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Abstract. In this paper, we deal with the coupled system of Volterra integro-differential equations of
order (p,q), The novelty of the considered problem is that it has been investigated under the i)-Caputo
fractional derivatives, which is more general than the works based on the well-known fractional derivatives
such as (Caputo fractional derivative, Caputo-Hadamard fractional derivative and Caputo-Katugampola
fractional derivative) for different values of the function ¢. We use the generalized Laplace transform
method to find the solution then we obtain results on uniqueness using Banach’s fixed point theorem.
Next, we examine different types of stabilities in the sense of Ulam-Hyers (UH) of the given problems.
Finally, a concrete application is given to illustrate the effectiveness of our main results.

1. Introduction

Differential equations represent a significant area of mathematics with extensive applications in science.
They are utilized in mathematical modeling, aiding in solving physical and engineering problems involving
functions of one or more variables [1, 10, 15, 40]. These problems can include the propagation of heat or
sound, fluid flow, elasticity, electrostatics, and electrodynamics, among others [18, 39]. For decades,
research into methods for solving differential equations has been a key focus for scholars due to their critical
applications across various scientific fields. The technique of using integral transforms has demonstrated
its efficiency and applicability in solving ordinary and partial differential equations.

Fractional semilinear equations are crucial for modeling inhibitory and excitatory neuron activity, captur-
ing complex dynamics and memory effects that traditional models miss. They enhance our understanding
of neural processing and improve treatments for neurological disorders. In electric circuit analysis, these
equations accurately represent complex systems by incorporating memory properties, leading to better
insights into capacitor behavior and signal propagation, which aids in designing and optimizing electronic
devices. [21, 25-29].

The Laplace transform method simplifies solving differential equations by converting them into algebraic
equations, making them easier to handle. Classical derivatives can be represented as convolutions of
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power functions for fractional differential equations, which helps facilitate Laplace transforms. However,
this method has limitations in the variability of orders due to challenges in finding inverse transforms,
especially for higher orders.

This transform is effective for various equations, including integro-differential, integral, fractional, and
delay differential equations. It can also address initial and boundary value problems associated with
differential equations and solve linear Caputo fractional-integro differential equations with multiple time
delays. When using this technique, it is essential to understand several key properties of the Laplace
transform for effective application. [3, 5, 9, 11, 13, 23]

Schaefer’s fixed point theorem is an important tool in fractional differential equations (FDEs), particu-
larly those using Caputo derivatives. It establishes the existence and uniqueness of solutions to nonlinear
FDEs, often challenging to solve analytically. Specifically, the theorem helps demonstrate that, under certain
conditions, a unique solution for Caputo fractional differential equations exists. By proving that a related
function has a fixed point unchanged by the function can conclude the existence of a unique solution.
[12, 36].

The concept of stability has drawn considerable attention across various research fields and applications,
given its vital role in ensuring consistent and reliable outcomes. Stability is a system’s ability to return to
equilibrium after a disturbance or maintain consistent behavior over time.

In 1940, Stanislaw Ulam introduced a form of stability known as Ulam stability, which pertains to
functional equations. Ulam posed a fundamental question: if a function approximately satisfies a given
equation, can we identify a true solution that closely aligns with the approximate one This inquiry estab-
lished the foundation for what is now known as Hyers-Ulam stability. [14, 19, 20, 33]. Many authors have
recently investigated Ulam-Hyers stability and generalized stability in various research articles, such as
[2, 30, 31]. These studies have used the Ulam-Hyers stability criteria to examine the stability of solutions
in different fractional differential equations, emphasizing its significance in contemporary mathematical
research.

In [16], Choukri Derbazi et al. investigated various qualitative properties of solutions, such as estimating
the solutions, the continuous dependence of the solutions on initial conditions, and the existence and
uniqueness of extremal solutions for the following problem:

CDHP2(l) + wDYP2() = F(, 2(1), 1€ A = [a,b]

z(a) = zq,
where C]Dgfb and CID’;;(D denote the ®-Caputo fractional derivatives, with the orders u and « respectively
suchthat0 <x <y <1, w >0,z € Rand F € C(A X R, R).

Also in [17] Choukri Derbazi et al. proved the uniqueness and the IE,-UH stability of solutions for the
following ®-Caputo fractional multi terms differential equation ( ®-Caputo FMTDE) of the form

DY Pm(l) + oC D Pm(l) = H(I, m(l)), 1€ X = [u,0]
m(u) =6,

where C]Df:’fp and CIDZ;(I’ denote the ®-Caputo fractional derivatives, with the orders u and « respectively

suchthat0 <k < u<1,0>0,He C(Z xR R)and 6 € R. P-Caputo fractional multi terms differential
system ( P-CaputoFMTDS) of the type

DL (1) + oD (1) = Ko (1, m (1), ma(D), 1€ X = [u,0]

D my(1) + 0 DI (1) = Kol ma (1), ma(D)),

my(u) = 01, my(u) = 0,.
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suchthat0 <x; < ;i <1,0>0,Kie CEXRXR,R)and 6, € R,i=1,2.

Inspired by the previously described work, we aim to develop the generalized Laplace transform method
for a coupled system of Volterra integro-differential equations. Specifically, we will analyze the following
coupled system along with its initial conditions:

CDPI,IPS([) = ‘Elcbqlftps(L) + hl(l, S(L)/f gl(L/ G, w(g))dg)rl EN:= [O/ T]/
0

CD””w@)=EJTW”wO)+h4usﬂxjﬁgxbgaddﬂk)t6A1=[QTL W
0

CDEY9(0) =9 k=0,..,a—-1,

CDYw(0) =wy k=0,..,6-1,

where &, & € R, a—1<p,pa<a,f-1<q1,q2 < B, a,p € Z", B < a. The fractional derivative DIV is the
yp-Caputo fractional derivative of order g € (0,1), S9,wp € R,and /i : AXRXR = R, g: AXR — R are two
given functions.

The Laplace transform is beneficial for solving integro-differential equations involving integral and
differential operators. This method simplifies these equations into algebraic equations, making them easier
to solve. Once the solution in the Laplace domain is determined, the inverse Laplace transform retrieves
the solution in the time domain. [32, 35].

The rest of this paper is structured in the following way. Section 2 is dedicated to the primary definitions
and notations, we also review basic definitions, lemmas, and important properties of the generalized
Laplace transformation. In Section 3 by the implementation of Banach'’s fixed point theorem, we study the
uniqueness and different kinds of UH stability of the proposed problem. Finally, we present an example to
demonstrate our main results in section 4.

2. Preliminaries

This section will introduce essential concepts and definitions that form the foundation for the main
results discussed in the following sections.

We begin by defining A = [0, T] and let X = C(A, R), which is a Banach space equipped with the norm
[I9]] = sup{|9()| : t € A}. Next, we consider the product space C = X x X, which is also a Banach space.
It is endowed with the norm [|(9, @)l = ||9]| + lwl|, and an alternative expression for the norm is given by
I8, w)ll = max{[[9], llwll}.

Definition 2.1. (The y-Riemann—Liouville fractional integral [24, 34]). Let g > 0, and let 9 : A — R be an
integrable function. Let 1 € C'(A,R) be a continuous and differentiable increasing function such that (1) # 0 for
all 1 € A. The Y-Riemann—Liouville fractional integral of S of order q is defined as follows:

<Y — L ' _ q-=17
%worwﬁwm¢m>ww%wm %)

where I'(q) is the Gamma function.

Note that for ¢(1) = ¢ and (1) = In(t), Equation (2) is reduced to the Riemann-Liouville and Hadamard
fractional integrals, respectively.

Definition 2.2. (The -Riemann—Liouville fractional derivative [24, 34]).Let n € IN, and let { and S be two
functions that belong to C*(A, R). We assume that ) is an increasing function and that 1’ (1) # 0 for all 1 € A. The
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-Riemann—Liouville fractional derivative of S of order q is defined as follows:

y d nwn a
Rpgd ) = (gb()dt) T80

1
" Tn- q)(¢' (1) dt

Definition 2.3. [8] Let ¢ > 0, 9 € C""}(A,R) and i € C*(A,R) such that ¢’(t) > 0 for all t € A. The Y-Caputo
fractional derivative of order q of the function 9 is given by

) f (W(0) — Y)Y () ()i

CquS()

r(n f 17[} (K) lP(L) - lab(K )n - 1‘9[n](K)dK/ (3)

where

d n
SK](K) = (ﬁ@) Hk) and n=[q]+1,

and [q] denotes the integer part of the real number q.
Proposition 2.4. [6] Let g > 0, 9 € C""}(A, R), then we have the following

1 CRIIIIYS() = S(v).
n-1 '(

2. SQWCDZ;‘PSU) =9(1) - kz [k] (1][)( 1) — EL’(O))

3.3 "q w is linear and bounded from C(A, R) to C(A, R).

Definition 2.5. [22] Let 9, ¢ : [0, 00) — R be real valued functions such that (1) is continuous and ¢’(t) > 0 on
[0, o). The generalized Laplace transform of 3 is denoted by

ONME fo i e OO (1) 9 (). (4)

for all x.

Definition 2.6. [22] Let S and ¢ be two piecewise continuous functions on A and (1) of exponential order. We
define the generalized convolution of 9 and o by

(S 0)(0) = fo 890 (7 @) + Y(0) = P(x)) ¥’ (k)dx

Theorem 2.7. [22] Let q > 0 and S be a piecewise continuous function of exponential order on A and Y(x). Then

1Y9(x)

u
Theorem 2.8. [4, 37] Let 91,9, be two integrable functions and fi be a continuous function on A. Let i € C(A, R)
be an increasing function to the extent that Y’ (1) > 0 for 1 € A. Suppose that

LAY S0} () = ()

1. 81 and S, are nonnegative.
2. T is nonnegative and nondecreasing. In case

91(1) < 92(1) + (1) fO W) = Y)Y (©)9(e)de,

subsequently
- (OT(D)”

Tl 2 () — Y)Y (€)9a(c)de,

9100 < 920 + f
w=1

forall 1 € A.
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Corollary 2.9. Under the hypotheses of Theorem 2.8, let 9, be nondecreasing function on A. Then we have
8100 < ROEMOTO@O - O)], teA
where
- "
Eile)= ), T(wl + 1)’
w=0
is the Mittag-Leffler function with one parameter for all o € C and | > 0.

Definition 2.10. [41] The Mittag-Leffler function Ep, ,, is defined as:

e k
y4
Epq(2) = kZS Tk s o))’ z,q1 € C, R(p1) >0,

when py = q1 = 1, we can see that E11(z) = é°.

Lemma 2.11. [22] Let p > 0, 8 € AC,[0, T] for any T > 0, and 8, k = 0,1,... a, be of ()-exponential order.
Then,

=

n—

LD 9)OMC) = FILASON = Y 1O (0")] (6)
0

>~
Il

Lemma 2.12. [22]IfR(c) > 0, &1 € C, |&1¢77| < 1, then

et

P =&

LylEp(E@(©) - p(0))} =

Lw{(tl}(t) — YO By (S0 - ¢<0>>”>}<c> - v

(®)

3. Main result: Uniqueness and Ulam Hyers Stability

In this fragment, we look for the solution to our problem (1), prove its uniqueness, and then state and
prove four types of UH stabilities.

Definition 3.1. [38] The (p, q)-order coupled system of Volterra integro-differential equations (1) are said to be
UH stable if there exists @y, = max{@g, O} > 0 such that, for ¢ = max{es, ,} > 0 and for every solution

(S, @) € X X X of the inequality

C@Pl#’g([) - 61C3q1,¢§(1) - h(l, §(l)rf g(tr - E(g))dg) < €y, LE A/
0

©)

<&, LEA,

COPV(1) = E°DEVD(1) — ﬁ(h S0), f | 9(, c@(c))dc)
0

there exists a unique solution (3, w) € X x X with

||(‘9’ CU) - (515)” < G)S,a)g/ LeA.
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Definition 3.2. [38] The (p,q)-order coupled system of Volterra integro-differential equations (1) are said to be

generalized UH stable if there exists p € C(A, R*) with p(0) = 0 such that, for every solution (x,C) € X x X of the
inequality (9) there exists a unique solution (9, w) € X X X of (1) satisfying

[(8,@) - (3,0 <ple), reA.
Denote @y, = max{®y, D,} € C(A, R*) and Og, 0, = max{Oap,, Op,} > 0.

Definition 3.3. [38] The (p, q)-order coupled system of Volterra integro-differential equations (1) are said to be UH-
Rassias stable with respect to Oy ,, if there exists a constant Ow, o, Such that, for some € = max{es, €,} > 0 and for

any approximate solution (8, @) € X x X of the inequality

< Dy(1)ey, LEA,

COMAY(1) — & CDIYI(1) — rz(t, (), f l 9(¢, a(c»dg)
0

(10)

CORVD(1) = EDEVD(1) ~ h(tr S, f | 9, G,E(c))dc)
0

<D,(ew, LEA,

there exists a unique solution (9, w) € X X X with
(8, @) = (3,0) < Os,0Ps0()e, LEA.

Definition 3.4. [38] The (p,q)-order coupled system of Volterra integro-differential equations (1) are said to be
generalized UH-Rassias stable with respect to @y ,, if there exists a constant Ow, @, such that, for any approximate

solution (8, ) € X x X of the inequality (10), there exists a unique solution (9, w) € X X X of (1) satisfying

(8, @) = (3,0)| < Os,0Psw()e, LEA.
Remark 3.5. We say that (3,@) € X x X is a solution of the system of inequalities (9) if there exist functions
07, 0x € C(A\, R) depending upon 9, w respectively, such that

1 lo() < €5, loc(Dl € €0, LEA,
2)

COMYY(1) — ECDIYI() = h(» ), f l g9(u¢, a(g))dg) +0:(1),
0

COPVO(1) — L DEVD() = h(lr S0, f | 9(¢, 5(@))dc) +oc(),  LtEA
0

We shall prove our results concerning the (p, g)-order coupled system of Volterra integro-differential equa-
tions (1) under the following assumptions:

(A1) The function i : A X X X X — X satisfies:
(1) A(, 8, w) : A = X is measurable for all (3, w) € X x X and #(s, -, -) : X X X — X is continuous for
a.e. L€ A.
(if) There exist functions n(t), A1(-) € Ls (A, IR"), 0 € (0,p) and a continuous function A,(-) such that

17, S, w)ll < (1) + MOIBI + A2(Wllwll, forae 1€ A, VS, welX.
(iii) There exist constants €1, {>» > 0, such that

||h(L, \91,&)1) - Fl(L, 9, a)z)” < 40191 — Nl + Lllwr — wall, fOT ae. LE€A, VSj,a)]' e X, ] =1,2.
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(Az) For each (,c) € D = {(1,¢) € AX A, > ¢}, the function g(i,¢,-) : X — X is continuous and for each
w e X, g(-,,w) : D = X is strongly measurable. Moreover, there exists a function K : D — R* with

fol K(1, ¢)ds := k*(1) € L®(A) such that
llg(e, ¢, )l < K(t, Ollwll, forae. (1,¢) €D, Yo € X,

and
llg(t, ¢, ®) — g(t, ¢, w)ll < K(t, O)II® — wll, forae. (1,c) €D, ¥, w € X.

The following lemma examines the initial version of the problem previously outlined in (1).

Lemma 3.6. Let 7i be a continuous and linear function. The solution of

COPYI() = ECDIVI(W) + (1), LEA, »
CRYI(0) = 90; k=0,..,a—1 (1)
is given as:
a-1
80 = Y @O = PO Ep i (€@ — 90
k=
ﬁo—l
=&Y W0 = YO THE, g gurn (E@0O) = PO)) )
k=0
* fo )W) = Y)Y EypegpEW() = Y)Y (S, (e, (12)

where e R, a-1<p<Laandf-1<qg<pasa,feZ andp < a.

Proof. Applying the generalized Laplace transform to both sides of Equation (11) and utilizing Lemma 2.11,
we derive

fO}(©) = LD () ~ & “DIW)(c)
= Ly{TDPFI(Ne) = ELH{TDIWN(C)

a-1 p-1
= LW — ), P80 — ETLUSWIQ) + £ Y T8y,
k=0 k=0

then .
a-1 -

(& = EN LUK = Y, "0 = € ) T80 + Lyl c),
k=0 k=0

which means that

a—1 p-1
Y 0= & X A x + Lyfi0)(e)

k=0 k=0
(0))(c) = ) : (13)

By applying the inverse generalized Laplace transform to both sides of equation (13), we obtain:

Z P1EYy - & Z I 190 + Ly (1)} (<)
(c” - &ch) }

a-1 . Cp 1—k p-1 . 1
;Lw {(c” Ecq)} Z { -< q)} oLy {(d’ —«Ecq)} * IO (9

80 = LMLy SO = L, {

k=0
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Lemma 2.12 is useful for determining certain inverse Laplace transforms.

p—l—k

L, {(gp Cq)} = (¥(1) = PO Epgies1 (EW(0) — Y(O)P ). 15)
q-k-1

L;{(; _ 5gq)} =@ - ¢(0))p_q+kEP—q/P—ﬂ+k+1(5(‘4’(1) —P(0))P ). (16)
1

L;l{m} = (1) = P0))" " Epg p(EW() — P(0)) ). -

Substituting (15), (16) and (17) in (14), we get
a-1
80 = Y () = Y(0) Eygera (€O ~ YO )
k=0

p-1
=&Y W0 = YO THE, g gura (E@O) = PO)) )9
k=0

+ (0 = Y)Y Epmgp(E@ (1) = () 7) * h().

O

From Lemma 3.6, we have demonstrated that the pair (9, w) € C serves as the solution to the system
presented in (1), where

a—1
80 = Y0 = PO)Epy g1 (G1(1(0) = (0 ™) S

k=0

—& Z(Wl) = (0 T E gy pr-gueks1 (E10(0) — P(0)Y ) S
k=0

+ fo tpr(g)(w(t)—w(g))m—lEpl—ql,pl(él(w(t)—w(c))Pl—ql)h(g,S(g), fo g(c;,a,a)(o))do)dg, (18)

and

,_l

a—

W) = ) @0 = PO) Epgu 1 (£2() = Y(0))* P)avg

=0

>T..

p-1
— & Z W) = ¥(0)) P +kEpz —q2,p2— qz+k+1(52(7~/}(L) 171)(0))’72_‘72)@0
k=0

L

+ j(; ¢/(Q)(¢([) - w(g))p271E}72—q2,P2(EZ(¢(£) - IP(C))pzqz)h(g, S(Q),L g(g, o, CU(O'))dG)dQ (19)

We define the operator G; : C —» C,byi=1,2

GO, w) = {G1(3, w), G2 (3, w)},
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with
Gi(3, w)(1)
a-1
= Y W) = PO Epy g k01 (E1(0(0) = P(0)) )9
k=
i
—a Z(IP(L) = PO THE,, g, prgeke (E1(@(0) = PO) ) S
k=0
+ f V(W) = QY Epy gy py (E1((1) = ()™ )h(g, 9(), f ) 7,0, w(g))dg)dg, 20)
‘ 0
and
G2(3, w)(1)
a-1
= Y @0 = PO Epy-go 1 (E2(0) = PO ey
k=
i
- & Z(tp(z) - *P(O))pl_q”kEprqz,pr k1 (E20000) = Y(0))22)wy
k=0
¢ [ YO0 - P B eatht0 - eb(c))m-qz)"l(c, %), | stco w<o>>do)dg, @1)

then G(9, w)(1) is solutions of the problem (1).

Theorem 3.7. If assumptions (A1) and (Ay) are satisfied, then there exists a unique solution of the (p,q)-order
coupled system of Volterra integro-differential equations (1) on A, if and only if

G+ f’zllk*lb[sup(w(o = P(0)" Epy—gy o1 (E1((0) = ()Y

LleA

+ Suf(sb(t) = P(0))2Epy gy pr1 (€2 (1) = P(0))*7%) | <1 (22)

Additionally, with

sup((t) = YO Ep,—g, py+1(E1 (Y (1) — P(0)) M) Lalli7]|

y=1— | LlEA _
1= sup((1) = PO Epygu i1 (G ((0) = PO)) 1)1

LleA

suf(%b(t) — ()2 Epygo prs1 (£2(00(0) — Y(0))P )£
T sup() — OV By, o (G20 — PO )G |

LleA

(23)

this unique solution is UH-stable and consequently generalized UH-stable.

Proof. The proof of this theorem is organized into two parts. In the first part, we will establish that the
(p, g9)-order coupled system of Volterra integro-differential equations (1) has a unique solution by employing
the Banach contraction principle. The second part will address Ulam Hyers” Stability of solutions related
to the problem above.
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PartI. Let 3, w, 9, w € C, by using the condition Ay:
[G1(3, @) - Gi(3, @)

<

fo QW) = PV Epy gy (E1(P0) = PP ™)

X[h(c,s(c), fo 9 g(c,a,w(o))da)—h(c,5(g), fo y(c,a,a(ﬁ))dc)]dc

0 f‘ ll)’(g)(l,b(l) - ¢(g))(ﬁ1—41)k+p1_1 ék
k=0 V0 I'((p1 — qu)k + p1) 1

X

< sup
LEA

X [fl [8(c) = 9| + &2 fo (¢, 0)llw(0) - B da]dc

0 W) - ¢(0))(p1—ql)k+p1 . — " _
< stgf;; s |8 = 8| + Lalli*lllw — @l |de

< sup(y(y) - P(0)) Epy gy 1 (E1(0(0) = PO 1) (1 + LIl |8, @) = (3, @)

7

By using the same approach, we achieve the same result:

[G2(8, w) - Go(9, @)
< SUp(/(1) = O Epaguprer (€2(0) = $(O)* ) + allf 1) (9, @) - (3, @)

Consequently,

6, ) - 6E,@)
<||G2(8, w) - Gz(@,a)nx +|Ga(8, w) ~ 62(5,5)”)(
< [su/}\)(lP(l) = P(0)'Ep, g, pr+1(E1 (W (1) — (0)) ™M)

7

+ suf(w(o = P(0)Y*Epy—gpr1(E20(0) — POV 2)I(lr + Ll ||(9, w) = (3, @)

where k* = sup{i*, j*}. It is clear that the mapping G is a contraction, as evidenced by condition (22).
LEA

By applying the well-known Banach fixed-point theorem, we can confirm the existence of a unique
fixed point for G. This result definitively establishes that the system described by equation (1) has a unique
solution within the domain A.

Part II. Now, we discuss the UH stability of the unique solution of the (p, q)-order coupled system of
Volterra integro-differential equations (1).
Let’s take a look at the following system:

cyﬂwﬁ([) _ glcbqw@(t) = h(t, §(L), fL g(,¢, E(g))dg) + 0:(1),
0
(24)
C@pz,wa(l) _ 52%%%([) = h(t, 5([),f g(t, ¢, E(C))dg) +o0c(1), LteEA.
0
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By (18), (19) the solution of the problem (24) is

a—1

30) = Y (0 = PO Epy - k1 (G0 = $(0) )90
k=0

p-1
=61 ) WO = $OY T Ey g (G100 — YO
k=0
+ [ WOWO = 9P By (G100 — 9l )
X h(c,s(C)r f g9(c, a,E(a))do) + QT(g)]dg,
0

a-1
(1) = Z(ED(L) = P(0)) Ep,—g, k1 (E2(0(1) — P(0))* )

—&Z(xl»(t PO Ty g, gkt (G20 = PO )
f YOO — P Epy g Ca(0) — (P ™)
[ (g, 50), f 4.0, w(a»do) . gK(g)]dc.
0

With the help of Part I., we consider

8 = 31l < SupsQ = YO By s G100 = 9O 16 9 = 5] + ol o = + 51

llw — @I < sup(W(t) — Y(0))2Epy—gy prs1(E2(80() — Y(0))P )[4 “9 _ 5” + Bl o — @ + eal.

LlEA

From (26) and (27), we have
sup(¥(t) = Y(0))P' Ep,—g pr+1(E1 (¢ (1) = P(0))P1 1) Lol

LEA

1- sull\o(t,l)(t) — ()1 Epy—gy pr+1(E1 (1) = 9(0)P=1)
sup(Y () = PO Epy g pis1 (E1((0) = $(0)) )

LlEA

< ey 1 = sup(§(t) = P(0))P1Ep, g, pr 41 (E1((0) = P(0))Pr— 1)1
sup((t) = Y(0) Epy—g, pa+1 (E2(4 (1) = 9(0))> 7)1

LleA ||

1- suf(ll)(l) — 0(0))72Epy—gp pr1 (£2(00(1) — P(O))P2=2) oIl 9
sup(y(t) = P(0)) Epy-gs o1 (E2((0) = (0))*)

LEA

HS_§” - llw — @l

lw — ol - _5”

3061

(25)

(26)

(27)

S o7z su/]\p(l#(t) — P(0)2Ep,—gs p+1(E2(0(1) — P(0))2=2) o [*]|”
SUE(IP(O — (0)) Epy—g, pr+1(E1 (Y (1) — P (0))P1 1)
L @ — LE I
etOy = 1= su/}\)(lP(L) — P(0))P1 Epy—gy pr+1(E1(0(0) — PO)P=1) 0
sup(P(t) — Y(0)2Ep, g, p+1(E2(P(1) — P(0))P272)
and ©, = A then the last two inequalities can be

1= sup(P() = PO)Epymgs st (200 (0) = pOP )T I
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written in matrix form as

Suf(lp(l)—w(o))”l Ep-aq1m 1 (G0 (0)—p Q)17 1) L]I1°]|

1 T=Sup GO —F OV By, g,y 1 1 PO-FOF 0

sup( ()= (0))2 Epy g, pp 41 (L2 -9 (0))2 )4

1EA

1

1—Su{>(¢(l)—¢(0))”2 Epy g3,y 41 (E2(()=p(0))P272) Lo

Then

o —wll

X[IIS—5H] < [@989].

”CL)—E” - ®w€w

Su[1\:>(ll)(t)—¢(0))”1 Epy a1, p 1 (G (=)L) L]I°]]

1
” 9-39 by E(l—sug(t/J(t)—w(O))”l Ep,—q1.p1+11(E@O=1(0)P171)61) Ogeg
| < su{;(lp(t)—lp(o»nzE,,Z,qz,pzﬂ(gz(lp(l)_lp(o))pz—qz)gl : X Ouen |
Z(l—su§(¢(z)—¢(0))”2 Epy-gypp+1(E2(@(0)=1p(0))P2712) 2] 1*) b
(28)

Where
SUP(0) = YO Ep 1 €140 = Y(OY ML
= [1 = sUp(§() = Y0 Ep—g e (G100 ~ 9O )0

Suf(lp(o = Y(0))2Ep,—gs,pp+1(E2(¢(1) — P(0)2712) 64

= Su§<¢(t> — P(0))P2Ep, gy p+1(E2((1) = P(0)P2) ol j1]] |

From system above, we have

B¢y

sup( (1) = PO Ep,—g, pr+1(E1 (9 (1) — P(0)) M) Lol

LlEA

o~ < &

and

(UE(U

(= sup0 ~ PO Ep a0~ 9OF )’

SUp((1) = Y(0)*Epy-gs i1 (E2910) = PO )0s

LleA

w—o| <
o - @l < =4

This suggests that

Oy

"I Suf(ll)(t) = P(0)P2Ep, gy pr1 (€2 () = ()2 =R) Lol )

sup(iP(t) = PO)* Ep,—g, pr1 (€1 ((1) — P(0)) M) Lol

leA

o = 9| + llw — @Il < 5

(CHY:H

" sup )~ PO By G100~ POV )

sup(Y(t) = P(0)” Epy—gu o +1(E2((1) = P(0))>7") 64

LeEA

+
X

T I sup((1) = ()2 Ep, g 1 (E2(4(1) = P(0))2~2) ol 7II)

LeEA
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If max{eg, €,} = € and

Suf(%b(l) = P(0)Y" Ep, 41 p1+1(E1 (1) = P(0)) =)ol

O B SUp(U0) = YO Epy-g G190 = 9O 7))
Su/}\)(yb(t) = P(0))2Ep, gy pp+1(E2(P (1) — P(0))P2712) 4
+ (- suia(w(o — U(0))2 Ep,g, pp+1(E2(00(1) — PO)P ) Lo lI1)
then

|8, @) = (3,0)| < Os 0.
This indicates that the system described by equation (1) is uniformly stable. Additionally, if
(8, @) = (3,@)| < Oswple).
with p(0) = 0, consequently, the generalized HU stable solution to (1) is found. O
Theorem 3.8. If assumptions (A1) and (Ay) are satisfied and
sup((1) = Y(0)"' Ep,—g; pr+1(E1 (Y (1) = P(0)) M) LIl

LlEA

1 = sup((t) = PO Ep, g, py+1 (E1 (P (1) — P(0))1=T) 6y

LlEA

SuP(lzl’(‘) = P(0)?Ep,—gy pr+1(E2(10 (1) — P(0))2712) 64
1- SUP(IP(l) = Y0)P2Ep,—g,,pp+1(E2(P (1) — P(0))P2792) Lo ||

LlEA

r=1-

then the unique solution of the (p, q)-order coupled system of Volterra integro-differential equations (1) is UH-Rassias
stable and generalized UH-Rassias stable.

Proof. Using Definition 3.3 and 3.4, we can get our result by performing the same steps as in Part II. in the
proof of Theorem 3.7. [
4. Numerical example

The final section examines an example that supports our main result. Consider the following fractional
differential equation:

cpnl 3 cni -3 1 £ ( )
D29(, y) - 8 D23, y) =" + T3P cos(9(v)) + gﬁ ¢” cos ——dc|(y),

10 8 —t 2 29
DI w(L, y) - 13_8 CD3a(, y) = e+ [86+ = arctan(d(v)) + %f c cos (g) dg]( ), @9)

9(,0) = ¥(1,0) = 9”(1,0) = ¥"(1,0) = w(,0) = @'(1,0) = @”(1,0) = 0"’(1,0) = 1.

7 10 5 8 3
Wherellb(l'):ellplzzlpzz?/q1:§/q2:§/T=1151=£2=E/
i sof (e a(@c|m) = e + | —L <9<)>+ff el w,
1|69, 091L,C,a)c cly)=e (l+3)2cos ( z Og cos clty
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¢ - arctan(9(1)) + g j; c2 cos w(c) dg](y),

8+¢ 2+1
L
f c? cos _a)(g) dc
0 L

f c?cos %dCH
O L

hz(t,S(l), f gz(t,c,w(c))dc)(y)=€2‘+
0
We have

1

-3t
=e '+
¢ T3y

t2
191+ g‘

hl(L,sm, fo gl(t,g,w@))dg)

=1 () + A OISO+ Ava(0)

and

L T
B 8 +et 5

L
2 w(c)
d
L ¢ cos 2+1 C‘

L
2 w(c)
—=d

hz(L,sm, fo gz(t,g,w(c))df;)

= (1) + Ao (IO + A22(1)

For any \9,5, w,w € X,

rzl(l,sa), f gla,g,w(g»dg)—rzl(u@([), f gla,g,a(g))dg)
0 0

7

< %”‘9 _5” + %Hf gl(L/ g,w(g))dg - f gl(L/ gla(g))dg
0 0

< I IS (I,

7J1 (L/ (& C()(C))dg

<I(1, 9)llw = all,

H f (0,6 w(@)de - f (¢ D()de
0 0

where L
f I(1, ¢)dc :=i"(1) € L=(]0, 1]),
0
and
L L gz 1
esssup | I(,c)dc =esssup | —dc= 7 =L,
€f0,1] Jo wef0,1] Jo 3
we do the same for g,,we get
92(t, ¢, w(@)de|| < J (b, I,

< J@w - wll,

H f g2(, ¢, w(c))de — f 72(1, 6, w(c))dc
0 0

where

fo 1o o)de = () € L=(0, 1]),
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and

L L 2
c 1 )
d = d = — = * 0,
ess sup]j; J(t, ¢)dc = ess sup]f0 219 =¢ ll7711

1€[0,1 1€[0,1

1 1 1
Finally we find that, k* = g}gﬁ{i*,j*} =3 = 5 and ¢, = 5

Therefore, the conditions (A;) and (Ay) are verified,
(G + lelk*ll)[suf(¢(l) = P(0)) Epy—gy pr+1(E1(P(1) — P(0)) 1)

+sup(P(t) — Y(0))2Epy—g pr1(E2(10(1) — P(0))P27)

teA
1 11 ; 3 ) 10 3 2
= (§ +g X 5)[512f(€ - 1)2E1,g(ﬁ(€ -1+ igf(e— 1) Eg,{g(ﬁ(e - 1)

1. 1.1
= (5 + 5 % 3)(0.59895 + 1.124)

=0.3063 < 1.

As a result, (22) is satisfied. As a result, problem (1) has at least one mild solution in [0, 1], according to
Theorem 3.7.

5. Conclusions

This paper addresses the coupled system of Volterra integro-differential equations of order (p, q).The
novelty of the problem considered is that it has been investigated under the y-Caputo fractional deriva-
tives, which is more general than the works based on well-known fractional derivatives such as (Caputo
fractional derivative, Caputo-Hadamard fractional derivative and Caputo-Katugampola fractional deriva-
tive) for different values of the function ¢. The generalized Laplace transform method is employed to
determine the solution, followed by the establishment of uniqueness results using Banach’s fixed-point
theorem. Additionally, various types of stability are investigated in the Ulam-Hyers (UH) sense for the
given problems. Finally, a concrete application is presented to demonstrate the effectiveness of the main
results. As a future research direction for this paper, we aim to extend these results to investigate the case
of the y-Hilfer fractional derivative.
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