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Abstract. In this paper, we aim to combine 3-parameter generalized quaternions (shortly 3PGQs), which
are a general form of the quaternion algebra according to 3-parameters, and generalized Tribonacci number
(shortly GTNs), which are also quite a big special number family for third-order recurrence sequences and
most general form of all of the third-order recurrence sequences. Namely, we investigate a special new num-
ber system called 3-parameter generalized quaternions with generalized Tribonacci numbers components
(shortly 3PGQs with GTN components) with both nonnegative and negative subscripts and examine some
special cases of them. Then, we construct a Maple code of this special number family. Moreover, we obtain
some new and classical well-known equations such as; Binet formulas, generating function, exponential
generating function, Poisson generating function, summation formulas, polar representation, and matrix
equation. In addition to these, we give also determinant, characteristic polynomial, characteristic equation,
eigenvalues, and eigenvectors concerning the matrix representation of 3PGQs with GTN components.

1. Introduction

Number theory is becoming more popular since it has several applications in lots of work-frames
including some beneficial applications. Every facet of number theory is receiving more notice and taking
new materials and methods. As one of the most important and basic parts of number theory, numbers and
number systems are well-established concepts for many researchers in various fields, as they have a wide
range of applications in a variety of pure and applied working areas such as; robotics, computer graphics,
engineering, etc. Quaternions, one of these well-known number systems, as an extension of the complex
numbers were invented by W. R. Hamilton in 1843, [28-30]. Quaternion algebra is noncommutative,

associative, and 4-dimensional Clifford algebra. The set of quaternions (real or Hamilton quaternion) is
denoted by IH and defined as:

H :={glq = q0 + q1e1 + 262 + 933, 90,91,92,93 € R},
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where e1,e;,e3 are quaternionic units hold the rules &2 = -1, ¢ = -1, & = -1, e1ex = —eze1 = e3,
€63 = —e3ep = e, e3e; = —eie3 = €. The literature includes many works with respect to the quater-
nion and its other types. Split quaternions were found by J. Cockle with the property of quaternionic units:
2 =-1, ¢ =¢3 =1, ereres = 1[15]. Additionally, the generalized quaternions (or 2-parameter generalized
quaternions), have been analyzed in several studies (cf. [17, 23, 36-38, 42, 45, 47, 48, 79]). Forall A1, A; € R,

the set of the generalized quaternions is represented by IH,,,, and defined as follows:

Ha,a, =19 = g0 + q1e1 + g2€2 + q3€3, G0,91,92,93, A1, A2 € R},

where 6% = —/\1, 6% = —/\2, Eg = —Al/\z, €16y = —€pe1 = €3, €263 = —€36p = }Lzel, eze] = —e1e3 = )\162.
For A1 = 1,A; = 1; g is a real quaternion, for A; = 1,1, = —1; g is a split quaternion, for A; = 1,4, = 0; g is
a semi-quaternion, for Ay = =1, A, = 0; g is a split semi-quaternion, for A; = 0,A, = 0; g is a 1/4-quaternion

[15,17, 23, 30, 36-38, 42, 43, 45, 47, 48, 79].

Additionally, T. D. Sentiirk and Z. Unal [75, 76] investigated a new quite comprehensive quaternion type
called 3-parameter generalized quaternions (shortly; 3PGQs). The authors constructed a new and general
aspect for the quaternion algebra depending on the 3-parameters to get a generalization of real, split, and
2-parameter generalized quaternions (shortly 2PGQs). The set of 3PGQs is denoted by IHj, 1,1, and defined
by:

Hj, 1,0, 1= {9 = qo + qre1 + g2z + gzes, qo,q1,92,93, A1, A2, A3 € R},

where quaternionic units hold the rules given in Table 1.

Table 1: Multiplication Rules of 3PGQs [75, 76]

1 e1 (%) €3
1 1 e1 (%) e3
er | er | —MAr | Aez | —Asen
e | e | —Aes | —AiA3 | Aszey
es | e3 | Azer | —Azer | —AaAs

According to the values A1, A;, A3, some special cases of 3PGQs are listed in the following Table 2, and
also it can be written that the other special types with respect to the Ajeq123; can be studied [75, 76].

Table 2: Classification of 3PGQs [75, 76]
For Type of 3PGQs
AM=1A=AA3=u | 2PGQs [17, 23, 36-38, 42, 45,47, 48, 79]
A1 =1, =1,A3 = -1 | Split quaternions [15]
M=1,A=1,13=1 Hamilton quaternions [28-30]
M=1,A=1,A3=0 Semi-quaternions [43, 47]
A1 =1, = =1,A3 =0 | Split semi-quaternions [47]
AM=1,A,=0,A3=0 1/4-quaternions [30, 47]

When the existing studies are examined, there are many special recurrence sequences with different
orders such as; second, third, and higher than three-order. In this paper, we are interested in third-order
recurrence sequence which is the most general form of all third-order recurrence sequences and called a
generalized Tribonacci number sequence (or shortly GTNs). Some particular cases of this family can be
seen in Table 3 and Table 4 [1, 6-8, 10, 13, 20, 22, 39, 44, 46, 50-55, 58, 62, 65-70, 72-74, 80-82]. For all
n > 3, the generalized Tribonacci sequence ({T,(To, T1, T2; 1, S, t)}ux0 Or shortly {T),}.>0) satisfy the recurrence
relation

T,=vT,1+sT, »+1tT, 3 (1)
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with the initial values Typ = a,T; = b,T, = c. Here a,b,c are arbitrary integers and r,s, t (t # 0) are real
numbers [6]. For all n € Z*, the GTNs with negative subscripts hold the following recurrence relation [64]:

1 S r
T, = ;T—(n—s) - ET—(n—l) - ET—(n—Z)- )

Indeed, the recurrence relation (1) holds for all n € Z.

The Tribonacci numbers have some applications and some researchers focus on this part. For example,
Basu and Das investigated a new coding theory such as Tribonacci coding theory [2] by using the Tribonacci
numbers and based on the Tribonacci matrices. Additionally, Gupta and Sanghi give an innovative and
effective digital signature scheme with respect to Tribonacci matrices and factoring in [24]. Moreover,
Bezuszka and D’Angelo gave an interesting application for Tribonacci numbers [3]. Also, Demirci and
Cangtil examined the Tribonacci graphs as an application to graph theory [16].

One can observe that merging the quaternions and special recurrence sequences has been a concentrated
work frame, and also several researchers attracted due to their applications and various use areas. In the
literature, 2PGQs with some third-order recurrence sequences were studied intensively. In [12], Cerda-
Morales studied the third-order Jacobsthal 2PGQs. Padovan and Perrin 2PGQs [32], Pell-Padovan 2PGQs
[33], 2PGQs with generalized Jacobsthal numbers components [27], 2PGQs with generalized 3-primes and
generalized reverse 3-primes numbers components [34] are investigated by Isbilir and Giirses. Kizilates
et al. introduced the bicomplex generalized Tribonacci quaternions in [41]. Also, Flaut and Shpakivskyi
examined the generalized Fibonacci quaternions and Fibonacci-Narayana quaternions in [21]. As men-
tioned earlier, 2PGQs also 3PGQs have some special cases concerning A; and A, (e.g., real, split, semi, split
semi, 1/4-quaternions), Tasc1 introduced the Padovan and Pell-Padovan real quaternions in [78]. Glinay
and Tasgkara [26] examined some properties of Padovan real quaternions. Then, Giinay studied the real
quaternions with some generalized third-order recurrence numbers components [25]. Also, Digskaya and
Menken investigated the (s, t)-Padovan and (s, t)-Perrin real quaternions, and split (s, t)-Padovan and (s, t)-
Perrin quaternions in [18, 19]. Cerda-Morales studied the real quaternions with generalized Tribonacci
numbers components [6], third-order Jacobsthal quaternions [9], third-order h-Jacobsthal and third-order
h-Jacobsthal-Lucas sequences and related quaternions [11], and third-order Jacobsthal generalized quater-
nions [12]. Recently, Bilgici introduced the Fibonacci and Lucas 3PGQs in [4] and 3PGQs with Jacobsthal
and Jacobsthal-Lucas numbers components in [5]. Chaker and Boua examined some properties of gen-
eralized quaternions algebra with generalized Fibonacci quaternions [14]. Also, Horadam 3PGQs were
determined by Isbilir and Giirses in [35].

In this paper, we intend to bring together quite interesting and popular number systems; 3PGQs,
which are a general form of the quaternion algebra according to 3-parameters, and GTNs which are quite
a big special number family for third-order special recurrence sequences. That is, we construct the 3-
parameter generalized quaternions with generalized Tribonacci numbers components (shortly 3PGQs with
GTN components) which is quite a general and big number system. Our aim in doing this study is to
create the most general form of different type of quaternions (2PGQ, split, real, and the others, cf. Table 2)
with third-order special number sequences that have not been done in the literature. As can be seen from
special cases, it covers many studies. This paper is organized into four sections as follows. In Section 2, we
give the general notions and notations about both 3PGQs and GTNs. In Section 3, we define and examine
the 3PGQs with GTN components. Then, we give recurrence relation, Binet formula, generating function,
exponential generating function, summing formulas, matrix formulas, determinant equalities which have
the role for finding nth and —(n + 1)th element of the sequence, and some special equalities, as well. Also, we
give a Maple code as an application to improve the paper. In addition, we give determinants, characteristic
polynomials, characteristic equations, eigenvalues, and eigenvectors concerning the matrix representation
of 3PGQs with GTN components. Finally, in Section 4, we give the conclusions.

2. Preliminaries

First of all, we recall some fundamental and necessary general terminology concerning the 3PGQs and
GTNs needed throughout this study.
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Let g = qo + qie1 + qoez + g3e3, p = po + pie1 + pae2 + pses € Hy, 1,1, some basic algebraic properties are
listed as follows ([75, 76]):

* Equality: q=p & qo=po, q1=p1, q2=p2, G3=ps.
%% Addition and subtraction: g+ p =qoxpo+ (1 £p1)e1 + (g2 £ p2) e2 + (g3 £ p3) es.
%% Multiplication by a scalar: ¢q = ¢qo + ¢qie1 + ¢éqaen + Cq3e3, ¢ E€R.
% Multiplication: qp = S;Sp — f(Vy, V) + SV + S,V + Vg AV,
where f (Vq, Vp) = MAaqip1 + AMAsqapz + A2A3q3p3 and

Aszer  Azer  Ages
VeAVe=| ¢ g2 g3 |=As3(q2ps — gap2)er + Aa(qapr — qips)ez + A1(qip2 — gapr)es.

P1 P2 p3
% Conjugation: q = qo — q1€1 — g2€2 — 43€3.
%% Inner product: {q,p) = qopo + MAxqip1 + MAsqapz + AaAsqsps.
% Norm: Ny = qq =49 = q5 + MAags + AMAsq; + A2Asq3.
q —q1e1 — q2e2 — gze
% Inverse: q7' = T_ 0" MO 027D here N, # 0.

Ny @+ MAag? + Midsg? + Aadsgl

One can see that Sg.p = qo £ po =S, =Sy, Vysp =V =V, and g = S, — V.. If N, = 1, then g is a 3-parameter
generalized unit quaternion. For detailed information for 3PGQs, we can refer to the studies [75, 76].
Additionally, for N; > 0 and A11247 + A1A3q3 + A2A343 # 0, g can be expressed in a polar form as follows:

q= {/N;(cos O+ §sin0),

1 MA2g? + A A3a2 + ApAsg?
where § = (71,92,93) - Here cos 6 = o, sinf = \/ 122 1N3q2 273,
q

\/AlAzq% + /\1/\3(]% + Az/\g,qg Nﬂ

and § is called 3-parameter generalized unit vector. Furthermore, for g, the following fundamental matrix"
M, is obtained:

qgo —MAaqn —MAsgy —AAsg3

M =| N qo —A3q3 As3qa
1 J2 A3 0 —Aaq1
g3 —Mq Aqa o

According to the values of Ajep23), the matrix M, can be classified. For A1 = 1, A2, A3 € R, M, for 2PGQ is
obtained. For A1 = Ay = 1, A3 = -1, then M, for split quaternions is written. Moreover, for A; = 1, = A3 =1,
then M, for Hamilton quaternions is constructed.

Then, one can write some algebraic calculations for M,;:

#% The determinant of M, is det (Mq) = Ng.

2
% The characteristic polynomial of M, is: Py, (11) = (u2 — 2uqo + g5 + A A2gt + AiAsg; + Azqug) .

DThroughout the paper, this representation, which is actually the left matrix representation, will be used due to the noncommuta-
tivity of 3PGQs. Similarly, the right matrix representation can also be considered.



Z. Isbilir et al. / Filomat 39:9 (2025), 3003-3027 3007

% The characteristic equation of M is:
2
det (M, — uly) = 0 & Py, (1) = (u? = 2uqo + g2 + A1A2q? + M1Asg] + AaAsg3) = 0.

%% The characteristic equation enables to calculate the eigenvalues as follows:

Tip=qo+ \/—)\1/\211% — MAsqs — A2Asq3, Tsa=qo - \/—/\leﬁ — MAsg; — A2Asgl.

% The relation occurs: T1,T34 = g + A1A2g7 + A1Asqs + A2A395 = N,

% The eigenvectors corresponding to the eigenvalue T;; are written as:

t
(/‘1‘]2\/_Al/\Zl]%_/\l/‘3‘73_/\2}\3'7%_/‘1)\2'71'13 43\/—A1/\zqf—/\1/\34§—/\z/\3q§+/\141qz 1 0)
Alq%-F)\zqg /\1q§+/\2[]§

and

t
( /\2113\/—AlAzqf—/\l/\3173—/\2A3q§+/\1}\2qw2 P \/—/\qu%—Al)\aq%—ﬁz/\sqg—)\qu% 0 1 ) .
Ag3+Aaq; M2

%k The eigenvectors corresponding to the eigenvalue T34 are written as follows:

t
( Mgz \/‘AlAzq%_A1A3q§_AZA3Q§+/‘1A2q1%‘ B V- MR -MAsgi- A2 -Mqa 10 )
Alq%-*-/‘zq% /\1q§+/\zq§

and

t
( _ A2q3 \/—/h/\zqf—)h/\w%—/\y\sq%—/hAquqz q \/—AlAzq%—}tl/\3!1%—)\2/\3q§+/\zq1 73 0 1 ) ,
/\1(]%4—/\2(7[% Alqg/\zqg

where the notation ”t” represents the transpose of a matrix.

As for the GTNs, the characteristic equation is as follows (see [6]):

x> —rx*—sx—t=0. 3)

The roots of above equation (3):

r r r
x1=§+ac+ﬁ, x;_:§+1<a+1<2‘8, x3:§+1<2a+1<ﬁ/ 4)
3 3 _ i 3 2.2 3 2
where a = [+ 2+5+ V0, B=E+2+L-1[, K:71+%F3/ (=5 - +8-%+50,and

X1+ X2+ X3 =1, X1Xp + X1X3 + XoX3 = =5, X1XX3 = f. Equation (1) has one real and two nonreal solutions the
latter being conjugate complex on condition that C > 0 [6]. The Binet formula for GTNs is written as [6]:

T ’P\x’f f{\x; §x§ )
= + + ’
T x)( —x3) (o —x)(—x3)  (x3—x1)(x3 — X2)
where
P=c- b(xy + x3) + axoxs, R=c- b(x1 + x3) + axix3, S=c— b(x1 + x3) + axix;. (6)

Howard and Saidak [31] show that the Binet formula for GTNs in Equation (5) holds for all n € Z [64]. In
addition to these, an efficient method to generate T}, is applying the S-matrix, which is a generalization of

r s t
the R-matrix, and S-matrix is determined as (cf. [40,51,80,81]): S=] 1 0 O
010
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The GTNs are the largest family for the third-order recurrence numbers. Due to the received values
depending on the 7,5, t and Ty, T1, T5, this family contains different special cases. According to these, special
cases and some special subfamilies of this sequence can be examined in Table 3 and Table 4. In Table 3, this
sequence is classified both 7,s,t and Ty, T1, T in Table 4, the generalized Tribonacci sequence is grouped
dealing with the 7, s, t values. For detailed information see [6, 7, 10, 20, 44, 49, 51, 55-64, 69, 71, 72].

Table 3: Several Special Cases of Generalized Tribonacci Numbers

Name {T,} = {T.(T,, Ty, T5; 1, s, t)} Recurrence Relation
Tribonacci {a,} =1{T,0,1,1;1,1,1)} Ay = Ap_q + Ay + 3
Tribonacci-Lucas {b,} =1{T.(3,1,3;1,1,1)} b,=b,1 +b,o+b,_3
Tribonacci-Perrin {c.} =1{T,(3,0,2;1,1,1)} Cp = Cp1 + Cyp + Cys

M. Tribonacci {d,} =1{T.(1,1,1;1,1,1)} dy=dy1+d,o+d, 3

M. Tribonacci-Lucas {fu} =1T.(4,4,10;1,1,1)} fo = fac1 + fa2 + fus

A. Tribonacci-Lucas {9.} =1T.(4,2,0;1,1,1)} In = Gn-1+ Gn-2 + I3
Padovan (Cordonnier) {h,} =1{T.(1,1,1,0,1,1)} hy =hyo + hys

Perrin {t.} =1{T.(3,0,2;0,1,1)} Ly = lp—n + lp3

Van der Laan {i,} ={T.(1,0,1,0,1,1)} Iy = lyp + 13
Padovan-Perrin {jn} =1{T74(0,0,1;0,1,1)} Jn = Ju-2 + ju-s

M. Padovan {k,} ={T.(3,1,3;0,1,1)} ki =k, +k,_3

A. Padovan {I,} =1{T,(0,1,0;0,1,1)} Li=lo+1,3
Pell-Padovan {m,} =1{T.(1,1,1,;0,2,1)} My = 2Mpu_n + My_3
Pell-Perrin {o.} =1{T.(3,0,2;0,2,1)} 0, = 20,9+ 0,3

T. Fibonacci-Pell {r.} =1{T,(1,0,2;0,2,1)} Ty =21u+ T3

T. Lucas-Pell {s.} = {T.(3,0,4;0,2,1)} Sy = 25,2 + Sy_3

A. Pell-Padovan {t,} =1{T.(0,1,0;0,2,1)} t, =2t, 0+t 3

T. Pell {u,} =1{T,(0,1,2;2,1,1)} Uy = 2Up_q + Upp + Upy_3
T. Pell-Lucas {v,} =1{T.(3,2,6;2,1,1)} Uy = 20,-1 + Upo + Up_s

T. modified Pell {T,} =1{T.(0,1,1;2,1,1)} W, = 2Wp_1 + Wy_p + Wy_3
T. Pell-Perrin {z.} =1{T,(3,0,2;2,1,1)} Zy = 2Zp1 + Zn_o + Zu_3

T. Jacobsthal {t.} =1{T.(0,1,1;1,1,2)} Ty = Tpo1 + Tp-o + 2Ty_3

T. Jacobsthal-Lucas {yal =1Tu(2,1,5;1,1, 2)} Vi =Vn-1+ Vn2 +2Yu3
M. T. Jacobsthal {0, =1{T.(3,1,3;1,1,2)} Op = O0p_1 + Oy + 20,3

T. Jacobsthal-Perrin {e.} =1{T.(3,0,2;1,1,2)} €, =€y1+€10+2€,3
Jacobsthal-Padovan {e.} =1{T.(1,1,1,0,1,2)} €y = Epon + 28,3
Jacobsthal-Perrin {n.} =1{T,(3,0,2;0,1,2)} My = Nu— + 21y

A. Jacobsthal-Padovan {r,} ={T.(0,1,0;0,1,2)} I, =T,,+2l_3

M. Jacobsthal-Padovan {Q,} =1{T.(3,1,3;0,1,2)} Q,=0Q,,+2Q,.3
Narayana {A,} =1{T.(0,1,1;1,0,1)} A=A +A 3
Narayana-Lucas {©,} ={T.(3,1,1;1,0,1)} 0,=0,1+0,_3
Narayana-Perrin {6} =1{T.(3,0,2;1,0,1)} 6,=0,_1+06,3
3-primes {8,} =1{T.(0,1,2;2,3,5)} 9, =29,_1+38,0+59,3
Lucas 3-primes {va} =1{T.(3,2,10;2,3,5)} Vp =2V,1 4+ 3V, +5v,3
M. 3-primes {pn} =1T4(0,1,1;2,3,5)} Pn = 2pp-1 +3pu-2 +5pu_3
Reverse 3-primes {®,} ={T.(0,1,5;5,3,2)} O, =50, 1 +3D,_, +20,_3
Reverse Lucas 3-primes (Y.} ={T.(3,5,31,5,3,2)} Y, =5Y,1+3Y,+2Y, 3
Reverse M. 3-primes {on} = {Tx(0,1,4;5,3,2)} On = 50u-1 + 3012 + 20,3

*A.: Adjusted, M.: Modified, T.: Third order
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Table 4: A Brief Classification for Generalized Tribonacci Numbers

Name {T,} = {T,(Ty, Ty, Ty; 1, s, D)} Recurrence Relation

G. Tribonacci (usual) {A,} ={T(To, Ty, T2;1,1,1)} A=A 1 +A2+A3

G. Padovan {Hn} = {Tn(T(), Ty,T;0,1, 1)} H,=H,,+H,3

G. Pell-Padovan {M,} = {T.(Ty, T1, T2;0,2,1)} M, =2M,> + M, _3

G.T. Pell {U,} ={T.(Ty, T1, T2;2,1,1)} u,=2U,,+U,»+ U,

G. T. Jacobsthal (T} ={T.(To, T1, T2;1,1,2)} Ty = Tyl + Tuop + 2703

G. Jacobsthal-Padovan {e.} = {T.(To, T1, T2;0,1,2)} &1 = Epn + 26,3

G. Narayana {A,} ={T(Ty, Ty, T>;1,0,1)} A=A +A,3

G. 3-primes {8,} ={T.(To, T1, T2;2,3,5)} 9,=29,1+39,.1+59,3

G. Reverse 3-primes {®,} = {T.(Ty, T1, T2;5,3,2)} D, =5, 1 +3D,_; +2D, 3

*G.: Generalized, T.: Third Order

3. 3-Parameter Generalized Quaternions with Generalized Tribonacci Numbers Components

In this section, we determine the 3-parameter generalized quaternions with generalized Tribonacci
numbers components (for short; 3PGQs with GTN components). Then, we also examine some special cases
of this new type special recurrence sequence. We construct a Maple code to find elements of this special
number family. Moreover, we obtain some new equations and classical well-known equations such as; Binet
formulas, generating function, exponential generating function, Poisson generating function, summation
formulas, polar representation, and matrix equation. Additionally, we construct determinant, characteristic
polynomials, characteristic equations, eigenvalues, and eigenvectors concerning the matrix representation
of 3PGQs with GTN components.

Definition 3.1. Let 7, be the nth 3PGQ with GTN components. Then, it is determined as follows:
Tw =Ty + Tprre1 + Thioeo + Tpizes  forall nelN, (7)

where T, is the nth nonnegative subscripted GTN. Let T_, be the —nth negative subscripted 3PGQ with GTN
components. Then, it is defined as follows:

Top=Ton+ T-prrer + Topioer + T_yyzes forall neZ*, 8)

where T_, is the —nth negative subscripted GTN. Also, e1, e, e3 hold rules in Table 1. For nonnegative and negative
subscripted 3PGQ with GTN components, the following initial values are respectively given:

To =a + bey + cer + (rc + sb + ta) e3,
T

T =c+ (rc + sb + ta) e +[(r2+s)c+(rs+t)b+rta]ez+[(1’3+2rs+t)c+(rzs+sz+rt)b+(r2t+st)a]e3,

=b + ce; + (rc + sb + ta)e; + [(r2 + s) c+(rs+t)b+ rta] e,

—_

and

c r, s
T_1 =" Zb —ja+ae + bey + ces,

b r s{c s r c r S
_:———a—————a——b+———b——a)e + aey + bes,
thtt(ttt)(ttt123

a r

7~3:___(E_Zb_ﬁa)_i[?_fa_i(f_Ea_Zb)]Jr[?_fa_E(E_ﬁa_Zb)]el
t t\t t t Lt t L\t t t t t t\t t t

As a generalization, it ought to be written that the definition in Equation (7) holds for all n € Z. Throughout
this article, while some equations and properties are written separately for nonnegative subscripted and
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negative subscripted 3PGQ with GTN components, some of them are considered for all #n € Z for the sake
of brevity. The classification of the 3PGQs with GTN components can be seen in Table 5.

Table 5: Classification of 3PGQs with GTN Components
For Type of 3PGQs with GTN Components
Ar=1, Ay AzeR 2PGQs with GTN components [6, 18, 19, 26, 27, 32-34, 78]
A=1, Ay=1, Az=-1| Split quaternions with GTN components [19]
A=1, Ay=1, Az=1 Hamilton quaternions with GTN components [6, 18, 26, 78]
AM=1, Ar=1, A3=0 Semi-quaternions with GTN components
Ar=1, Ay=-1, A3=0 | Split semi-quaternions with GTN components
Ar=1, Ay=0, A3=0 1/4-quaternions with GTN components

Let us examine operations over 3PGQs with GTN components. For all n,m € Z, let T,, and 7, be the nth
and mth 3PGQ with GTN components, respectively. Equality, addition/subtraction, and multiplication by
scalar are performed in a familiar way. Additionally, scalar and vector parts, multiplication of any elements
of this family, conjugation, inner product, norm and inverse are determined as follows:

%% Scalar and vector parts: The scalar part of 7, is represented as Sy, and S7, = T,,. The vector part of 7,
is denoted by V¢, and Vg, = Ty161 + Tyioer + Tyises. Therefore, Syuq,, = Ty £ Ty = Sq, + Sg, and
Vﬂirn = VTVI + VTm'

% Multiplication: T, 7w = S7,57,, — f(Vr]-n, Vo )+ S Vo, + S Vo, + Vo AVey,
where

fVr, V) = MAa T T + MA3T a2 Tan + AA3T i3 Thas
and

Aser  Axer  Aqes A3 (T2 Tones — TniaTinr2) €1
V‘Tn A V‘Tm =| Thr1 Tuwa Thz | = +A2 (Tn+3Tm+1 - T;1+1Tm+3) €2
Tm+1 Tm+2 Tm+3 +/\1 (Tn+1 Tm+2 - Tn+2Tm+1) 3.

By taking into account Table 1, we can write the following form of multiplication as:
TuTm =TuTy — MA2Tui1 Tinet — MA3T 2 Tinr2 — A2A3 i3 T3
+ (TnTm+1 + Tan+l + /\3 (Tn+2Tm+3 - Tn+3Tm+2)) €1
+ (TnTm+2 + Tan+2 + /\2 (Tn+3Tm+1 - Tn+1 Tm+3)) e
+ (T Tz + TnTuas + A (Tni1 Tz — T2 Tins1)) €3.

%% Conjugation: 7_'n =T, — Tyi1e1 — Thier — Tpizes in which F,, represents the conjugation of 77,.

% Inner product: (Tn,Tm> =TT, + AMAT 1T + MA3T 0 Tan + A2A3T 03T 03,

% Norm: N, =TT =TT = T2 + MA2T2 | + MAsT2, + MaAsT2 .
% Inverse: T,7! = T T = Ter = Tz = Tiasts » N #0.

T Np, TR+ MATE, 4 AMASTE, + a2

Theorem 3.2 (Recurrence Relation). Let 7, be the nth 3PGQ with GTN components. The following recurrence
relation is satisfied

Tn=1Tpa+5T o +1tTy3 forall n>3. )
Also, the following recurrence relation of negative subscripted 3PGQs with GTN components is satisfied:

1
T_, = ?T—(n—3) - ?T—(n—l) - }—;7'_(,1_2) fOV all neZ*. (10)
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Proof. With the help of Equations (2) and (8), we get:

1 S r 1
;T—(n—?)) - ET—(n—l) - ET—(n—Z) Z?(T—(n—B) + T_(u-3ys161 + T_(u_3)4282 + T—(n—3)+3€3)

s

- E(T—(n—l) + T (14161 + T—(n-1)42€2 + T—(n—1)+3€3)
r

- E(T—(n—Z) + T (n-2)4161 + T_(n-2)42€2 + T—(n—2)+3€3)

1 s r 1 S r
= ;T—(n—?)) - ET—(H—l) - ZT—(n—Z) + ?T—(n—4) - ZT—(n—Z) - ET—(n—B) el

1 S r 1 S r
+ ?T—(n—S) - ET—(n—S) - ZT—(n—4) e+ ?T—(n—6) - ZT—(H—4) - ET—(n—B) e3

=T_,+ T_(n_1)61 + T_(n_z)fi’z + T_(n_3)€3
=T _,.

The recurrence relation in Equation (9) can be proved similarly. [

Also, it should be noted that the recurrence relation in Equation (9) holds for all n € Z.

We shall give some special subfamilies of nonnegative and negative subscripted 3PGQs with GTN
components in Table 6. With the help of the 7,5, t values which are given in Table 4 and Equations (7), (8),
(9), we obtain the following classification in Table 6 for 3PGQs with GTN components. It is not necessary
to rewrite Table 6 for negative subscripted 3PGQs with GTN components for the sake of brevity, for why
by putting n — —n into these equalities, clarity appears.

Table 6: Several Classification for Special Cases of 3PGQs with GTN Components

3PGQ with “Number Family” Definition Recurrence Relation

G. Tribonacci (usual) C. Ap=A,+Ae1 + Aner + Aizes A=A, 1+A, r+A,3
G. Padovan C. I:In =H, +H,.1e1 + H,0e0 + H, 1363 I:In = I:In_z + Hn_g,

G. Pell-Padovan C. M, = M,, + Ms1e1 + Mys0es + Myy1ae3 M, = 2M,_> + M,,_3

G.T. Pell C. H,, = U, + U161 + Uysoer + U, i363 C[n = Zfln_l + Un_z + Un_3

G.T. ]acobsthal C. Ty = Ty + Tpe1€1 + Tnanlo + Tya363 T, =Th1+ Tuo +2%,_3

G. Jacobsthal-Padovan C. &, = €, + Ep161 + Epinly + E44363 &, =&, +2&,_3

G. Narayana C. A, = Ay + Apirer + Apioer + Ayises A=A +A,;

G. 3-primes C. én =9, + 9,161 + S0 + D363 én = 2‘§n—1 + 3‘§n—2 + 59,,_3

G. Reverse 3-primes C. D, =D, + D01 + Ppper + Pyyzes D, =5D, 1 + 3D, , +2d, 5

*C: Component, G.: Generalized, T.: Third Order

The other table which includes the special cases concerning both the 7,s,t and initial values can be con-
structed quickly via Table 3. We omit them for the sake of brevity. As an example, one can see some
properties for 3PGQs with third-order Pell numbers components in Corollary 3.17. Namely, recurrence rela-
tions and definitions for special cases with respect to both 7, s, t, and initial values can be written similarly
as in Table 6.
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Now, let us construct the following Maple 12 code in order to calculate nonnegative and negative

subscripted 3PGQs with GTN components:

VVVYVVVVVVVVVYVVYVYV

VVVVVVVVVVYVVYVVYVYV

restart: with(LinearAlgebra):with(linalg):

T(n):

T:=proc(n)

if n=0 then return a:

elif n=1 then return b:

elif n=2 then return c:

elif n=3 then return r*c+s*b+t*a:

else return r*T(m-1)+s*T(n-2)+t*T(n-3)

end if;

end proc;

T_star(n):

T_star:=proc(n)

if n=0 then return T(®)+T(1)*e[1]+T(2)*e[2]1+T(3)*e[3]:

elif n=1 then return T(1)+T(2)*e[1]+T(3)*e[2]+T(4)*e[3]:

elif n=2 then return T(2)+T(3)*e[1]+T(4)*e[2]+T(5)*e[3]:

elif n=3 then return r*(T(2)+T(3)*e[1]+T(4)*e[2]+T(5)*e[3])+ s*(T(1)+T(2)*e[1]+T(3)*e
— [2]+T(4)*e[3])+ t*(T(®)+T(D)*e[1]+T(2)*e[2]+T(3)*e[3]):

else return r*T_star(n-1)+s*T_star(n-2)+t*T_star(n-3)

end if;

end proc;

T_negative(n):

T_negative:=proc(n)

if n=-1 then return (1/t)*c+(-r/t)*b+(-s/t)*a:

elif n=-2 then return (1/t)*T(4)+(-r/t)*T(3)+(-s/t)*T(2):

elif n=-3 then return (1/t)*T()+(-r/t)*T(4)+(-s/t)*T(3):

else return (1/t)*T(-n+3)+(-r/t)*T(-n+2)+(-s/t)*T(-n+1)

end if;

end proc;

T_starnegative(n):

T_starnegative:=proc(n)

if n=-1 then return T_negative(-1)+T(0)*e[1]+T(1)*e[2]+T(2)*e[3]:

elif n=-2 then return T_negative(-2)+ T_negative(-1)*e[1] +T(0)*e[2]+T(1)*e[3]:
elif n=-3 then return (1/t)*(T(®)+T(1)*e[1]+ T(2)*e[2]+T(3)*e[3])+(-r/t)*(T_negative

— (-D+ TO®)*e[1]+T(1)*e[2]+ T(2)*e[3])+(-s/t)*(T_negative(-2)+ T_negative(-1)*e[1]+
— T(®)*e[2]+T(1)*e[3]):

else return (1/t)*T_starnegative(-n+3)+(-r/t)*T_starnegative(-n+2)+(-s/t)*
< T_starnegative(-n+1)

end if;

end proc;

*The notations T, T_star, T_negative and T_starnegative represent, nonnegative subscripted GTN,
nonnegative subscripted 3PGQs with GTN components, negative subscripted GTN and negative
subscripted 3PGQs with GTN components, respectively.
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From here on, 7, and 7_, represent the nth and —nth nonnegative and negative subscripted 3PGQs
with GTN components, respectively.
Theorem 3.3. For all m,n € Z, the following properties hold for 3SPGQs with GTN components:
@) Tu+ Tunrer + Tnizer + Tuazes = 27y = (Tn + A2 Tz + A1A3Tyig + A2A3Th4),

(b) T = 2T, = T,
— MAST2,, = AaAsT2 ) and T2=T, = 4T, T, — 4T,

n+2

—2
(© T2+T,=2(T2 - WA T2,

(d) ?n?m - TnTm =-2 [(TnTm+1 + Tn+1Tm) er + (TnTm+2 + Tn+ZTm) e + (TnTm+3 + Tn+37~m) 63]/

@) TuT m+TnTm = 2[TuTu=A1A2Ts1 Tois1 — AMA3Tos2Tosz = AaAs T3 Tonsa + A3 (Tus2 Tonss — TusaTuns2) €1
+ AZ (Tn+3Tm+1 - Tn+1Tm+3) (&) +/\1 (Tn+1Tm+2 - Tn+2Tm+1) e3]r

(f) 7dn(iwm_(]wn?m =-2 [(Tn+1 Tm - TnTm+1) er + (Tn+2Tm - TnTm+2) e + (Tn+3Tm - TnTm+3) 63],

(g) 7_-n7—n1+7~n?m = +2[TnTm + AlAZTnJr] Tm+] + /\1/\3Tn+2Tm+2 + /\2A3Tn+3Tm+3
+ A3 (Tni3Tor2 — Tu2Tirs) €1 + A2 (Tns1 Tines — TnazTie1) €2
+ Al (Tn+2Tm+1 - Tn+1Tm+2) 63]-

Proof.  (a) By using Table 1 and Equation (7), we have:

Tn+ Turer + Tyroes + Tyraes =Ty + Tyraer + Tz + Trazes
+ (Tys1 + Trioer + Tryzea + Trysez) e
+ (Ths2 + Thyzer + Turaeo + Tyses) e2
+ (Thss + Thyger + Tuysea + Tryees) €3
=27 — (T + AA2Tus2 + A1A3 Ty + A2A3T046) -

Besides for the last term, we can write

Ty + AMAT o + AMA3T s + AoA3T e = Ty — Tusrer — Tnroes — Tuszes.

(b) By means of Equation (1), Equation (7), and conjugation of 7,,, we obtain:

2Ty =Ty = 2Ty — (Tu + Tuae1 + Tuizez + Thaszes) = Ty — Tuiaer — Tuizez — Tuyzes = T
It is also clear by using 7, + ?n =2T,and 7, — ‘7_’n =27, -2T,.
(c) By using Table 1 and Equation (7) and conjugate of 7,, we achieve:
T = (T + Tpsrer + Tusoes + Tusaes) (T + Tusrer + Trsoes + Trszes)
=0T, T = (T2 + MAaT2 ) + MAsT2,, + aAsT2, ).
and
7_~i =(Tw = Tusre1 = Tuszez = Tnyzes)(Tu — Tyrer — Tuszer — Tuizes)
== 2T, Ty — (=3T2+ M Ao T2, + M AST2 L+ A2 AS T2 ).
Then, we get the followings:
T2 4T =0T, T — (Tﬁ + A2+ MAST?,, + A2A3T§+3)
= 2T, T — (-3T2 = MALT2,, — MASTZ,, = AaAsT2 ;)
=2(T2 = MALT2,; = MAST2,, — aAaT2, )

n+1
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and

—2
T2=T, =2T, T = (T2 + MAaT2,, + MAsT2,, + AaAaT2, )
F2T, Tt (=3T3 4 M Ao T2+ A T2 4+ A2 A5 T2 )

=4T, T, — AT>.

(d) By means of Table 1 and Equation (7), conjugation and multiplication properties, we get:

?n?m T 0T m :(Tn = Ths1e1 — Thaper — Tn+3€3)(Tm = Tmr1e1 — Tigoer — Tm+333)
= (Ty + Tus1er + Tuyzez + Truzes) (T + Tinr1er + Tiyoez + Tripzes)
=- 2[(TnTn1+1 + Tn+1Tm)el + (Tn(r;n+2 + Tn+2Tm)62 + (TnTm+3 + Tn+3Tm)e3]-

(e) By using Table 1, Equation (7), conjugation and multiplication properties, we have:

Fn7_~m +TuTm =Ty = Tusrer — Tusoez — Tuyzes) (T — Trrer — Tz — Tinizes)
+ (T + Tusrer + Tyyoez + Turzes) (T + Turrer + Tiuvzes + Tiuraes)
=2[T, Ty =AM A2 Tps1 T — MA T2 Tinea — A2A3Tns3Tinas + A3(Tus2Ties — Tz Ts2)er
+ /\2(Tn+3Tm+1 - Tn+1 Tm+3)62 + /\1 (Tn+1 Tm+2 - Tn+2Tm+1)e3-

(f) By utilizing Table 1, Equation (7), conjugation and multiplication properties, we obtain:

r]_'71‘7.111_7-71?111 :(Tn - Tn+1el - T11+2€2 - Tn+333)(Tm + Tm+1el + Tm+232 + Tm+3e3)
—(Ty + Tur1e1 + Tpazez + Tyize3)(T — Tisre1r — Tiuoea — Truvaes)
:_2[(Tn+1Tm - TnTm+l)el + (Tn+2Tm - TnTm+2)62 + (Tn+3Tm - TnTm+3)63]-

(g) With the help of Table 1, Equation (7), conjugation and multiplication properties, we achieve:

T T oA TuT m = (T — Tus1er — Tus2es — Tuises) (T + Tusre1 + Tu2ea + Trsaes)
+(Ty + Tyyrer + Turzer + Tryzes) (T — Trsrer — Tizez — Tiupzes)
=+2[T T + MATy11Tis1 + MA3T 2 Tinsz + AoA3T13T a3
+ A3(Tns3Tms2 — TusoTmas)er + A2(Tus1Tinvs — TrraTinr1)e2
+ AM(Tns2Tis1 — Tusr Tr2)esl].

Hence, we completed the proof. [
Theorem 3.4. For all n € Z, Binet formula for 3PGQs with GTN components is satisfied as follows:

Px'x; Rxjx; Sxtx3

T = (1 — x2)(x1 — x3) i (2 = x1)(x2 — x3) ’ (3 —x1)(x3 —x12)

(11)
where x1, x>, X3 and f’\,ﬁ,gare written in Equations (4) and (6), respectively and

X1 =1+xe +xjer +xje3, Xo=1+xe +x5e + 353, x3=1+x3e + 132 + X365
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Proof. By using Equations (5) and (7), the proof is done:

T =Ty + Typer + Trner + Thizes

_ ’I3x’f N ﬁxg N gxg
(- x)(—x3) (o —x)(—x3)  (x3—x1)(x3 — x2)
. ?x’f” .\ ﬁxg’“l .\ §x’§” .
(x1 = x2)(x1 —x3) (2 —x1)(x2 —x3)  (x3 — x1)(x3 — X2)
j;xn+2 Exn+2 'S\xn+2
+ ! + 2 + > e
(x1 =x2)(x1 —x3) (2 —x1)(x2 —x3) (X3 —x1)(X3 — x2)
fg\xn+3 Exn+3 'S\xn+3
+ ! + 2 + > e3
(1 —x2)(x1 —x3) (2 —x1)(x2 —x3)  (x3 — x1)(x3 — X2)

Px'xy Rxjx; Sxiixs

T (v -0 — 1) ¥ (2 —x1)(x2 — x3) i (X3 —x1)(x3 — 12)

O

Theorem 3.5. For all n € IN, the generating functions for nonnegative and negative subscripted 3SPGQs with GTN
components are satisfied, respectively:

3 2
;Tnxn:7'o+(7'1—1r‘7_'o:;c:rs(;'z_—t:§'1—s7},)x / N
irr xn_7'0+(7:1+%%)X+(7-72+§711+%7'0>x2. "
=0 o 1-183 4 5x 4122

Proof. Let DZO‘O Tux" = To+T1x+T2x>+. ..+ T,x"+. .. be generating function of 3PGQs with GTN components.

Then, let us multiply both sides of this equality by rx, sx?, tx*:
erTnx” = 1Tox + 1T1xX% + 172X + o+ 1T+
n=0

(o)
sx? Z Tux™ = sTox? + sT1x> +sTox* + ...+ sTx"2 + ...
n=0

tx3 Z Toux™ = tT0x> + 1776 + 1T50° + .+ 1T+
n=0
After these, by using Equation (9), we have:

(1—rx—sx?— th)Z‘T,,x” =To+(T1—rT0)x + (T2 —rT1 — sTo)x%.
n=0

Finally, we attain Equation (12). By using the same manner, the proof of Equation (13) can be completed. [

Theorem 3.6. The exponential generating functions of nonnegative and negative subscripted 3PGQs with GTN
components are written as follows, respectively:

S n 1/5" X1 f{\" X2y Voo X3y
Y. 7. v e Xoe Sxse (14)

e ! T (-1 - x3) ’ (-2 —x3) (13— x5 —x2)
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0 y" Pr L R ¥ e v
X *2 X3
I o Rl g Rl o e (15)
=l (- x) —x) (o —x)e —xs) (X —x1) (s = x)

Proof. With the help of Equation (11), we get:

i'f v _ i ’ﬁx’fﬁ Rx” "X gx??c}, v
"n! (1 = x2)(x1 — x3) (xz —x1)(x2 — X3) (23 — x1)(x3 — x2) | n!

n=0

Z Px" x1 Z Rx! X2 Z 3% x3 ]/n
(xl x2)(x1 — x3) ”' (22 = x1)(x2 — x3) ”' (23 — x1)(x3 — x2) n!

(1 y)” R (xzy) 5% (xsy)”
(xl - xz) X1 — X3) Z (xz —x1)(x2 — x3) Z (xs —x1)(x3 — x2) Z‘

Prye? Rrxpe2V SEc\g,e"W
= + + .
(x1 —x2)(x1 —x3) (2 —x1)(x2 —x3)  (x3 —x1)(X3 — X2)

We completed the proof of Equation (14). Since Equation (11) is valid for all integers, by substitutingn — —n
we can show Equation (15) similarly. O

Theorem 3.7. The Poisson generating functions of 3PGQs with GTN components are written as:

I S Pren? RoeV Sz
e Z Tn_ = + + . 7
= Tnl eV —x)(xn - x3)  eV(xp —x)(va —x3) V(s —x1)(x3 — x2)
) n —~_ v
y Y P’\leﬁ sze*z Sxze’s
o |
n! eY(x; — x2)(x1 — x3) ey(xz —x1)(x2 — x3) ey(x3 —x1)(x3 — x2)

=
Il
(=)

Proof. By using Equation (14) and (15), we get the desired results, since Poisson generating function is
written as multiplying the exponential generating function by e7¥ (cf. also [77]). O

By using the study [72], we construct the following sum formulas for 3PGQs with GTN components in
Theorem 3.8 and Theorem 3.10.

Theorem 3.8. For every m,n € N, the following summation formulas for 3PGQs with GTN components satisfied:

@ g(r T+ A =NT2+ (=17 =8) T = T2+ 1 =171+ (r +s - 1)7

a o= " r+s+t—1 ’

. m - (1 =8)T gz + (t +18)T st + (2 + 1) T2y + (s — V)T 2 + (=t —18)T 1 + (> — s> + rt + 25 — 1)T

()E‘o n= r+s+t-1D@Fr—-s+t+1) ’
(r+t)7~2m+2+(S_52+t2+rt)7-2m+1+(t_5t)7-2m+(_r_t)7~2

© g’/’ +(=1+s+72+rt)T1 + (=t +st)To

c 2n+l = ’

1l
f==}

n

r—s+t+D(r+s+t-1)

wherer+s+t—1#0and (r—s+t+1)(r+s+t—-1) #0.

Particular Cases: If s = 1 and r + f # 0, we get the following summation formulas for special cases of parts
(b) and (c) of Theorem 3.8:
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7.2n1+2 + t%m+1 - 7'2 + 7ﬂ
r+t

‘7'2m+1 +t7v2m_‘7'1 +r%
r+t ’

@ %7 = ) X o =

Theorem 3.9. For every m,n € N, the summing formula for 3PGQs with GTN components can be given:
Tm+2 + (1 - r)Tm+1 + tTm +&

n=0

where

p=r+s+t-1,

V=(r+s-—1la+(Fr-1b-c

E=V+(W-gpa)er+ (W —qp@+b)ex+(V-p@+b+c))es.
Proof. By using Equation (7) and the Lemma 2.3 on page 6 in the study [6], then the followings are
constructed:

m m
Z Tu= Z Ty + Tprier + Thpoeo + Thizes

n=0 n=0
m m m m
= Z T, + Z Thire1 + Z Thi2e2 + Z T4363
n=0 n=0 n=0 n=0

1[Thia+ A =)Tosr + 4T + W+ (Toez + (1 = )T sz + t T + W — a) ey

a + (T + A =Tz + T2 + ¥V —@@+ b)) es + (Tpus + 1 =N Tpaa + t Tz + W — @@+ b +¢))es
T2+ Q=0T war + 1T + &

- 2

|
Theorem 3.10. For all m,n € IN, the summation formulas for 3PGQs with GTN components are satisfied:
(s+t—nT _o1—+)T a2 —tT_ 3+ T2+(1-0T1+(Q —-r—5)T0

@) n§17~_n= res+t—1 ,
~(r + )T g1 + (P + 1t +5 = DT oy + (5t = DT o1 + (1 = 8)T2 + (t + 15)T1
g +(1—rt=25s-12+s)7y
()E‘l —m (r+s+t—1)(r—s+t+1) ,
m - (s =DT oms1 — A +1)T gy — (B + )T ger + (r + T2+ (1 =12 — 1t —8)T1 + (t — st) T
© ,E‘l A (r—s+t+1D)(r+s+t—1) ’

wherer+s+t—1#0and (r—s+t+1)(r+s+t—-1)#0.

Particular Cases: If s # 1 and r + t = 0, the following summation formulas for special cases of properties
(b) and (c) of Theorem 3.10 satisfied.

m T o =T o1+ T2+ t71+ (1 = 9)T
@ ¥ T = 2m -1+ T2 1+ ( ) 0
n=0 s—1
m =T —om+1 _tT—21n+ﬂ +t%
®) LT o= ————— :

The following theorem constructs some matrix formulas for 3PGQs with GTN components.

Theorem 3.11. For every n € IN, the following matrix properties hold for 3PGQs with GTN components:
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(T T 0 1 0\'( T
T1 ), ® | T |=| 0 0 1 T4 |
7o Tz ) Ut —f 1) 7

Proof. Via the mathematical induction method, we show the proofs for both parts (a) and (b). O

t
(a) 0
0

T ne2 ros
Tn+l =10
T 01

Now, by taking advantage of Theorem 5 on page 5 in study [41], we achieve the following Theorem 3.12
that allows to find the nth and —(n + 1)th terms of the 3PGQ with GTN components. We skip the proof for
the sake of the brevity since it can be done easily by the mathematical induction method via Equations (9)
and (10), respectively.

Theorem 3.12. For every n > 0, the following (n + 1) X (n + 1) determinant equalities® satisfied:

o -1 0 0 0 0 0 T4 -1 0 0 0 0 0

71 0 -1 0 0 0 0 T> 0 -1 0 0 0 0

7 0 0 -1 0 0 0 75 0 0 -1 0 0 0

0 t s r -1 .. 0 0 0o 1 -5 - 4 0 0
@ Tu=| © ] (b) T—uery = g

o0 0 0 0 0 .or -1 o 0 0 o0 0 . =% -1

00 0 0 0 . s r o 0o o0 o0 o0 . -r -

Definition 3.13. For Ny, > 0and A A;T2, | + AiAsT? , + AaAsT>,, # O, polar representation of 3PGQ with GTN
components is written as follows:

T = \/N_n(c056+‘f“nsin6),

where
A 1
Tn — (Tn+1/ Tn+2/ Tl’l+3)
\/AlAZT,%_H + /\1/\3’1—%4_2 + A2A3Tﬁ+3
and
2 2 2
cos B = T s sin@ = MAT, y + MAsT,, + AT ,
N, N7,

where T, is called generalized unit vector of 3PGQ with GTN components.
Theorem 3.14. The matrix representation of T, can be written as follows:

T, —AATu —MAsT o —AA3T s

Mo = Tt T, —A3T 43 A3Ty2
Tl Tarz AdTwes T, —A2T i
Thiz AT ATy T,

Here the matrix My, is called fundamental matrix for 3PGQ with GTN components.

2The Laplace expansion along the last column is used to calculate the determinant, bearing in mind the noncommutativity of
3PGQs, i.e., for any [a,-j] » det([aij]nxr,) = 2’7:1 binfin, with by, = (=1)*" det C;, where det Cj, is the i, n minor of [a,-j]

nx nxn’
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Proof. Multiplying 7, = T, + Tpi1e1 + Tyaoe2 + Trizes with 1, e1, €2, €3 from the left side and using Table 1, we
get:

Tnl =Ty + Turrer + Tuioez + Trases,

Tner = —AAoTya + Ther + A2 Thiser — AT yzes,
Tuer = —AMA3T 2 — A3Tyiser + Tpeo + A Thsae3,
Tnes = —AaA3Tuis + A3Tyaoer — AoTyirez + Thes.

Then, writing the coefficients of {1, e1, €, 3} of the above equations as columns constructs the matrix Ms,. [

According to the values of Ajef123), My, can be classified. For A1 = 1,15, A3 € R, the fundamental matrix
for 2PGQ with GTN components is given. For A1 = A, = 1, A3 = —1, then the fundamental matrix for split
quaternions with GTN components is given. Also, for A; = A, = A3 = 1, then the fundamental matrix for
Hamilton quaternions with GTN components is given.

Remark 3.15. Let T, and T, be nth and mth 3PGQ with GTN components for al m,n € Z. Then, the following
matrix computation can be given:

M (T3)' = Ma, (T) = (TouTw)',

t
where the superscript * represents column matrix forms. Therefore, here T, = ( Ty The1 Tui2 Thas ),

t
Too=(Tu Twnt Tusz Tuss ) and

Ty T — MA2Tws1 Tiner — MAST 2Tz — AaA3The3Times
TnTm+1 + Tn+1 Tm + ASTn+2Tm+3 - ASTn+3Tm+2
TnTm+2 + Tn+2Tm - AZTH+1T7H+3 + AZTn+3Tm+1
TnTm+3 + TnTm+3 + AlTn+1Tn+2 - Al Tn+2Tm+1

(TuTm) =

Thanks to the Sentiirk and Unal [76], we can give the following Definition 3.16:

Definition 3.16. Let 7, be the nth 3PGQ with GTN components for all n € Z. Then, the following mathematical
equations are satisfied:

% The determinant of My, : det(My,) = N2

% The characteristic polynomial of My,
2
Ppty, () = (12 = 20T, + T2 + MAoT2 ) + AAsT2,, + ApAaT2,5)

n

% The characteristic equation of My,

n

2
det(My, —uly) =0 & Py, (W) = (1 = 2uT,, + T2 + M A2 T2, ) + MAsT2 , + AaAsT2,5) = 0.

%k The eigenvalues of Mq,:

—MAsT?,,, T34 =T, — \/—/\1A2T2

n n+1

leg =T, + \/—/\1A2T2 - )\1/\3T2

n+1 n+2

~ MAST2,, = A3 T2

+3°

% Multiplication of the eigenvalues of Mq:

0T34 = T2+ MAT2 |+ MAST2,, + AAsT2

n+3

= Ng..
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sk The eigenvectors corresponding to the eigenvalue T of My

3020

MTu V=MT2 — AT =20 A5T2 ~ Ao Te1 Tas 2T V-MAT? =M AsT? =M AsT? s+ A Ao Tt Tz
M T121+2+/\2T31+3 A1T721+2+A2Ti+3
Tuss \/—/\1/\27"%,,1—/\1/\3Tﬁ+2—/\2/\3T§+3+9\1 Ts1Tne2 T \/—Al/\zTﬁH—/\1/\3T,2,+Z—A2)\3T,2,+3—/\2Tn+1 Tuss
M2 +AT2 and MT2 40, T2,
1 0
0 1

sk The eigenvectors corresponding to the eigenvalue T34 of My,

MTu V=1AT2 — AT~ 22 As T2+ A0 i1 Tss _ AaTs V-T2~ AT, —AAs T2~ A1 As Tyar T
Al T§+2+/\2Ti+3 /\1 TZ +/\2T2

Tuss \/fﬁl/\zTﬁﬂ —MAT2 =M AsT2 =M T Tusa

n+2 n+3

Tz V=AM A T2~ AsT2 = A2 A3 T2

n+3+A2Tn+l Tu+s

MT2 ,+A T2, and MTZ +AT2,
1 0
0 1

According to the previous expressions, we take over the 3PGQs with third-order Pell numbers compo-
nents in the following Corollary 3.17. The other special cases will be omitted for brevity since they can be
constructed in detail like this corollary.

Corollary 3.17. Let u, and u_, be the nth and —nth nonnegative and negative subscripted 3PGQ with third-order
Pell numbers components such that

Uy = Uy + Ups1€1 + Un42€2 + Uns3€3, Uop = Uy + U_pi1€1 + U_pi2€2 + U_ps3e3, forall neNN,
with initial values:
ﬂo =e1 + 2ep + 5es, I[_l =ep + 2e3,
'171 =1+ 2e; +5e, + 1363, and ﬁ_z =1+ 263,
’1:[2 =2+ 5e; + 13e; + 33e3, ’1:[_3 =-1+e;.
Then the followings can be given:
(@) The recurrence relations:
Uy = 2y + Upp + Up-3, U_y = —U_(n1) = 2U_(y-2) + U_(n-3).
1= 1% 12
) _ X x5 x5+ 3
(b) The Binet formula: u, = :
(1 —x2)(x1 —x3)  (x2—x1)(x2—x3)  (x3 —x1)(xX3 — x2)

(c) The generating functions:

e1 + 2ey + 5ez + (1 + ey + 3e3)x + (ey + 2e3)x2

(o]
5 e

=0

=

U_yx"

gk

1-2x—x2—x3

e1 + 2ey + 5e3 + (e + 3ey + 7e3)x + (1 + 2e; + 5ep + 14e3)x?

3
I}
o

14+x+2x2 -8



Z. Isbilir et al. / Filomat 39:9 (2025), 3003-3027 3021

(d) The exponential generating functions:

= Yt X1 x1€1Y Xoxpe*2Y X3X3€%3Y

I . . ,

nl (=) —xs) (- X)) —x3) (63— x1)(x3 — X2)
Y Yy Y

Yy
y" X1x1€% XyXp€2 X3X3e%

nt (1 — x2)(x1 — x3) ’ (2 — x1)(x2 — x3) " (3 — x1)(x3 — xz)'

Uy

1=

=
]
o

(e) The Poisson generating functions:

= _ " x1x16°1Y Xoxpe¥2Y x3x383Y
e’ Z Up— = + + ’
=Tl eV — ) —xs) eV —x1)( —x3)  e¥(xz — x1)(x3 — X2)
00 n -~ £ — l —~ ¥
. X1Xx1€1 XpXp€*2 X3X3€%3
e’ Z Upn—= + + .
nt eV(xp —x2)(x1 —x3)  e¥(xp —x1)(x2 —x3)  e¥(x3 —x1)(x3 — X2)

mo 1 _ _
® ZO Uy = g(um+3 — U —2Up1 — 1 —ep —4epy — 1063),
n=
mo 1 _ _
* Y Uy = 5 (Uomer + o — 1 — €2 — 3e3),
n=0 3

m
® ) U1 = §(M2m+2 + U1 — €1 — 3ex — 7e3),
mo__ 1 . _ _
* Y u,= g(—4u_m_1 —2U_yp —U_y3+ 1 +e +4ey + 10e3),
m — — —
% Z U_yy = §(—M_2m+1 +2U o+ 1+e+ 363),
— 1 _ —
*® Y U op = §(—M—2m — U_pm—1 + €1 +3ex + 7e3).

U2 — U1 + Uy + (=1 — e1 — 4e, — 10e3)
3

m
(g) Forallm,n € N, the following summation property hold: Y, u, =
n=0

(h) Forall n € N, the following matrix formulas are satisfied:

Unso 2 1 1Y'( 2+5e +13e, + 33¢5
sk Zt}Hl =1 0 O 1+2e1 +5e, +13e3 |,
, 010

Uy e1 + 2ep + ey
Uy 0 1 0 \'( el +2e+5e;
% g—n—l =10 O 1 e + 2e3 .
g_”_z 1 -2 -1 1+ 2e3

(i) Foralln € N, the following (n + 1) X (n + 1) determinant equalities are satisfied:
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e1 +2e> + 5e3 -1 0 0 0 0 0
14 2eq + 5ep + 13e3 0o -1 0 0 0 0
2+ 5e1 + 13ey + 33e3 0 0 -1 0 0 0
0 1 1 2 -1 0 0
% u, = ,
0 0 0 0 0 2 -1
0 0 0 0 0 1 2
e + 263 -1 0 0 0 0 0
1423 0 -1 0 0 0 0
-1+e; 0 0o -1 o0 0 0
0 1 -2 -1 -1 0 0
%* ad—(n+l) =
0 0o 0o 0 0 . -1 -1
0 0o 0o 0 0 . -2 -1
() Under the conditions Ny > 0 and /\1/\214% a7t A1A3ui ot )\2/1311% .3 * 0, polar representation of U, is written
as follows:
iy = ANz, (cos 0 + u, sin 6) , (16)

where iy, is called generalized unit vector of 3PGQ with third-order Pell numbers components and defined as

A 1

(un+1/ Un+2, un+3)

=
3
|

n+3

\/Al/lzule + /\1/\3Mi+2 + /\2/\31/!2

and also cos 6 =

2 2 2
. _ /\1/\2Mn+1 + /\1/\3un+2 + /\2A3Mn+3
r sin@ = N ‘
Up

Uy
VNG,

(k) The matrix representation of u, can be written as follows:

Uy, —MAalyyr —AAsUpe —A2A3lys
M. = Ups1 Uy —A3lpy3 A3lyy2
" Upy2 Aoy Uy =AUyt
Uz —Allpg2 Attty Uy

Here the matrix Mg, is called the fundamental matrix for 3PGQ with third-order Pell numbers components.

() Foralln € Z, the following mathematical equations are satisfied:

% The determinant of My, : det (Mgn) =N2Z.

Uy

%k The characteristic polynomial of Mg :

2
P, (n) = (112 —2uu, + uﬁ + )\1/\2uﬁ+1 + Al/\3ui+2 + Az/\3uﬁ+3) .

%k The characteristic equation of Mg :

2
det(Mg, —uly) = 0 & Py (W) = (12 = 2w, + 12 + MAgul,, + AMiAgil,, + AaAsii?, ;) = 0.

% The eigenvalues of My :

3:1,2 =u, + \/—/\1/\21472&1 - /\1/\3Mi+2 - /\2/\3L£i+3, it3,4 = Uy — \/—AlAzule - A]/\guz - Az/\guz

n+2 n+3°
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& Multiplication of the eigenvalues of M, :
11/23:3,4 = u% + /\1A2ui+1 + A1A3M3H_2 + A2A3ui+3 = Ngn.

%k The eigenvectors corresponding to the eigenvalue Ty, of My :

2 2 2 2 2 2
Mo \/—/\1/\zu,ﬂl—/\l/\suﬁz—A2A3Hn+3—)\1/\zun+1un+3 Aoltinys \/—Al)\zu,,+1—/\1/\3H,,+2—/\2/\3M,,+3+/\1)\2Hn+1un+2
7 7 7 7
Al un+2+A2un+3 Alun+2+/\2un+3
2 7 2 2 2 7
Up43 \/—Al/\zunﬂ —MAsus L —Ao sty s+ AUt Up42 \/—/\Mzuy,ﬂ —MAsus ,—Ao Azt = Aolni1Unes
2 2 - 2 2
A1un+2+A2un+3 and /‘1un+2+/\2un+3

sk The eigenvectors corresponding to the eigenvalue T34 of My :

Mo \/—M Mgt =M Agt? = AaAsi? s+ A Aty s A2tin43 \/—/\1 A1 =M Asu? L, —AaAgu = Ay Aottyga U2
2 2 - 2 2
Al un+2+)\2un+3 M un+2+/\2ur1+3
ey = Ao12 =My Asu = Ao Aati2 Ayttt i = MAai2 =M Asu2 = AaAgti2 |+ Mgttt
- 2 2 2 2
Alun+2+A2un+3 and /\114”+2+/\2u”+3

Now, let us give a numerical example as follows:
Example 3.18. Let us be the 6th 3PGQ with third-order Pell numbers components.

% According to Equation (16), polar representation of i is as follows:

s = 7056 + 457961 2 + 2970251 As + 1926544515 (cos 0 + uig sin 0),

where

(214, 545,1388)
V579614, + 2970251, A5 + 19265441, 15

=)

6

is 3-parameter generalized unit vector of us and

84
- V7056 + 4579611 A5 + 29702511 A3 + 19265441515 ,

Sinf = \/ 45796115 + 2970250, 15 + 19265441505
~ V7056 + 457964145 + 29702501 A5 + 19265441515

cos 6

% The following matrix can be constructed as follows:

84  -214AA, —545MA1A3 —1388A,43

Mo = 214 84 —1388A3 54573
"e T | 545 13881, 84 -214A,
1388 545\ 214\ 84

% The determinant of My, is written as:

2
det(Mz,) = (7056 + 457961 A, + 2970251 A5 + 192654412A5)° = (N7,) .




Z. Isbilir et al. / Filomat 39:9 (2025), 3003-3027 3024

%k The characteristic polynomial of Mg, is given:
2
Py () = (u2 — 1681 + 7056 + 457961115 + 29702511 A3 + 1926544)\2/\3) .

%k The eigenvalues of M, are determined:

T =84+ \/—45796/\1)\2 — 2970251143 — 19265441575

and

T34 =84 — \/—45796/\1)\2 — 29702511 A3 — 19265441, 5.

% The multiplication of the eigenvalues of My, is:
11,23:3,4 = 7056 + 45796115 + 29702511 A3 + 19265441543 = Nﬁe'

%k The eigenvectors corresponding to the eigenvalue Ty of Mg, are expressed:

t
/\1(—297032Az+545 V—45796A11,—29702501A3—19265441,A3) 1166301 +1388 V—457961; A, —2970251 A3—19265441,15 10
2970251, +1926544, 2970251, +1926544,

and

t
A2 (11663011 +1388 V=45796111,~29702511 15— 192654412 5)  297032A+545 V=45796; 13 —29702511 15— 19265441, 15 01
2970251, +1926544., 2970251 +1926544., :

%k The eigenvectors corresponding to the eigenvalue T34 of Mg, are expressed:

t
A1(116630A,+545 v=457961 X, —2970251 13— 19265441, 73) _ =29703211 +1388 V=457961 A, —29702511 A3~ 19265447, 1 1 0
29702511 +1926544, 29702511 +19265441,
and
t
_ Az(—116630/\1 +1388 V-4579611 1, 29702511 13-192654441A2)  2970321,+545 v—45796,11 1, —2970251; A3 — 19265441, 15 0 1
2970251, +1926544, 2970251, +1926544, ’

Example 3.19. Let u_q be the —9th 3PGQ with third-order Pell numbers components.

% According to Equation (16), polar representation of u_g is as follows:

g = 49 + 2561 + 36143 + 91215 (cos 0 + U g sin 6),
where
(16/ _6r _3)
V256,45 + 360,45 + 9AuA5

P

=

-9

is 3-parameter generalized unit vector of u_q and

cos 6

_ -7 sin@ = \/ 256A1A5 + 364143 + 94515 )
\/49 + 256A1A5 + 36A1A3 + 91,43 49 + 2561145 + 36A1A3 + 9273

% The following matrix can be obtained as follows:

~7 ~16MA; 6Mids 3MxAs
A I (O A Y PR
M=l 26 —ah, =7 -6

3 6M 16A -7
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2
% The determinant of My, is: det(Mg.,) = (49 + 2561145 + 364145 + 9A2A5)” = (Nz, ).

%k The characteristic polynomial of My , is written:
2
P, (u) = (v + 141+ 49 + 25611 A2 + 3613 + 9A213) .

% The eigenvalues of Mg , are written:

Tp = —7+ V=256A1A0 —36A1A3 — 9AsA3, T34 = —7 — =25611A5 — 364143 — 91,3,

%% The multiplication of the eigenvalues of ML) is: T1pT34 = 49 + 2564145 + 364143 + 9443 = N ,.

sk The eigenvectors corresponding to the eigenvalue T, of My, are calculated:

t
61 (82— V=25611A2=361143-91243)  96];-3 V=2561A,—361; 13—9A 15 1 0
36A1+9A; 36A1+9A,

and

t
3A2(—-32A1— V2501 2-36/145-9M243)  —48)5+6 V=256, 1a =36, 13—97s 15 0 1
36A14+9A, 36A1+9A; ’

¢ The eigenvectors corresponding to the eigenvalue T34 of My, are expressed:

t
—6A1(8A2+ V=256A1 A,—36A1A3-9213) _ —96MA1+3 V=256A1 42361 43925 10
36A14+9A, 36A1+9A;

and

t
32(32A1+ V=2561112-361115-9/213)  481,—6 V=256, 1r—36, A3—97s 15 01
367,19, 36),+91, :

4. Conclusions

In this study, we investigated the nonnegative and negative subscripted 3PGQs with GTN components
and also scrutinized some special cases of them. Additionally, we gave the Maple code of this special
number family, determined both some new and classical well-known equations such as; Binet formulas,
generating function, exponential generating function, Poisson generating function, summation formulas,
polar representation, and matrix equation. Then, we obtained determinant, characteristic polynomial,
characteristic equation, eigenvalues, and eigenvectors concerning the matrix representation of 3PGQs with
GTN components.
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