given a positive integer p, the p-Khalimsky topology onZ, denoted byKp, is the topology generated
by the union of the following collections of sets:

{
[2np − p, 2np + p]Z : n ∈ Z

}
,⋃

n∈Z

{
[2np − p, 2np − i]Z : i ∈ [1, p]Z

}
,

⋃
n∈Z

{
[2np + i, 2np + p]Z : i ∈ [1, p]Z

}
,

as a base.
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It is clear that a set O ⊆ Z is Kp-open if and only if for every i ∈ [0, p]Z and for every integer x ∈ 2pZ
(the set of multiples of 2p in Z), the set O satisfies the following properties.

1. If x − i ∈ O, then [x − p, x − i]Z ⊆ O.
2. If x + i ∈ O, then [x + i, x + p]Z ⊆ O.

The p-Khalimsky topology Kp, when specified for p = 1, aligns with the original Khalimsky topology,
denoted asK . This means thatK1 coincides with the Khalimsky topologyK .

In the forthcoming sections, we will show that the following properties hold.

- The group of homeomorphismsH(KLp) is isomorphic to the infinite dihedral groupD∞.

- The degree of homogeneity dH(KLp) for each KLp is equal to p + 1.

- There exists an increasing sequence

KL1
f1
↪−→ KL2 ↪−→ . . . ↪−→ KLp

fp
↪−→ KLp+1 ↪−→ . . .

of canonical embeddings such that the remainders KLp+1 \ fp
(
KLp

)
are infinite discrete.

- fp
(
KLp

)
meets every nonempty closed set and every nonempty open set of KLp+1.

- For each positive integer p, KLp is a connected Alexandroff space such that every continuous injection
from the space into itself is a homeomorphism.

- We also provide details regarding the dimensions of KLp and its degree of homogeneity.

2. Preliminaries

It can be readily verified that Kp defines an Alexandroff topology on the set of integers Z. We denote
the smallest Kp-open set containing any integer x ∈ Z as Np(x). Additionally, for any subset A of Z, the
Kp-topological closure of A is represented by A

p
.

The following proposition is a straightforward implication of the definition provided in 1.1.

Proposition 2.1. Let p be a positive integer, x and i be integers such that 1 ≤ i < p. Then, the following
properties hold.

(1) x ≡ 0 (mod 2p) if and only if {x}
p
= {x} (equivalently,Np(x) = [x − p, x + p]Z).

(2) x ≡ −i (mod 2p) if and only if {x}
p
= [x, x + i]Z (equivalently,Np(x) = [x + i − p, x]Z).

(3) x ≡ i (mod 2p) if and only if {x}
p
= [x − i, x]Z (equivalently,Np(x) = [x, x − i + p]Z).

(4) x ≡ p (mod 2p) if and only if {x}
p
= [x − p, x + p]Z (equivalently,Np(x) = {x}).

Remark 2.2. Let ≤p represent the ordering on Z that is induced by the Kp-topology. In this context, the
partially ordered set (poset) (Z,≤p) looks like:
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2pn 2p(n + 1)

2pn − 1 2pn + 1 2p(n + 1) − 1 2p(n + 1) + 1

2pn − p + 1 2pn + p − 1 2p(n + 1) − p + 1 2p(n + 1) + p − 1

2pn − p 2pn + p 2p(n + 1) + p

. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

Figure 2: The poset (Z,≤p).

The enumeration of the cardinalities |{x}
p
| and |Np(x)| is determined by the congruence class of x modulo

2p.

Proposition 2.3. Consider the poset (Z,≤p). Then the following properties hold.

(1) Two integers a and b are comparable in (Z,≤p) if and only if they belong to a maximal chain of the form:

x − p ≤p x − p + 1 ≤p . . . ≤p x − 1 ≤p x

or

x ≤p x + 1 ≤p . . . ≤p x + p − 1 ≤p x + p,

for some x ≡ 0 (mod 2p).
(2) An integer x ∈ Z is maximal (resp. minimal) in (Z,≤p) if and only if x ≡ 0 (mod 2p) (resp. x ≡ p (mod 2p)).

(3) x ≡ 0 (mod 2p) if and only if |{x}
p
| = 1 (equivalently, |Np(x)| = 2p + 1).

(4) x ≡ p (mod 2p) if and only if |{x}
p
| = 2p + 1 (equivalently, |Np(x)| = 1).

(5) For x ≡ i (mod 2p), with i ∈ [1, p − 1]Z, it holds that |{x}
p
| = i + 1 and |Np(x)| = p − i + 1.

(6) For x ≡ −i (mod 2p), with i ∈ [1, p − 1]Z, it holds that |{x}
p
| = i + 1 and |Np(x)| = p − i + 1.

Before exploring continuous functions from KLp to KLq, it is essential to revisit a fundamental concept
in topology. Consider a function f from an Alexandroff space (X1,T1) to another Alexandroff space (X2,T2).
In this setting, ≤i denotes the preorder induced by the topology Ti on the set Xi, for i = 1, 2. The function f
is continuous if and only if it preserves the preorder, meaning f : (X1,≤1)→ (X2,≤2) respects the ordering
relations.

Thus, for a function f : KLp → KLq to be continuous, it is both necessary and sufficient that for all
integers x and y, the implication

y ≤p x =⇒ f (y) ≤q f (x)

holds. If x ≡ p (mod 2p), this implication holds trivially since, in this case, x is a minimal element of (Z,≤p),
and therefore y = x. Consequently, our focus will be on cases where x . p (mod 2p).

Proposition 2.4. Let p and q be positive integers. Consider a function f : KLp → KLq. This function is continuous
if and only if for any x ∈ Z satisfying x . p (mod 2p), the following conditions are satisfied:

(1) If x ≡ 0 (mod 2p) and f (x) ≡ 0 (mod 2q), then for each t ∈ [−p, p]Z, f (x) − q ≤ f (x + t) ≤ f (x) + q.
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(2) If x ≡ 0 (mod 2p) and f (x) ≡ − j (mod 2q) for some j ∈ [1, q)Z, then for each t ∈ [−p, p]Z, f (x) + j − q ≤
f (x + t) ≤ f (x).

(3) If x ≡ 0 (mod 2p) and f (x) ≡ j (mod 2q) for some j ∈ [1, q)Z, then for each t ∈ [−p, p]Z, f (x) ≤ f (x + t) ≤
f (x) − j + q.

(4) If x ≡ 0 (mod 2p) and f (x) ≡ q (mod 2q), then for each t ∈ [−p, p]Z, f (x + t) = f (x).
(5) If x ≡ −i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ 0 (mod 2q), then for each t ∈ [i − p, 0]Z, f (x) − q ≤

f (x + t) ≤ f (x) + q.
(6) If x ≡ −i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ − j (mod 2q) for some j ∈ [1, q)Z, then for each integer

i − p ≤ t ≤ 0, f (x) + j − q ≤ f (x + t) ≤ f (x).
(7) If x ≡ −i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ j (mod 2q) for some j ∈ [1, q)Z, then for each t ∈ [i−p, 0]Z,

f (x) ≤ f (x + t) ≤ f (x) − j + q.
(8) If x ≡ −i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ q (mod 2q), then for each t ∈ [i − p, 0]Z, f (x + t) = f (x).
(9) If x ≡ i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ 0 (mod 2q), then for each t ∈ [0, p − i]Z, f (x) − q ≤

f (x + t) ≤ f (x) + q.
(10) If x ≡ i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ − j (mod 2q) for some j ∈ [1, q)Z, then for each t ∈ [0, p−i]Z,

f (x) + j − q ≤ f (x + t) ≤ f (x).
(11) If x ≡ i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ j (mod 2q) for some j ∈ [1, q)Z, then for each t ∈ [0, p− i]Z,

f (x) ≤ f (x + t) ≤ f (x) − j + q.
(12) If x ≡ i (mod 2p) for some i ∈ [1, p)Z and f (x) ≡ q (mod 2q), then for each t ∈ [0, p − i]Z, f (x + t) = f (x).

When p = q = 1, the derived result corresponds to a specific case previously established. This is
essentially a restatement of a Melin’s result on continuity, referenced as [22, Lemma 2].

Proposition 2.5 ([22]). A function f : KL → KL is continuous if and only if the following properties are satisfied
for every even integer x.

1. If f (x) is even, then f ({x − 1, x, x + 1}) ⊆ { f (x) − 1, f (x), f (x) + 1}.
2. If f (x) is odd, then f (x ± 1) = f (x).

Recall from Herman [13, Theorem 4.2.2.] that an Alexandroff space (X,T ) is connected if and only if, for
any two distinct elements x and y in X, there exists a finite sequence (x0 = x, x1, . . . , xn = y) of elements in
X such that each pair of consecutive elements is T -adjacent. This means for every i in the set {0, . . . ,n − 1},
either xi is in the closure of {xi+1} or xi+1 is in the closure of {xi}.

Moreover, it is clear that any Alexandroff space (X,T ) is locally connected. This is because the smallest
neighborhoodN(x) of any point x is connected. For any two points a, b inN(x), the sequence (a, x, b) forms
a chain of T -adjacent elements withinN(x).

Considering that every neighborhood Np(x) forms a connected subspace in KLp, and given that Z is
the union of these neighborhoods, expressed asZ =

⋃[
Np(2np) : n ∈ Z

]
, and asNp(2np)∩Np(2(n+ 1)p) =

{2np + p}, we can deduce the following result.

Proposition 2.6. For each positive integer p, the space KLp is connected.

We conclude this preliminary section by introducing a canonical dense embedding of KLp into KLq for
p ≤ q, denoted as KLp ↪→ KLq. The embedding is facilitated by the function φp,q : Z → Z, defined as
follows:

φp,q(x) =


q
( x+p

p

)
− q, if x ≡ −p (mod 2p),

q
(

x−i
p

)
+ i, if x ≡ i (mod 2p), for − p + 1 ≤ i ≤ p − 1.

In the special case where q = p + 1, this function is denoted by φp.
To provide a local visualization of this mapping, consider the following diagram.
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2pn

2pn − 1 2pn + 1

2qn

2qn − 1 2qn + 1

2pn − p + 1 2pn + p − 1

2qn − p + 1 2qn + p − 1

2pn − p 2pn + p 2qn − q 2qn + q

2qn − q + 1 2qn + q − 1

φp,q

Figure 3: The assignment of φp,q.

According to [9], a subset S of a space X is defined as strongly dense (or très dense in French) if it intersects
every nonempty locally closed subset (i.e. intersection of an open set and a closed set) within X.

Definition 2.7. A subset D of a space X is termed sufficiently dense if it intersects with every nonempty open set as
well as every nonempty closed set of X.

Remark 2.8. It is clear that the following implications hold:

S is strongly dense in X =⇒ S is sufficiently dense in X =⇒ S is dense in X,

and none of these implications is reversible.
For instance, the set of all rational numbers Q is dense in the real line R (when equipped with the standard

topology) but is not strongly dense. To show the non-reversibility of the first implication, consider a partially ordered
set (X,≤) that includes at least one minimal and one maximal element, and contains three comparable elements
x ≤ y ≤ z. Equip X with the Alexandroff topology induced by the ordering ≤. Define S as Min(X)∪Max(X), the set
comprising all minimal and maximal elements of X. While S is sufficiently dense in X, it is not strongly dense since
S does not intersect the locally closed set {y} in X.

Proposition 2.9. Let p and q be positive integers with p ≤ q. Then, the following properties hold.

(1) The function φp,q can be expressed as the composition of functions: φp,q = φq−1 ◦ φq−2 ◦ . . . ◦ φp.
(2) The function φp,q is a topological embedding, and the image φp,q(Z) is sufficiently dense in KLq.
(3) The remainder Rp := Z \ φp(Z) forms an infinite discrete subspace of KLp+1.

Proof.

(1) This part is straightforward.
(2) The function φp,q preserves order from (Z,≤p) to (Z,≤q), making it a continuous injection from KLp

into KLq. Additionally, for every x ∈ Z, we have

φp,q

(
Np(x)

)
= Nq(φp,q(x)) ∩ φp,q(Z).

Hence, φp,q is a topological embedding.
Furthermore, every y ∈ Z in Nq(y) includes a minimal element of the poset (Z,≤q) (specifically, an
integer congruent to q modulo 2q). Such minimal elements belong to φp,q(Z). Similarly, {y}

q
contains a

maximal element of (Z,≤q) (an integer congruent to 0 modulo 2q). Consequently,φp,q(Z) is sufficiently
dense in KLq.
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(3) Define

Rp : = Z \ φp(Z)
=
{
x ∈ Z : x ≡ p (mod 2(p + 1)) or x ≡ −p (mod 2(p + 1))

}
.

For any x ∈ Rp, we find that

Np+1(x) =

{x, x − 1}, if x ≡ −p (mod 2(p + 1)),
{x, x + 1}, if x ≡ p (mod 2(p + 1)).

This implies thatNp+1(x) ∩ Rp = {x}. Therefore, Rp is a discrete subspace of KLp+1.

3. Continuous Injections of KLp into Itself

This section focuses on continuous, one-to-one functions from KLp to itself.

Lemma 3.1. Consider a continuous injection f : KLp → KLp and let x be an integer. Then the following properties
hold.

(1) x ≡ 0 (mod 2p) if and only if f (x) ≡ 0 (mod 2p).
(2) x ≡ p (mod 2p) if and only if f (x) ≡ p (mod 2p).
(3) If x ≡ 0 (mod 2p), then the set { f (x − p), f (x + p)} equals { f (x) − p, f (x) + p}.
(4) If x ≡ 0 (mod 2p) and f (x − p) = f (x) − p, then for all i in [0, p], it holds that f (x − i) = f (x) − i and

f (x + i) = f (x) + i.
(5) If x ≡ 0 (mod 2p) and f (x − p) = f (x) + p, then for all i in [0, p], it holds that f (x − i) = f (x) + i and

f (x + i) = f (x) − i.

Proof.
(1) Assume that x ≡ 0 (mod 2p). By Proposition 2.3, we have |Np(x)| = 2p + 1. By continuity, it follows

that f (Np(x)) ⊆ Np( f (x)). Since f is injective, we have | f (Np(x))| = 2p+ 1. Therefore, |Np( f (x))| ≥ 2p+ 1, and
applying Proposition 2.3 once more, we conclude that |Np( f (x))| = 2p+ 1. Consequently, f (x) ≡ 0 (mod 2p).

Conversely, if f (x) ≡ 0 (mod 2p), Proposition 2.3 implies that |{ f (x)}
p
| = 1. Continuity ensures that

f ({x}
p
) ⊆ { f (x)}

p
= { f (x)}. Furthermore, since f is injective, it follows that |{x}

p
| = 1 and, consequently, x ≡ 0

(mod 2p).
(2) By Proposition 2.3, we have x ≡ p (mod 2p) if and only if |{x}| = 2p + 1. Assume x ≡ p (mod 2p).

Since f ({x}
p
) ⊆ { f (x)}

p
and f is injective, it follows that |{ f (x)}

p
| = 2p + 1. Therefore, f (x) ≡ p (mod 2p).

Conversely, suppose f (x) ≡ p (mod 2p). By Proposition 2.3, we have |Np( f (x))| = 1. Since f (Np(x)) ⊆
Np( f (x)) and f is injective, we deduce that |Np(x)| = 1. Consequently, x ≡ p (mod 2p).

(3) Assume that x ≡ 0 (mod 2p). By (1) and Proposition 2.3, we have |Np( f (x))| = 2p + 1 = |Np(x)|. Since
f (Np(x)) ⊆ Np( f (x)) and f is injective, it follows that f (Np(x)) = Np( f (x)). Consequently, f (x − p), f (x + p) ∈
[ f (x)−p, f (x)+p]Z. Given that x−p ≡ p (mod 2p) and x+p ≡ p (mod 2p), it follows from (2) that f (x−p) ≡ p
(mod 2p) and f (x + p) ≡ p (mod 2p). Thus, { f (x − p), f (x + p)} = { f (x) − p, f (x) + p}.

In the remainder of the proof, if we assume x ≡ 0 (mod 2p), then by (3) we have { f (x − p), f (x + p)} =
{ f (x)− p, f (x)+ p}. This leads to two cases to consider: either f (x− p) = f (x)− p or f (x− p) = f (x)+ p. These
cases will be discussed below in (4) and (5).

(4) Suppose that x ≡ 0 (mod 2p) and f (x − p) = f (x) − p. Then, by (3), since { f (x − p), f (x + p)} = { f (x) −
p, f (x)+p} and f is one-to-one, we deduce that f (x+p) = f (x)+p. By continuity, we have f (Np(x)) ⊆ Np( f (x)),
and since the two sets have the same cardinality 2p + 1, it follows that f (Np(x)) = Np( f (x)).

As f is order-preserving, we obtain two chains:

C : f (x) − p = f (x − p) ≤p f (x − p + 1) ≤p . . . ≤p f (x − 1) ≤p f (x) and
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C
′ : f (x) + p = f (x + p) ≤p f (x + p − 1) ≤p . . . ≤p f (x + 1) ≤p f (x)

of length p + 1 in (Np( f (x)),≤p). This poset contains exactly two maximal chains, namely:

C1 : f (x) − p ≤p f (x) − p + 1 ≤p . . . ≤p f (x) − 1 ≤p f (x) and

C2 : f (x) + p ≤p f (x) + p − 1 ≤p . . . ≤p f (x) + 1 ≤p f (x),

implying that C and C′ match C1 and C2, respectively. Therefore,

f (x − i) = f (x) − i and f (x + i) = f (x) + i for all i ∈ [0, p]Z.

(5) Although the proof is similar to that of (4), we will include it here for completeness.
Suppose that x ≡ 0 (mod 2p) and f (x−p) = f (x)+p. Then, by (3), since { f (x−p), f (x+p)} = { f (x)−p, f (x)+p}

and f is one-to-one, we deduce that f (x + p) = f (x) − p. By continuity, we have f (Np(x)) ⊆ Np( f (x)), and
since the two sets have the same cardinality 2p + 1, it follows that f (Np(x)) = Np( f (x)).

As f is order-preserving, we obtain two chains:

D : f (x) − p = f (x + p) ≤p f (x + p − 1) ≤p . . . ≤p f (x + 1) ≤p f (x)

and

D
′ : f (x) + p = f (x − p) ≤p f (x − p + 1) ≤p . . . ≤p f (x − 1) ≤p f (x)

of length p + 1 in (Np( f (x)),≤p). This poset contains exactly two maximal chains, namely:

D1 : f (x) − p ≤p f (x) − p + 1 ≤p . . . ≤p f (x) − 1 ≤p f (x) and

D2 : f (x) + p ≤p f (x) + p − 1 ≤p . . . ≤p f (x) + 1 ≤p f (x),

implying thatD andD′ matchD1 andD2, respectively. Therefore,

f (x + i) = f (x) − i and f (x − i) = f (x) + i for all i ∈ [0, p]Z.

Next, we will demonstrate that every p-Khalimsky topology possesses a “kind of reversibility property.”
According to [24], a topological space (X,T ) is said to be reversible if every continuous bijection from X

onto itself is a homeomorphism.
In 1976, the authors of [5] provided necessary and sufficient conditions under which continuous bi-

jections of a manifold onto itself are homeomorphisms. Later, in 1983, the same authors introduced and
studied the concept of “strongly reversible manifolds” in [14]. Specifically, an n-manifold M is defined as
strongly reversible if every continuous bijection from M into an n-manifold is a homeomorphism. Con-
sequently, every compact manifold is strongly reversible. It was also shown that every strong reversible
n-manifold is reversible, but the converse does not hold (see [14]).

If M is strongly reversible and f : M −→ M is a continuous injection, f may not necessarily be a
homeomorphism (see the next remark). This observation motivates the following concept.

Definition 3.2. A plus-reversible space is defined as a space where every continuous injection into itself is a homeo-
morphism.

Remark 3.3. While every plus-reversible space is reversible, the converse does not necessarily hold. For instance,
any compact Hausdorff space is reversible [24], but may not be plus-reversible. Consider the interval I = [a, b] on the
real line (with a < b), equipped with the standard topology. Let J = [c, d] ⊂ I be a sub-interval of I. The function
θ : t 7→ d−c

b−a t + bc−ad
b−a is a continuous injection of I into itself. However, θ(I) = J , I, meaning that θ is not surjective,

and thus the space is not plus-reversible.
In terms of strong reversibility, it is evident that M = [a, b] is a strongly reversible 1-manifold that is not

plus-reversible.
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Question 3.4. Explore the conditions under which a reversible space is also plus-reversible.

In this paper, we adopt the perspective of Melin (see [23]) about locally finite spaces. A space (X,T ) is

referred to as locally finite if every point x ∈ X has a finite neighborhood and the topological closure {x}
T

is
also finite. It is worth noting that if if every point x ∈ X has a finite neighborhood, then X is an Alexandroff
space.

Lemma 3.5. Consider a connected, locally finite topological space (X,T ), and let θ : X → X be a continuous
injection. Then θ is a homeomorphism if and only if, for every x in X,∣∣∣{x}T ∣∣∣ = ∣∣∣{θ(x)}

T ∣∣∣ and
∣∣∣NT (x)

∣∣∣ = ∣∣∣NT (θ(x))
∣∣∣.

Proof. Suppose that for every x in X, it holds that∣∣∣{x}∣∣∣ = ∣∣∣{θ(x)}
∣∣∣ and

∣∣∣N(x)
∣∣∣ = ∣∣∣N(θ(x))

∣∣∣.
We aim to show that θ is a clopen map. Given that θ is continuous, it follows that

θ({x}) ⊆ {θ(x)} and θ(N(x)) ⊆ N(θ(x)).

Since X is locally finite and θ is injective, our assumption leads to the equalities:

θ({x}) = {θ(x)} and θ(N(x)) = N(θ(x)),

for every x in X. Consequently, as both the source and target spaces are Alexandroff spaces, θ is a clopen
map. Therefore, θ(X) is clopen in X. Given that X is also connected, this implies θ(X) = X. Hence, θ is a
clopen continuous bijection, and thus a homeomorphism.

Conversely, if we assume that θ is a homeomorphism, then for every x ∈ X, it follows that {x}
T

=

{θ(x)}
T

and NT (x) = NT (θ(x)). By considering the cardinalities, we obtain
∣∣∣{x}T ∣∣∣ = ∣∣∣{θ(x)}

T ∣∣∣ and
∣∣∣NT (x)

∣∣∣ =∣∣∣NT (θ(x))
∣∣∣.

Theorem 3.6. For every positive integer p, KLp is a plus-reversible space.

Proof. As per Lemma 3.5, to establish this, it is sufficient to show that for a continuous injective map
θ : KLp → KLp, the following holds for every x in X:∣∣∣{x}∣∣∣ = ∣∣∣{θ(x)}

∣∣∣ and
∣∣∣N(x)

∣∣∣ = ∣∣∣N(θ(x))
∣∣∣.

We consider three cases:
- Case 1: If x ≡ 0 (mod 2p), Lemma 3.1 suggests θ(x) ≡ 0 (mod 2p). Using Proposition 2.3, it follows

that ∣∣∣{x}p∣∣∣ = 1 =
∣∣∣{θ(x)}

p∣∣∣ and
∣∣∣Np(x)

∣∣∣ = 2p + 1 =
∣∣∣Np(θ(x))

∣∣∣.
- Case 2: For x ≡ p (mod 2p), Lemma 3.1 implies θ(x) ≡ p (mod 2p). Hence, by Proposition 2.3, we have∣∣∣{x}p∣∣∣ = 2p + 1 =

∣∣∣{θ(x)}
p∣∣∣ and

∣∣∣Np(x)
∣∣∣ = 1 =

∣∣∣Np(θ(x))
∣∣∣.

- Case 3: Suppose x ≡ εi (mod 2p) for some i in [1, p − 1]Z and ε ∈ {−1, 1}. According to Lemma 3.1,
θ(x) ≡ εi (mod 2p). Again, from Proposition 2.3, we deduce∣∣∣{x}p∣∣∣ = i + 1 =

∣∣∣{θ(x)}
p∣∣∣ and

∣∣∣Np(x)
∣∣∣ = p − i + 1 =

∣∣∣Np(θ(x))
∣∣∣.
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4. The GroupH (KLp)

Recall from [25] that the infinite dihedral groupD∞ is defined by the presentation

⟨s, t | t2 = 1, tst−1 = s−1
⟩,

where s has an infinite order. This means that D∞ is generated by two elements s and t, such that t is of
order 2, s has infinite order, and they satisfy the relation tst−1 = s−1. It is also well-known that any infinite
group generated by two elements of order 2 is isomorphic toD∞; see the expository paper by Keith Conrad
[4] for further details.

A concrete realization of D∞ is provided by the affine group Aff(Z), consisting of all affine functions
f : Z→ Z of the form f (x) = ax + b, where a = ±1 and b ∈ Z, with the group operation being composition.

In this section, we aim to establish that the group of homeomorphismsH(KLp) is isomorphic toD∞.

Remark 4.1. Consider the reflection σ : KLp → KLp defined by σ(x) = −x. For any integer a such that a ≡ 0
(mod 2p), we define the translation τa : KLp → KLp by τa(x) = x + a. It is clear that both τa and σ are continuous
bijections, and thus belong to the group of homeomorphisms H(KLp) by Theorem 3.6. Moreover, the following
properties hold:

1. σ2 = 1 and στaσ−1 = τ−a = (τa)−1 (equivalently, (στa)2 = 1).
2. The order of τa is infinite for every a , 0 such that a ≡ 0 (mod 2p).

Lemma 4.2. Consider a homeomorphism f : KLp → KLp. Then the following properties hold.

(1) If f (0) = 0 and f (p) = p, then f is the identity mapping, denoted by 1.
(2) If f (0) = 0 and f (p) = −p, then f is the reflection σ, as defined in Remark 4.1.

Proof.

(1) We will prove by induction on the nonnegative integer n that for every homeomorphism f such that
f (0) = 0 and f (p) = p, it holds that f (x) = x for all |x| ≤ 2np + p.
- For n = 0, Since f (0) = 0, by Lemma 3.1(3), we have

f ({0 − p, 0 + p}) = { f (0) − p, f (0) + p} = {−p, p}.

Given that f (p) = p, it follows that f (−p) = −p. Consequently, by Lemma 3.1(4), we obtain f (0 − i) =
f (0) − i and f (0 + i) = f (0) + i. Therefore, f (x) = x for all |x| ≤ p.
- Assume that for every f ∈ H(KLp) with f (0) = 0 and f (p) = p, we have f (x) = x for all |x| ≤ 2np + p.
We will show that f (t) = t for all |t| ≤ 2(n + 1)p + p. It remains to prove that

f (t) = t for all t ∈ [2(n + 1)p − p, 2(n + 1)p + p]Z ∪ [−2(n + 1)p − p,−2(n + 1)p + p]Z.

Since f is a homeomorphism, we have

f ({2np + p}
p
) = { f (2np + p)}

p
= {2np + p}

p
= [2np, 2(n + 1)p]Z.

Therefore, f ([2np, 2(n + 1)p]Z) = [2np, 2(n + 1)p]Z.
By comparing the maximal chains of the posets

(
[2np, 2(n + 1)p]Z,≤p

)
and
(

f
(
[2np, 2(n + 1)p]Z

)
,≤p

)
,

we deduce that

2np = f (2np) ≤p . . . ≤p f (2np + p) = 2np + p (by the induction hypothesis)

coincides with

2np ≤p . . . ≤p 2np + p,
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and similarly,

2np + p = f (2np + p) ≤p f (2np + p + 1) ≤p . . . ≤p f (2(n + 1)p)

coincides with

2np + p ≤p 2np + p + 1 ≤p . . . ≤p 2(n + 1)p.

In particular, f (2(n + 1)p) = 2(n + 1)p. Taking x = 2(n + 1)p, we have f (x) = x and f (x − p) = f (x) − p.
Thus, by applying Lemma 3.1(4), we deduce that f (x− i) = f (x)− i = x− i and f (x+ i) = f (x)+ i = x+ i
for every i ∈ [0, p]Z. This implies that f (t) = t for every t ∈ [2(n + 1)p − p, 2(n + 1)p + p]Z.
Now, we will show that f (t) = t for every t ∈ [−2(n+ 1)p− p,−2np− p]Z. Since f is a homeomorphism,
we have

f ({−2np − p}
p
) = { f (−2np − p)}

p
= {−2np − p}

p
= [−2(n + 1)p,−2np]Z.

Thus, f ([−2(n + 1)p,−2np]Z) = [−2(n + 1)p,−2np]Z.
By the induction hypothesis,

−2np − p = f (−2np − p) ≤p −2np − p + 1 = f (−2np − p + 1) ≤p . . . ≤p f (−2np + p) = −2np

is a maximal chain of f ([−2(n + 1)p,−2np]Z) coinciding with the maximal chain

−2np − p ≤p −2np − p + 1 ≤p . . . ≤p −2np

of [−2(n + 1)p,−2np]Z. Similarly, the second maximal chain,

−2np − p = f (−2np − p) ≤p f (−2np − p − 1) ≤p . . . ≤p f (−2(n + 1)p),

matches the maximal chain

−2np − p ≤p −2np − p − 1 . . . ≤p −2(n + 1)p

of the poset [−2(n + 1)p,−2np]Z. In particular, we have f (−2(n + 1)p) = −2(n + 1)p.
Now, taking x = −2(n + 1)p, we obtain f (x) = x and f (x + p) = f (−2np − p) = −2np − p = f (x) + p.
By Lemma 3.1(3), we conclude that f (x − p) = f (x) − p. Furthermore, according to Lemma 3.1(4), for
every i ∈ [0, p], we deduce that f (x − i) = f (x) − i = x − i and f (x + i) = f (x) + i = x + i. This shows that
f (t) = t for all t ∈ [−2(n + 1)p − p,−2np − p]Z, thus completing the induction.

(2) Let 1 = σ f . Then 1 is a homeomorphism satisfying 1(0) = 0 and 1(p) = − f (p) = p. Therefore, by the
previous step (1), 1 = 1, and consequently, f = σ.

Theorem 4.3. The group of autohomeomorphismsH(KLp) is isomorphic to the infinite dihedral groupD∞.

Proof. We let σ and τ := τ2p be the elements ofH(KLp) , as defined in Remark 4.1.
We will show that σ and τ generateH(KLp). More precisely, we establish the equality:

H(KLp) = {τk : k ∈ Z} ∪ {τkσ : k ∈ Z}.

Consider f ∈ H(KLp), and let a := f (0). By Lemma 3.1, a ≡ 0 (mod 2p), which means a = 2kp for
some integer k. Defining 1 = τ−k f = τ−a f , we have 1 ∈ H(KLp) and 1(0) = 0. Lemma 3.1 (3) implies
{1(−p), 1(p)} = {−p, p}. We consider two cases:

Case 1: If 1(p) = p, then Lemma 4.2 leads to 1 = 1. Consequently, f = τa = τk.
Case 2: If 1(p) = −p, Lemma 4.2 implies 1 = σ. Therefore, f = τaσ = τkσ.
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Thus, σ and τ indeed generateH(KLp), write H(KLp) = ⟨σ, τ⟩. But as τ = σ(στ), we deduce that σ and
στ generateH(KLp). From Remark 4.1, we have

σ2 = 1 = (στ)2.

Consequently, H(KLp) is an infinite group generated by two elements (σ and στ) of order 2. Therefore
H(KLp) is isomorphic toD∞.

We conclude this section with the following question.

Question 4.4 (The Digital plane). Characterize the group of autohomeomorphisms of the product space KLp×KLp.

5. Degree of Homogeneity and Dimensions of KLp

(i) The Hight of a Poset

Let (P,≤) be a poset, and let C be a finite chain in (P,≤) (i.e., a totally ordered subset of P). The length of
C is defined as |C| − 1. The height of (P,≤), denoted by ht(P), is the supremum in {−1, 0, 1, 2, . . . ,+∞} of the
lengths of its chains. For x ∈ P, the height of x, denoted by ht(x), is defined as the supremum of the lengths
of all chains whose greatest element is x. Clearly, ht(P) = sup({ht(x) : x ∈ P}).

When P = ∅, the only ordering on P is the empty ordering, and the only chain of (P,≤) is C = ∅, its length
is |C| − 1 = −1. Hence ht(P) = −1.

The T0-identification (or Kolmogorov quotient) of a topological space refers to a process that transforms a
given space into a T0-space. Given a topological space X, the T0-identification is constructed by defining an
equivalence relation ∼ on X, where two points x, y ∈ X are considered equivalent (i.e., x ∼ y) if and only if
they are topologically indistinguishable (this means that the closure of {x} is the same as the closure of {y}).

The height of a non-necessarily T0-space X is defined to be that of its T0-identification, denoted by T0(X);
that is, we define: ht(X) = ht(T0(X)).

(ii) Degree of Homogeneity of a Space

The degree of homogeneity of a topological space measures the extent to which the space is uniform or
symmetric with respect to its points.

A topological space X is said to be homogeneous if, for any two points x, y ∈ X, there exists a homeo-
morphism f : X −→ X such that f (x) = y. This means that the space exhibits the same structure from the
perspective of any point. The degree of homogeneity of X, denoted by dH(X), is defined as the cardinality of
the quotient set X/Homeo(X), where Homeo(X) denotes the group of homeomorphisms of X. This quotient
set represents the collection of orbits of points under the action of the homeomorphism group. This concept
is useful in understanding the symmetry properties of topological spaces and plays a role in various areas
of topology and geometry.

The following result links the height of a space X with the degree of homogeneity dH(X).

Theorem 5.1. If (X,T ) is a T0-space, with finite height, then

dH(X) ≥ ht(X) + 1.

Proof. Let h = ht(X) and x0 < x1 < . . . < xh be a chain of elements of (X,≤) of length h. Then ht(xi) = i, for
each i. For every i , j in {0, 1, . . . , h}, the orbits xi and x j under the action of the group H(X) are distinct,
otherwise there exists 1 ∈ H(X), such that xi = 1(x j).

We claim that if 1 ∈ H(X), then 1 : (X,≤) −→ (X,≤) is order-preserving. Indeed, assuming a ≤ b in
X, we have b ∈ {a}. Now as 1 is a homeomorphism 1(b) ∈ 1

(
{a}
)
= {1(a)}. So 1(a) ≤ 1(b). It follows that

1 : (X,≤) −→ (X,≤) is an isomorphism of posets. As a result, the equality xi = 1(x j) implies that xi and x j
have the same height, a contradiction. This shows that dH(X) ≥ h + 1.
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Example 5.2. If X is a T0-Alexandroff space with infinite height, the inequality dH(X) ≥ ht(X)+1 does not necessarily
hold.

Indeed, consider the set of integers X = Z endowed with the usual ordering ≤. Then ht(X) = +∞. However, if
T is the Alexandroff topology on X associated with ≤ (where the open sets are exactly ∅, X, and (−∞,n]Z for any
integer n), then clearly (X,T ) is homogeneous. Since for any n ≤ m in X, we have m = 1(n), where 1 : X −→ X is
the homeomorphism given by 1(x) = x + (m − n), it follows that dH(X) = 1.

Theorem 5.1 motivates the introduction of the following concept.

Definition 5.3. A T0-space X is termed well-leveled if it has a finite height and dH(X) = ht(X) + 1.

The following proposition follows immediately from the above definition.

Proposition 5.4. Let X be a T0-space with finite height h. Then the following statements are equivalent.

(i) X is well-leveled.

(ii) The orbits of the action ofH(X) on X are exactly the levels L0,L1, . . . ,Lh, where h = ht(X) and

Li = {x ∈ X : ht(x) = i}.

(iii) H(X) acts transitively on every level Li.

Example 5.5. For every positive integer n, the Euclidean space Rn, endowed with the usual topology Un, is well-
leveled, as dH(Rn) = 1 and ht(Rn) = 0. More generally, every homogeneous T1-space is well-leveled.

Now, we present an additional property of the digital topology KLp.

Proposition 5.6. For every positive integer p, the space (Z,KLp) is well-leveled.

Proof. According to Remark 2.2, the poset (Z,≤p) has height p, with its levels given by:

Li = {x ∈ Z : x ≡ (p − i) (mod 2p)}, for i ∈ {0, 1, . . . , p}

These levels form a partition of Z. Moreover, if f ∈ H(KLp), then by Lemma 3.1, we have f (Li) ⊆ Li.
Now, for any x = 2pn + p − i and y = 2pm + p − i in Li, consider the function 1 : Z −→ Z defined by
1(z) = z+2p(m−n); then clearly 1(x) = y, and 1 ∈ H(KLp). Therefore,H(KLp) acts transitively on each level
Li, demonstrating that dH(KLp) = p + 1, as desired.

(iii) Krull Dimension of a Space

Let X be a topological space. A subset S of X is said to be irreducible if, whenever C1 and C2 are closed
sets in X such that S ⊆ C1 ∪ C2, it follows that S ⊆ C1 or S ⊆ C2. Equivalently, every nonempty open subset
of S is dense in S. Following [9], a space X is said to be sober, if every closed irreducible set S of X has a
unique generic point (i.e., S = {a}, for a unique a ∈ S).

Let IC(X) denote the set of all nonempty irreducible closed sets in X. The Krull dimension of X, denoted
by Kdim(X), is defined as the height of the poset (IC(X),⊆).

In particular, Kdim(X) = −1 if and only if X = ∅.
The Krull dimension of X at a point x ∈ X is defined as:

Kdimx(X) = min
{
Kdim(U) : x ∈ U ⊆ X is open

}
.

The following theorem establishes a relationship between the Krull dimension and the height of a
T0-space.

Theorem 5.7. Let X be a T0-space. Then the following properties hold:
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1. ht(X) ≤ Kdim(X).
2. If X is a sober space, then ht(X) = Kdim(X).
3. If X is an Alexandroff space, then ht(X) = Kdim(X).

Proof. The case when the space is empty is straightforward. So, one may assume that X , ∅. We denote by
≤ the ordering induced by the topology on X; which is defined by

x ≤ y if and only if y ∈ {x}.

1. Let x0 < x1 < . . . < xn be a chain of (X,≤) of length n, then

{xn} ⊂ . . . ⊂ {x1} ⊂ {x0}

is a chain of irreducible closed sets of the space X. Thus ht(X) ≤ Kdim(X).
2. Assume X is sober, and let F0 ⊂ F1 ⊂ . . . ⊂ Fn be a chain of irreducible closed sets of X; then as X is

sober, for every i, there exist an xi ∈ Fi such that Fi = {xi}. This leads to the chain xn < . . . < x1 < x0 of
elements of the poset (X,≤). Therefore Kdim(X) ≤ ht(X); and consequently Kdim(X) = ht(X).

3. If ht(X) = +∞, then by the first point Kdim(X) = ht(X). Now, assume X is of finite height. We will
show that X is sober. Indeed, let C be an irreducible closed set of X. Suppose that X has no generic
point. We claim that for every x0 ∈ C, there exists x1 ∈ C such that x1 < x0. Indeed, as {x0} ⊂ C, there
exists y0 < {x0}. As C is irreducible, and (↓ x0] ∩ C, (↓ y0] ∩ C are nonempty open sets of C, their
intersection is not empty. So there exist x1 ∈ (↓ x0]∩ (↓ y0]∩C. Hence x1 ∈ C and x1 < x0. This process
allows us to construct a strictly decreasing sequence {xn : n = 0, 1, . . .}, contradicting the fact that X is
of finite height.

Example 5.8. For a non-sober space X, it is possible that ht(X) < Kdim(X). Consider, for instance, an infinite set
X equipped with the co-finite topology:

T = {O ⊆ X | O = ∅ or X −O is finite}.

It is evident that a closed set C of X is irreducible if and only if either C = X or C is a singleton. Thus, we have
Kdim(X) = 1. However, since every singleton is closed, it follows that ht(X) = 0.

(iv) Small Inductive Dimension of a Space

The small inductive dimension of a space X, denoted ind(X), is a value chosen from the set {−1, 0, 1, 2, 3, . . . ,∞}
and is defined recursively as follows:

The empty space ∅ has ind(X) = −1. Next, for a nonnegative integer k, we say ind(X) ≤ k if and only if
there exists a base for the open sets of X consisting of sets U such that ind(∂X(U)) ≤ k− 1, where ∂X(U) is the
boundary of U in the space X. We define ind(X) = k if ind(X) ≤ k but ind(X) ≰ k− 1. Finally, if ind(X) ≤ k is
false for all integers k, we set ind(X) = ∞.

The small inductive dimension is also known as the Urysohn-Menger dimension or the weak inductive
dimension.

For Alexandroff T0-spaces, the small inductive dimension coincides with the height.

Theorem 5.9 ([29]). Let X be a T0-Alexandroff space, then we have

dim(X) = ht(X) = Kdim(X).

(v) Large Inductive Dimension of a Space

According to [7], the large inductive dimension of a topological space X, denoted by Ind(X), is defined
recursively as follows:
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Ind(X) = −1 for X = ∅. Next, for a nonnegative integer k, Ind(X) ≤ k if for every pair (C,O) of subsets
of X, where C is closed, O is open, and C ⊆ O, there exists an open set U of X such that C ⊆ U ⊆ O and
Ind(∂X(U)) ≤ k − 1. Finally, Ind(X) = k, if Ind(X) ≤ k and Ind(X) ≰ k − 1. Finally, if Ind(X) ≤ k is false for
all integers k, we set Ind(X) = ∞. The large inductive dimension is also known as the Čech dimension or the
strong inductive dimension.

The following theorem justifies the names of the small and the large inductive dimensions.

Theorem 5.10 ([7]).

1. For every normal space X we have ind(X) ≤ Ind(X).
2. For every separable metric space X we have ind(X) = Ind(X).

In general, for an Alexandroff T0-space, the inequality Ind(X) ≤ ind(X) holds [8, Corollary 5.4].
For a subset A of an Alexandroff space X, we denote by (↓ A] the smallest open set of X containing A

(the intersection of all open sets containing A).

Proposition 5.11 ([8, Corollary 5.2]). Let X be an Alexandroff space and k be a nonnegative integer. Then, Ind(X) =
k if and only if Ind(X) ≤ k and there exists a closed subset C of X such that Ind (∂X((↓ C])) = k − 1.

Unfortunately, we do not yet have an answer regarding the large inductive dimension of KLp for p ≥ 2.

Proposition 5.12. The large inductive dimension of the digital line KL1 is 1.

Proof. From [8, Corollary 5.4], we have Ind(KL1) ≤ ind(KL1) = 1.
To conclude, we will apply Proposition 5.11. Consider the closed set C = {2n}. We have (↓ C] =

{2n − 1, 2n, 2n + 1} and (↓ C] = {2(n − 1), 2n − 1, 2n, 2n + 1, 2(n + 1)}. Thus, the boundary of (↓ C] is
{2(n − 1), 2(n + 1)}, and consequently Ind(∂KL1 ((↓ C]) = 0. This demonstrates that Ind(KL1) = 1.

Question 5.13. Is Ind(KLp) = 1 for every p ≥ 1?
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