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Abstract. In the current paper we provide a more general fixed point result under a relaxed contractive
condition inspired by Jaggi-type contractions within the framework of interpolative metric spaces. For these
mappings we prove that they possess a fixed point under certain conditions. Also, we give a condition
for the uniqueness of the fixed point. Moreover, as consequences, we provide two fixed point results in
interpolative metric spaces, where the fixed point is unique.

1. Introduction and Preliminaries

The study of fixed point results under more relaxed contractive conditions and in more general metric
spaces has been of great interest for the research community in the past years (see, for example [12] and
the references cited herein). Motivated by the recently introduced types of metric space introduced by
Karapınar in [13], namely interpolative metric spaces, and the study of Jaggi type contractions in different
contexts (see [6], [1],[5], [9], [11], [17]), in this paper we aim to study Jaggi type contractions in the sense of
[8] in interpolative metric spaces.

Very recently, Karapınar introduced in [14] the notion of interpolative metric spaces defined by a
modified triangle inequality that includes parameters α and c. These new metric spaces, which emerged
from the concept of interpolative contractions (see [13]) enable broader applications in fixed-point theory.
It is proven in [14] that fixed points in such spaces exist under certain conditions. Let us recall the definition
of an interpolative metric space (see [13, 14]):

Definition 1.1. Let X be a nonempty set. We say that d : X × X→ [0,+∞) is (α, c)-interpolative metric if

(m1) d(x, y) = 0 if and only if x = y for all x, y ∈ X,
(m2) d(x, y) = d(y, x) for all x, y ∈ X,
(m3) there exist an α ∈ (0, 1) and c ≥ 0 such that

d(x, y) ≤ d(x, z) + d(z, y) + c (d(x, z))α
(
d(z, y)

)1−α ,

for all (x, y, z) ∈ X × X × X.

Then, we call (X, d) an (α, c)-interpolative metric space.
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In these new metric spaces there has been proved an analogue of Banach’s fixed point theorem as
follows:

Theorem 1.2 (see [13]). Let (X, d) be a (α, c)-interpolative metric space and let T : X → X be a mapping such that
exists q ∈ (0, 1) such that

d(Tx,Ty) ≤ qd(x, y)

for all x, y ∈ X. Then, T possesses a unique fixed point.

More results on interpolative metric spaces can be found in [15] and [4].

Remark 1.3. Let us note that every metric space can be regarded as an (α, c)-interpolative metric space with c = 0.
However, the reverse of this statement does not hold.

Indeed, consider the metric as in Example 1.1 from [13] d : X × X→ [0,∞) defined as

d(x, y) := δ(x, y)(δ(x, y) + 1).

where (X, δ) is a standard metric space.

Let us first introduce some preliminary notions related to interpolative metric spaces.

Definition 1.4. (see [13]) Let (X, d) be a (α, c)-interpolative metric space and let {xn} be a sequence in X. We say that

i) {xn} converges to x in X, if and only if, d(xn, x)→ 0, as n→∞.

ii) {xn} is a Cauchy sequence in X, if and only if, limn→∞ sup{d(xn, xm) : m > n} = 0.

iii) (X, d) is a complete (α, c)-interpolative metric space if every Cauchy sequence converges in X.

For completeness, we recall some notions related to admissible mappings:

Definition 1.5 (see [10]). For a nonempty set X, let T : X→ X and α : X × X→ [0,∞).

(i) (see [19]) We say that T is α-admissible if

x, y ∈ X, α(x, y) ≥ 1⇒ α(Tx,Ty) ≥ 1.

(ii) (see [7]) A self-mapping T is called triangular α-admissible if

1. T is α-admissible, and
2. α(x, y) ≥ 1 and α(y, z) ≥ 1 imply α(x, z) ≥ 1, for any x, y, z ∈ X.

(iii) (see [2]) Let S : X → X be a mapping. We say that (T,S) is a generalized α-admissible pair if for all x, y ∈ X,
we have

α(x, y) ≥ 1⇒ α(Tx,Sy) ≥ 1 and α(STx,TSy) ≥ 1.

(iv) (see [16]) We say that T is α-orbital admissible if

α(x,Tx) ≥ 1⇒ α(Tx,T2x) ≥ 1.

Also, T is called triangular α-orbital admissible if T is α-orbital admissible and

α(x, y) ≥ 1 and α(y,Ty) ≥ 1⇒ α(x,Ty) ≥ 1.

LetΨ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:
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(Ψ1) ψ is nondecreasing;
(Ψ2) there exist k0 ∈N and a ∈ (0, 1) and a convergent series of nonnegative terms

∑
∞

k=1 vk such that

ψk+1 (t) ≤ aψk (t) + vk,

for k ≥ k0 and any t ∈ [0,∞).

Here, these functions are called as (c)-comparison (see e.g. [18]). In [18], Rus proved that if ψ ∈ Ψ, then the
following hold:

(a) the sequence
(
ψn (t)

)
n∈N converges to 0 as n→∞ for all t ∈ [0,∞);

(b) the strict inequality, ψ (t) < t, holds for any t ∈ [0,∞);
(c) the function ψ is continuous at 0;
(d) the series

∑
∞

k=1 ψ
k (t) converges for any t ∈ [0,∞).

Jaggi, in [6], introduced a fixed-point result that generalizes Banach’s fixed-point theorem (see [3]) by
employing a more general contractive condition.

Theorem 1.6. Let (X, d) be a complete metric space and T : X → X be a continuous map such that there exist
α, β ∈ [0, 1) with α + β < 1 such that:

d(Tt,Ts) ≤ α
d(s,Ts)(1 + d(x,Tx))

1 + d(t, s)
+ βd(t, s)

holds for every distinct t, s ∈ X. Then T has a unique fixed point.

These mappings were of great interest to the research community, as many generalized results appeared
based on Jaggi type mappings.

In [8], there were introduced a new type of mappings called Jaggi type based on rational contraction
and admissible mappings, in the context of complete partial metric spaces, as follows:

Definition 1.7 (see [8]). Let (M, p) be a complete partial metric space and T : M→M be a map. The map T will be
referred to as a map of (α − ψ)-Jaggi type if there exist a function ψ ∈ Ψ, and nonnegative real numbers a1, a2 with
a1 + a2 < 1, so that the inequality

α(t, s)p(Tt,Ts) ≤ ψ
(

a1p(t,Tt) · p(s,Ts)
p(t, s)

+ a2p(t, s)
)

holds for every distinct t, s ∈M.

In this paper, we investigate the existence and uniqueness of fixed points of Jaggi type mappings in the
setting of complete interpolative metric spaces.

2. Main Results

Let us begin with the definition of (α − ψ)-Jaggi type contractions within interpolative metric spaces:

Definition 2.1. Let (X, d) be an interpolative metric space and T : X → X be a map. Then T will be referred to as
a map of (α − ψ)-Jaggi type in interpolative metric spaces if there exist ψ ∈ Ψ, and nonnegative real numbers a1, a2
with a1 + a2 < 1 so that the inequality

α(t, s)d(Tt,Ts) ≤ ψ
(
a1

d(t,Tt) · d(s,Ts)
d(t, s)

+ a2d(t, s)
)

(1)

holds for every distinct t, s ∈M.
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Lemma 2.2 (see [8]). Let X be a non-empty set. Suppose that α : X × X → [0,∞) is a function and T : X → X is
an α-orbital admissible mapping. If there exists t0 ∈ X such that α(t0,Tt0) ≥ 1, and tn = Ttn−1 for n = 0, 1, . . . , then,
we have

α(tn, tn+1) ≥ 1, for each n = 0, 1, . . . . (2)

Theorem 2.3. Let (X, d) be a complete interpolative metric space, T : X → X be a map of (α − ψ)-Jaggi type and
there exists t0 ∈ X such that α(t0,Tt0) ≥ 1. If the α-orbital admissible mapping T is continuous, then T has a fixed
point in X.

Proof. Given the assumption of the theorem, there exists t0 ∈ X such that α(t0,Tt0) ≥ 1. Thus, we can
construct a sequence as follows:

tn = Ttn−1 for n = 0, 1, . . .

According to Lemma 2.2, we obtain (2).
Without loss of generality, we may assume that

d(tn, tn+1) > 0 for each n = 0, 1, . . . (3)

Indeed, if there exists some k0 such that d(tn, tn+1) = 0, then by (m1) we have tk0 = tk0+1 = Ttk0 . This implies
that u = tk0 is a fixed point of T, completing the proof.

Thus, throughout the proof, we maintain (3). Consequently, we can apply the inequality (1) for any
successive terms t = tn and s = tn+1:

d(tn+1, tn+2) = d(Ttn,Ttn+1) ≤ α(tn, tn+1)d(Ttn,Ttn+1)
≤ ψ

(
a1

d(tn,Ttn)·d(tn+1,Ttn+1)
d(tn,tn+1) + a2d(tn, tn+1)

)
= ψ

(
a1

d(tn,tn+1)·d(tn+1,tn+2)
d(tn,tn+1) + a2d(tn, tn+1)

)
= ψ (a1d(tn+1, tn+2) + a2d(tn, tn+1))

(4)

We need to consider two cases:

(i) d(tn+1, tn+2) > d(tn, tn+1)
(ii) d(tn+1, tn+2) ≤ d(tn, tn+1)

If the first case occurs for some n, then due to condition (Ψ1) and the fact that ψ(t) < t for all t > 0,
inequality (4) becomes:

d(tn+1, tn+2) ≤ ψ ([a1 + a2]d(tn+1, tn+2))
≤ ψ (d(tn+1, tn+2)) < d(tn+1, tn+2) (5)

This leads to a contradiction. Hence, the second case d(tn+1, tn+2) ≤ d(tn, tn+1) holds for all n ∈N0.
Moreover, inequality (4) implies that:

d(tn+1, tn+2) ≤ ψ ([a1 + a2]d(tn, tn+1)) ≤ ψ (d(tn, tn+1)) < d(tn, tn+1) (6)

Thus, iteratively we obtain:

d(tn+1, tn) ≤ ψn(d(t1, t0)) for all n ≥ 1. (7)

Since ψ ∈ Ψwe get

lim
n→∞

d(tn+1, tn) = 0 (8)

By (m3) we have:
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d(tn, tn+2) ≤ d(tn, tn+1) + d(tn+1, tn+2) + c
(
d(tn, tn+1)α(d(tn+1, tn+2))1−α

)
,

and taking n→∞ and considering the limit (8), we find that

lim
n→∞

d(tn, tn+2) = 0.

Moreover, we have that

d(tn, tn+3) ≤ d(tn, tn+2) + d(tn+2, tn+3) + c
(
d(tn, tn+2)α(d(tn+2, tn+3))1−α

)
(9)

By combining the limit (8) and inequality (9), we deduce that

lim
n→∞

d(tn, tn+3) = 0.

By induction, we obtain that

lim
n→∞

d(tn, tn+r) = 0. (10)

d(tn, tn+r+1) ≤ d(tn, tn+r) + d(tn+r, tn+r+1) + c
(
d(tn, tn+r)α(d(tn+r, tn+r+1))1−α

)
by employing the limits (8) and (10), as n→∞, we obtain that

lim
n→∞

d(tn, tn+r+1) = 0.

Now, we have

d(tn+1, tm) < 1, (11)

for m > n > k, and we shall prove that the constructed iterative sequence {tn} is a Cauchy sequence. For
m > n > k, let us make the notation ψ(d(tk, tk+1)) = q, then, we have

d(tn, tm) ≤ d(tn, tn+1) + d(tn+1, tm) + c
[
(d(tn, tn+1))α(d(tn+1, tm))1−α

]
≤ qn−kd(tk, tk+1) + d(tn+1, tm) + c

[
qn−kd(tk, tk+1)α(d(tn+1, tm))1−α

]
.

(12)

Since d(tn+1, tm) < 1 we have (d(tn+1, tm))1−α < 1. Thus, the right-hand side of the previous inequality can
be estimated as follows:

≤ qn−kd(tk, tk+1) +
[
(d(tn+1, tm))α + c(qn−k)α

]
d(tn+1, tm)d(tk, tk+1)

≤ qn−k +
[
1 + c(qn−k)α

]
d(tn+1, tm).

(13)

In conclusion, we have

d(tn, tm) ≤ qn−k +
[
1 + c(qn−k)α

]
d(tn+1, tm). (14)

Notice also that
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d(tn+1, tm) ≤ d(tn+1, tn+2) + d(tn+2, tm) + c
[
(qn−k+1d(tk, tk+1))α(d(tn+2, tm))1−α

]
≤ qn−k+1d(tk, tk+1) +

[
(d(tn+2, tm))α + c(qn−k+1)α

]
d(tn+2, tm)d(tk, tk+1)

≤ qn−k+1 +
[
1 + c(qn−k+1)α

]
d(tn+2, tm),

(15)

Thus, we have

d(tn, tm) ≤ qn−k + qn−k+1
[
1 + c(qn−k)α

]
+

[
1 + c(qn−k)α

] [
1 + c(qn−k+1)α

]
d(tn+2, tm). (16)

so we obtain

d(tn, tm) ≤ qn−k
m−n−1∑

i=0

qi
i−1∏
j=0

(1 + cqn−k+ j)α ≤ qn−k
m−n−1∑

i=0

qi
i−1∏
j=0

(1 + cq j)α. (17)

Since q < 1, the right-hand side of the previous inequality is dominated by the sequence
∞∑

i=0

i−1∏
j=0

(1+ cq j)α,

which is convergent.
Thus, {tn} is a Cauchy sequence and by completeness of (X, d), there exists u ∈ X such that:

lim
n→∞

d(tn,u) = 0 = lim
n→∞

d(tn, tn+k) = d(u,u) (18)

Given that T is continuous, we conclude from (18) that:

lim
n→∞

d(tn+1,Tu) = lim
n→∞

d(Ttn,Tu) = 0, (19)

we find that u is a fixed point of T, i.e., Tu = u.

Similarly to [8], the continuity condition can be relaxed by imposing another condition.

Definition 2.4. Let s ≥ 1. We say that an interpolative metric spaces (X, d) is regular if {tn} is a sequence in X
such that α(tn, tn+1) ≥ 1 for each n and tn → t ∈ X as n → ∞, then there is a subsequence {tn(k)} of {tn} such that
α(tn(k), t) ≥ 1 for each k.

Theorem 2.5. Let (X, d) be a regular complete interpolative metric space, and T : X→ X be a map of (α − ψ)-Jaggi
type. Assume there exists t0 ∈ X such that α(t0,Tt0) ≥ 1. If T is an α-orbital admissible mapping, then T has a fixed
point in X.

Remark 2.6. If for all t , s ∈ X, there exists r ∈ X such that

α(t, r) ≥ 1, α(s, r) ≥ 1, and α(r,Tr) ≥ 1.

the fixed point of T in Theorem 2.3 and Theorem 2.5 is unique.

3. Consequences

Definition 3.1. Let (X, d) be an interpolative metric space, and let T : X→ X be a map and ψ ∈ Ψ. Then T will be
referred to as a map of ψ-Jaggi type if there exist a1 and a2 in [0, 1) with a1 + a2 < 1 so that the inequality

d(Tt,Ts) ≤ ψ
(
a1

d(t,Tt) + d(s,Ts)
d(t, s)

+ a2d(t, s)
)

(14)

holds for every distinct t, s ∈ X.
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Theorem 3.2. Let (X, d) be a complete interpolative metric space and T : M → M be a map of ψ-Jaggi type. If T is
continuous, then T has a unique fixed point in M.

Proof. Taking α(t, s) = 1 for all t, s ∈ X, the conclusion follows from Theorem 2.2 and Remark 2.6.

Theorem 3.3. Let (X, d) be a complete interpolative metric space and T : X → X be a map of Jaggi type, satisfying
the following condition:

d(Tt,Ts) ≤ ν1
d(t,Tt) · d(s,Ts)

d(t, s)
+ ν2d(t, s) (15)

for all distinct t, s ∈ X, and for some ν1, ν2 ∈ [0, 1) with ν1 + ν2 < 1. Then T has a unique fixed point in X.

Proof. Taking ψ(t) = kt, k ∈ [0, 1) in Theorem 3.2 with νi = kai, i = 1, 2.
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