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Abstract. Topological indices are used to understand physicochemical properties of chemical compounds,
since they capture some properties of a molecule in a single number. The sum lordeg index is defined as

SL(G) =
∑

u∈V(G)

du

√
log du .

The aim of this paper is to obtain new results for the Sum Lordeg Index. We provide some relations between
the Sum Lordeg Index and other classic topological indices. Moreover, we show upper and lower bounds
for this topological index on unicyclic graphs and find the corresponding extremal graphs. Finally, we show
that the Sum Lordeg Index is an important tool for predicting the boiling point of cycloalkanes isomers.

1. Introduction

A topological descriptor is a single number that represents a chemical structure in graph-theoretical
terms via the molecular graph, they play a significant role in mathematical chemistry especially in the
QSPR/QSAR investigations. A topological descriptor is called a topological index if it correlates with a
molecular property. Topological indices are used to understand physicochemical properties of chemical
compounds, since they capture some properties of a molecule in a single number. Hundreds of topological
indices have been introduced and studied, starting with the seminal work by Wiener [34]. The Wiener index
of G is defined as

W(G) =
∑

{u,v}⊆V(G)

d(u, v),
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M. Rodrı́guez-Garcı́a), jsmathguerrero@gmail.com (José M. Sigarreta)
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where {u, v} runs over every pair of vertices in G.
Topological indices based on end-vertex degrees of edges have been used over 50 years. Among them,

several indices are recognized to be useful tools in chemical researches. Probably, the best know such
descriptor is the Randić connectivity index (R) [25].

Although only about 1000 benzenoid hydrocarbons are known, the number of possible benzenoid
hydrocarbons is huge. For instance, the number of possible benzenoid hydrocarbons with 35 benzene rings
is 5.85 × 1021 [31]. Hence, the modeling of their physico-chemical properties is very important in order to
predict properties of currently unknown species. The main reason for the use of topological indices is to
obtain predictions of some property of certain molecules (see, e.g., [9], [11], [13], [26]). Therefore, given
some fixed parameters, a natural problem is to find the graphs that minimize (or maximize) the value of a
topological index (which correlates with a physico-chemical property) on the set of graphs satisfying the
restrictions given by the parameters (see, e.g., [2], [3], [4], [5], [6], [7], [8], [12], [18], [27], [28]).

The sum lordeg index is one of the Adriatic indices introduced in [33]. It is defined as

SL(G) =
∑

u∈V(G)

du

√
log du .

This index is interesting from an applied viewpoint since it is a good predictor of octanol-water partition
coefficient for octane isomers [33], and so, it appears in numerical packages for the computation of topo-
logical indices [30]. For these reasons, in [32] is stated the open problem of find (sharp) lower and upper
bounds for this index.

Throughout this work, G = (V(G),E(G)) denotes a (non-oriented) finite connected simple (without
multiple edges and loops) non-trivial (E(G) , ∅) graph. Note that the connectivity of G is not an important
restriction, since every molecular graph is connected. A main topic in the study of topological indices is to
find bounds of the indices involving several parameters.

A unicyclic graph is a graph containing exactly one cycle [14, p.41]. It is well known that if G is a unicyclic
graph with n vertices, then G has n edges.

2. Inequalities involving other topological indices

The first and second variable Zagreb indices are defined in [16], [17], [21] as

Mα
1 (G) =

∑
u∈V(G)

d2α
u , Mα

2 (G) =
∑

uv∈E(G)

(dudv)α,

with α ∈ R.
Note that several well-known indices are particular cases of these two. For example, M1

1 is the first
Zagreb index M1, M−1/2

1 is the inverse index ID [10], M3/2
1 is the forgotten index F, etc. Similarly, M−1/2

2 is
the Randić index, M1

2 is the second Zagreb index M2, M−1
2 is the modified Zagreb index [23], etc.

In [33] are introduced the Adriatic indices. In particular, a family of indices is defined as

La(G) =
∑

u∈V(G)

(
log du

)a
.

Theorem 2.1. Let G be a graph and α > 1. Then

SL(G) ≤Mα
1 (G)1/αLα/(2α−2)(G)(α−1)/α,

and the equality is attained if G is regular. Besides, if α ≥ 1 + 1/(2 log 2), then the equality is attained if and only if
G is a regular graph.
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Proof. Hölder inequality gives

SL(G) =
∑

u∈V(G)

du

(
log du

)1/2
≤

( ∑
u∈V(G)

dαu
)1/α( ∑

u∈V(G)

(
log du

)α/(2α−2) )(α−1)/α

= Mα
1 (G)1/αLα/(2α−2)(G)(α−1)/α.

If G is a regular graph with n vertices and degree ∆, then SL(G) = n∆
√

log∆, Mα
1 (G) = n∆α, Lα/(2α−2)(G) =

n
(

log∆
)α/(2α−2)

, and the equality holds.
Assume now that the equality is attained for some α ≥ 1 + 1/(2 log 2). Thus, 22α−2

≥ e. By Hölder

inequality, there exist a, b ≥ 0, not both of them zero, such that a dαu = b
(

log du

)α/(2α−2)
for every u ∈ V(G),

i.e., a(2α−2)/αd2α−2
u = b(2α−2)/α log du for every u ∈ V(G).

Note that, since the function ex−1 is strictly convex onR and y = x is its tangent at x = 1, we have ex−1 > x
for every x ∈ R \ {1}, and so,

tx−1 > x (1)

for every t ≥ e and x > 1.
If b = 0, then a , 0 and 1 ≤ du = 0 for every u ∈ V(G), a contradiction.
Therefore, b , 0. If a = 0, then log du = 0 for every u ∈ V(G); thus, du = 1 for every u ∈ V(G) and so, G is

regular. Hence, we can assume that a, b > 0 and so,

log du

d2α−2
u

=
log dv

d2α−2
v

(2)

for every u, v ∈ V(G).
If dv = 1 for some v ∈ V(G), then (2) gives du = 1 for every u ∈ V(G) and so, G is regular.
Assume du ≥ 2 for every u ∈ V(G). Seeking for a contradiction assume that G is not a regular graph.

Thus, there exist u, v ∈ V(G) such that du , dv and (2) holds. Without loss of generality we can assume that
2 ≤ du < dv. Therefore, dv = dx

u for some x > 1 and we have

log du

d2α−2
u

=
log dx

u

d(2α−2)x
u

⇒ (d2α−2
u )x−1 = x,

which contradicts (1) since d2α−2
u ≥ 22α−2

≥ e. Hence, G is regular.

The Narumi-Katayama index defined in [22] as

NK(G) =
∏

u∈V(G)

du,

Since 2 > 1+1/(2 log 2) and L1 = log NK, Theorem 2.1 provides the following inequality relating SL with
the first Zagreb and the Narumi-Katayama indices.

Theorem 2.2. Let G be a graph. Then

SL(G) ≤
√

M1(G) log NK(G) ,

and the equality is attained if and only if G is a regular graph.

We need the following Chebyshev inequality (see, e.g., [1, Theorem 2.1, p.21]).
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Lemma 2.3. If 0 < a1 ≤ a2 ≤ · · · ≤ an and 0 < b1 ≤ b2 ≤ · · · ≤ bn, then
n∑

j=1

a jb j ≥
1
n

n∑
j=1

a j

n∑
j=1

b j ,

and the equality is attained if and only if a1 = a2 = · · · = an or b1 = b2 = · · · = bn.

The following Kober’s inequality appears in [15] (see also [35, Lemma 1]).

Lemma 2.4. If a j ≥ 0 for 1 ≤ j ≤ n, then( n∑
j=1

√
a j

)2
≥

n∑
j=1

a j + n(n − 1)
( n∏

j=1

a j

)1/n
.

Theorem 2.5. If G is a graph with n vertices, m edges and minimum degree δ, then

SL(G) ≥
2m
n

(
log NK(G) + n(n − 1) log δ

)1/2
,

and the equality holds if and only if G is a regular graph.

Proof. Since
√

log t is a strictly increasing function on [1,∞), Lemma 2.3 gives

SL(G) =
∑

u∈V(G)

du

√
log du ≥

1
n

∑
u∈V(G)

du

∑
u∈V(G)

√
log du

=
2m
n

∑
u∈V(G)

√
log du .

Lemma 2.4 gives ( ∑
u∈V(G)

√
log du

)2
≥

∑
u∈V(G)

log du + n(n − 1)
( ∏

u∈V(G)

log du

)1/n
≥ log NK(G) + n(n − 1) log δ ,

and so,

SL(G) ≥
2m
n

∑
u∈V(G)

√
log du ≥

2m
n

(
log NK(G) + n(n − 1) log δ

)1/2
.

Lemma 2.3 gives that if the equality holds then we have du = dv for every u, v ∈ V(G) or
√

log du =
√

log dv
for every u, v ∈ V(G), and so, G is regular.

If G is regular, then SL(G) = nδ
√

log δ, 2m = nδ and log NK(G) = n log δ, and thus, the equality holds.

3. Extremal problems on unicyclic graphs

In [32] is stated the open problem of finding (sharp) lower and upper bounds for the sum lordeg index.
When the number of vertices is fixed, we solve in [19] this open problem in the case of graphs, graphs with
a fixed maximum degree ∆, trees and trees with a fixed number of pendant vertices. Also, we characterized
therein the extremal graphs or trees. When the number of vertices is fixed, in [24] is solved this open
problem in the case of graphs with a fixed minimum degree δ.

Given n ≥ 3, let S2n be the set of n-tuples x ∈Nn such that x j+1 ≤ x j for every 1 ≤ j < n and
∑n

j=1 x j = 2n,
and let S2n,p be the set of n-tuples x ∈ S2n such that x j = 1 if and only if j > n− p. Note that if G is a unicyclic
graph with n vertices and p pendant vertices and xG is its (non-increasing) degree sequence, then xG ∈ S2n,p.

Let us recall the following result from [20].
If G is a unicyclic graph with n ≥ 4 vertices and 1 ≤ p ≤ n − 3 pendant vertices, m =

⌊ 2n−p
n−p

⌋
, t =

2n − p −m(n − p), let a = (a1, a2, . . . , an) be such that
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• a j = m + 1 for every 1 ≤ j ≤ t,

• a j = m for every t < j ≤ n − p,

• a j = 1 for every n − p < j ≤ n,

and b = (b1, b2, . . . , bn) be such that

• b1 = p + 2,

• b j = 2 for every 1 < j ≤ n − p,

• b j = 1 for every n − p < j ≤ n.

Figure 1: Unicyclic graphs with degree sequence a, on the left, and degree sequence b, on the right.

Given any function f : [1,∞)→ R, let us define the index

I f (G) =
∑

u∈V(G)

f (du).

Theorem 3.1. [20, Theorem 5.2] If G is a unicyclic graph with n ≥ 4 vertices and 1 ≤ p ≤ n − 3 pendant vertices,
m =

⌊ 2n−p
n−p

⌋
, t = 2n − p −m(n − p) and f : [2,∞)→ R is a convex function, then

t f (m + 1) + (n − p − t) f (m) + p f (1) ≤ I f (G) ≤ f (p + 2) + (n − p − 1) f (2) + p f (1),

and both inequalities are attained.

The function f (t) = t
√

log t satisfies

f ′(t) =
1
2

(
log t
)−1/2(

2 log t + 1
)
,

f ′′(t) =
1
4t

(
log t
)−3/2(

2 log t − 1
)
,

and so, f is concave on [1, e1/2] and it is convex on [e1/2,∞). Thus, f is not convex on [1,∞), but it is strictly
convex on [2,∞), and Theorem 3.1 gives the following result.

Theorem 3.2. If G is a unicyclic graph with n ≥ 4 vertices and 0 ≤ p ≤ n − 3 pendant vertices, m =
⌊ 2n−p

n−p

⌋
,

t = 2n − p −m(n − p), then

t(m + 1)
√

log(m + 1) +m(n − p − t)
√

log m ≤ SL(G) ≤ (p + 2)
√

log(p + 2) + 2(n − p − 1)
√

log 2 ,

and the lower bound is attained if and only if G has the degree sequence a and the upper bound is attained if and only
if G has the degree sequence b.
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Proof. Theorem 3.1 gives that if G is a unicyclic graph with n ≥ 4 vertices and 1 ≤ p ≤ n−3 pendant vertices,
m =

⌊ 2n−p
n−p

⌋
, t = 2n − p −m(n − p), then

t(m + 1)
√

log(m + 1) +m(n − p − t)
√

log m ≤ SL(G) ≤ (p + 2)
√

log(p + 2) + 2(n − p − 1)
√

log 2 ,

and the lower bound is attained if G has the degree sequence a and the upper bound is attained if G has the
degree sequence b.

If p = 0, then G is a cycle, SL(G) = 2n
√

log(2) and the theorem is trivially satisfied.
Finally, since f (t) = t

√
log t is stricly convex on [2,∞), it follows immediately from the proof of Lemma

5.1 in [20] that the unique degree sequences that give the lower and upper bound, respectively, are a and
b.

Theorem 3.3. If G is a unicyclic graph with n ≥ 3 vertices and f : [1,∞)→ R is a convex function on [2,∞), then

I f (G) ≤ max
{
n f (2), f (n − 1) + 2 f (2) + (n − 3) f (1)

}
.

Proof. Since the number p of pendant vertices satisfies 0 ≤ p ≤ n − 3, Theorem 3.1 gives

I f (G) ≤ max
0≤p≤n−3

(
f (p + 2) + (n − p − 1) f (2) + p f (1)

)
.

Let us consider the function F : [0,n − 3]→ R given by F(s) = f (s + 2) + (n − s − 1) f (2) + s f (1). Since f is a
convex function on [2,∞) and (n− s− 1) f (2)+ s f (1) is a polynomial of degree 1, F is convex on [0,n− 3] and
so,

max
{
F(0), F(n − 3)

}
≤ max

0≤p≤n−3
F(p) ≤ max

s∈[0,n−3]
F(s) = max

{
F(0), F(n − 3)

}
.

Therefore,

max
0≤p≤n−3

(
f (p + 2) + (n − p − 1) f (2) + p f (1)

)
= max

{
n f (2), f (n − 1) + 2 f (2) + (n − 3) f (1)

}
,

and this finishes the proof.

Given n ≥ 4, let Jn be the graph obtained by identifying a vertex from a cycle C3 and the vertex with
degree n − 3 of a star graph with n − 2 vertices, Sn−2.

Theorem 3.4. Let G be a unicyclic graph with n ≥ 3 vertices.
(1) If n < 10, then

SL(G) ≤ 2n
√

log 2 ,

and the equality is attained if and only if G is the cycle graph.
(2) If n ≥ 10, then

SL(G) ≤ (n − 1)
√

log(n − 1) + 4
√

log 2 ,

and the equality is attained if and only if G has degree sequence (n − 1, 2, 2, 1, . . . , 1), i.e., G = Jn.

Proof. By Theorem 3.3 we have that

SL(G) ≤ max
{
n f (2), f (n − 1) + 2 f (2) + (n − 3) f (1)

}
,

with f (t) = t
√

log t . Furthermore, if n f (2) > f (n− 1)+ 2 f (2)+ (n− 3) f (1), then the equality is attained if and
only if G is the cycle graph, and if n f (2) < f (n − 1) + 2 f (2) + (n − 3) f (1), then the equality is attained if and
only if G has degree sequence (n − 1, 2, 2, 1, . . . , 1).

If n = 3, then G = P3 = S3 and the inequality is, in fact, an equality. Assume now n ≥ 4.
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Let us consider the functions

U(s) =
s

s − 1

√
log s , V(s) = s − 1 − 2 log s.

We have

U′(s) =
(log s)−1/2

2(s − 1)2

(
s − 1 − 2 log s

)
=

(log s)−1/2

2(s − 1)2 V(s).

Since V′ > 0 on (2,∞), the function V is strictly increasing on (2,∞). Since V(4) > 0, we have that
V(s) ≥ V(4) > 0 for every s ∈ [4,∞), and so, U′(s) > 0 for every s ∈ [4,∞). Since U(9) > 2

√
log 2 , we have

U(s) ≥ U(9) > 2
√

log 2 for every s ∈ [9,∞), and so (n − 2)2
√

log 2 < (n − 1)
√

log(n − 1) for every n ≥ 10.
Therefore, 2n

√
log 2 < (n − 1)

√
log(n − 1) + 4

√
log 2, for every n ≥ 10.

One can check that 2(n − 2)
√

log 2 > (n − 1)
√

log(n − 1) for 3 < n < 10, and therefore, 2n
√

log 2 >
(n − 1)

√
log(n − 1) + 4

√
log 2 for 3 < n < 10, finishing the proof.

Proposition 3.5. Let G be a unicyclic graph with 3 ≤ n ≤ 6 vertices.

• If n = 3, then G is the 3-cycle and SL(G) = 6
√

log 2.

• If n = 4, then
SL(G) ≥ 3

√
log 3 + 4

√
log 2 ,

and the equality is attained if and only if G is a 3-cycle with an extra edge attached to some vertex.

• If n = 5, then
SL(G) ≥ 6

√
log 3 + 2

√
log 2 ,

and the equality is attained if and only if G is a 3-cycle with two extra edges attached to different vertices.

• If n = 6, then
SL(G) ≥ 9

√
log 3 ,

and the equality is attained if and only if G is a 3-cycle with a pendant vertex attached to each vertex.

Proof. If n = 3, then G is the 3-cycle and the result is trivial.
If n = 4, then G has degree sequence either (3, 2, 2, 1) or (2, 2, 2, 2) and since

6.47 ≈ 3
√

log 3 + 4
√

log 2 = SL(S4) < SL(P4) = 8
√

log 2 ≈ 6.66,

the first one gives the minimum.
If n = 5, then G has one of the following degree sequences: (4, 2, 2, 1, 1), (3, 3, 2, 1, 1), (3, 2, 2, 2, 1) or

(2, 2, 2, 2, 2), see Figure 2. Then, it is immediate to compute that the sequence (3, 3, 2, 1, 1) gives the minimum.
If n = 6, then G has one of the following degree sequences: (5, 2, 2, 1, 1, 1), (4, 3, 2, 1, 1, 1), (4, 2, 2, 2, 1, 1),

(3, 3, 3, 1, 1, 1), (3, 3, 2, 2, 1, 1), (3, 2, 2, 2, 2, 1) or (2, 2, 2, 2, 2, 2), see Figure 3. Then, it is immediate to compute
that the sequence (3, 3, 3, 1, 1, 1) gives the minimum.
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(4,2,2,1,1) (3,3,2,1,1) (3,2,2,2,1)

(3,2,2,2,1) (2,2,2,2,2)

Figure 2: Unicyclic graphs with 5 vertices and their degree sequences.

(5,2,2,1,1,1) (4,3,2,1,1,1) (3,3,3,1,1,1)

(3,2,2,2,2,1)

(3,2,2,2,2,1)

(3,2,2,2,2,1) (3,3,2,2,1,1)

(4,2,2,2,1,1) (3,3,2,2,1,1)

(2,2,2,2,2,2)

(4,2,2,2,1,1)

Figure 3: Unicyclic graphs with 6 vertices and their degree sequences.
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Let us recall the two following results from [19]:

Lemma 3.6. If d ≥ 6, then

d
√

log d > (d − 1)
√

log(d − 1) + 2
√

log 2 ,

and if 3 ≤ d ≤ 5, then

d
√

log d < (d − 1)
√

log(d − 1) + 2
√

log 2 .

Let n ≥ 6. If r =
⌈

n−2
3

⌉
and s = 3r − n + 2, let us define z = (z1, z2, . . . , zn) as

• z j = 4 for every 1 ≤ j ≤ r − s,

• z j = 3 for every r − s < j ≤ r,

• z j = 1 for every r < j ≤ n.

Note that 0 ≤ s ≤ 2 ≤ r ≤ n − 4.

Theorem 3.7. Let G be a graph with n ≥ 6 vertices. If r =
⌈

n−2
3

⌉
and s = 3r − n + 2, then

SL(G) ≥ 4(r − s)
√

log 4 + 3s
√

log 3 ,

and the equality is attained if and only if G is a tree and its degree sequence is z.

The proof of Theorem 3.7, partially based on Lemma 3.6, can be easily adapted to obtain Theorem 3.8
below.

Let n ≥ 6. If r′ =
⌈

n
3

⌉
and s′ = 3r′ − n, let us define z′ = (z′1, z

′

2, . . . , z
′
n) as

• z′j = 4 for every 1 ≤ j ≤ r′ − s′,

• z′j = 3 for every r′ − s′ < j ≤ r′,

• z′j = 1 for every r′ < j ≤ n.

Note that 0 ≤ s′ ≤ 2 ≤ r′ ≤ n − 4, and z′ ∈ S2n.

Theorem 3.8. Let G be a unicyclic graph with n ≥ 7 vertices. If r′ =
⌈

n
3

⌉
and s′ = 3r′ − n, then

SL(G) ≥ 4(r′ − s′)
√

log 4 + 3s′
√

log 3 ,

and the equality is attained if and only if the degree sequence of G is z′.

Proof. Suppose G is a unicylic graph which is minimal for SL and has maximum degree ∆. Let C be the
cycle in G.

Claim 1: ∆ ≤ 5. Seeking for a contradiction suppose there is a vertex w with de1G(w) = d ≥ 6. Then
consider any adjacent vertex v to w in a connected component of G \ {w} not intersecting the cycle C and
any pendant vertex u in the connected component of G \ {wv} containing w. Then, let

G′ =
(
G \ {wv}

)
∪ {uv}.

Thus, in G′, de1G′ (w) = d − 1, de1G′ (u) = 2 and, by Lemma 3.6,

SL(G) − SL(G′) = d
√

log d − (d − 1)
√

log(d − 1) − 2
√

log 2 > 0,
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leading to contradiction.

Claim 2: ∆ ≤ 4. Suppose there is a vertex w with de1G(w) = 5. Let v1, v2 be two vertices adjacent to w
which belong to two connected components of G \ {w} not intersecting C. Let u be a pendant vertex in the
connected component of G \

(
{wv1} ∪ {wv2}

)
containing w, and let

G′ =
(
G \
(
{wv1} ∪ {wv2}

))
∪ {uv1} ∪ {uv2}.

Thus, in G′, de1G′ (w) = 3, de1G′ (u) = 3 and

SL(G) − SL(G′) = 5
√

log 5 − 6
√

log 3 > 0,

and we obtain a contradiction.

Claim 3: No vertex has degree 2. Suppose there is a vertex w with degree 2. Since∑
u∈V(G), du>1

(du − 1) =
∑

u∈V(G), du>1

du − n = n ≥ 6,

there exists a vertex v in G distinct from w with de1G(v) > 1, and so, 2 ≤ de1G(v) ≤ 4. Let u1,u2 be the vertices
adjacent to w (with possibly v ∈ {u1,u2})

• If de1G(v) = 2, let

G′ =
(
G \
(
{wu1} ∪ {wu2}

))
∪ {u1u2} ∪ {wv}.

Thus, in G′, de1G′ (w) = 1, de1G′ (v) = 3, de1G(u) = de1G′ (u) for every u ∈ V(G) \ {v,w} and

SL(G) − SL(G′) = 4
√

log 2 − 3
√

log 3 > 0,

leading to contradiction.

• If de1G(v) = 3, let

G′ =
(
G \
(
{wu1} ∪ {wu2}

))
∪ {u1u2} ∪ {wv}.

Thus, in G′, de1G′ (w) = 1, de1G′ (v) = 4, de1G(u) = de1G′ (u) for every u ∈ V(G) \ {v,w} and

SL(G) − SL(G′) = 2
√

log 2 + 3
√

log 3 − 4
√

log 4 > 0,

leading to contradiction.

• If de1G(v) = 4, let u0 be a vertex adjacent to v such that w, v and C are in the same connected component
of G \ {u0}. Then, let

G′ =
(
G \ {vu0}

)
∪ {u0w}.

Thus, in G′, de1G′ (w) = 3, de1G′ (v) = 3, de1G(u) = de1G′ (u) for every u ∈ V(G) \ {v,w} and

SL(G) − SL(G′) = 2
√

log 2 + 4
√

log 4 − 6
√

log 3 > 0,

leading to contradiction.

Claim 4: There are at most two vertices with degree 3. Suppose there exist three vertices v1, v2, v3 with
de1(vi) = 3 for 1 ≤ i ≤ 3.
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• If v1, v2, v3 ∈ C, let u1,u2 be the two vertices in the cycle adjacent to v1 (with possibly {u1,u2}∩{v2, v3} , ∅)
and u3 the other vertex adjacent to v1.

If the cycle has at least length four, let

G′ =
(
G \
(
{v1u1} ∪ {v1u2} ∪ {v1,u3}

))
∪

(
{u1u2} ∪ {v1v2} ∪ {v3u3}

)
.

Thus, in G′, de1G′ (v1) = 1, de1G′ (v2) = 4, de1G′ (v3) = 4, de1G(u) = de1G′ (u) for every u ∈ V(G) \ {v1, v2, v3}

and

SL(G) − SL(G′) = 9
√

log 3 − 8
√

log 4 > 0,

leading to a contradiction.

Otherwise, suppose that the cycle has length three and, therefore, its vertices are precisely {v1, v2, v3}.
Since n ≥ 7, there is some other vertex v4 with de1(v4) > 1. From the previous claims, either de1(v4) = 3
or de1(v4) = 4. Also notice that since there are no vertices with degree 2, we may assume that v4 is
adjacent to the cycle. In particular, let us suppose (with no loss of generality) that it is adjacent to v3.
Let us denote de1(v4) = r and let wi for 1 ≤ i ≤ r− 1 the vertices adjacent to v4 different from v3 and let

G′ =
(
G \ ∪1≤i≤r−1{v4wi}

)
∪

(
∪1≤ j≤r−1 {viwi}

)
.

Thus, in G′, de1G′ (vi) = 4 for every 1 ≤ i ≤ r − 1, de1G′ (v4) = 1, and de1G(u) = de1G′ (u) for every
u ∈ V(G) \ {v1, v2, vr−1, v4}. Therefore (recall that we have either r = 3 or r = 4)

SL(G) − SL(G′) = (r − 1)3
√

log 3 + r
√

log r − (r − 1)4
√

log 4 = 9
√

log 3 − 8
√

log 4 > 0,

leading to a contradiction.

• If v1 < C (similarly for v2 or v3), let u1,u2 be the two adjacent vertices to v1 which are not in the
connected component of G \ {v1} intersecting C. Then, let

G′ =
(
G \
(
{v1u1} ∪ {v1u2}

))
∪

(
{v2u1} ∪ {v3u2}

)
.

Thus, in G′, de1G′ (v1) = 1, de1G′ (v2) = 4, de1G′ (v3) = 4 and de1G(u) = de1G′ (u) for every u ∈ V(G) \
{v1, v2, v3}. Hence,

SL(G) − SL(G′) = 9
√

log 3 − 8
√

log 4 > 0,

and we obtain a contradiction.

Thus, from the claims above, for every vertex v with dv > 1, we have either dv = 3 or dv = 4 with, at
most, two vertices with degree 3. Since

∑
u∈V(G), du>1(du − 1) = n, it follows that the degree sequence of G is

necessarily z′.

4. QSPR study on boiling point of cycloalkanes

The sum lordeg index was selected in [33] as a significant predictor of octanol-water partition coefficient
for octane isomers. In this section we perform a quantitative structure property relationship (QSPR) study
to model the boiling point (BP) of 41 cycloalkanes isomers. The selected compounds belong to the set of
cycloalkane isomers with chemical formula CnH2n (n ≤ 8) and whose corresponding graph is unicyclic (see
Figure 4). Experimental BP data were obtained from https://webbook.nist.gov.
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Figure 4: Some examples of selected cycloalkane isomers: (a) Cyclohexane; (b) Cyclobutane, isopropyl-; (c) Cyclobutane, ethyl-; (d)
Cyclohexane, ethyl-; (e) Cyclopentane, ethyl-; (f) Cyclopropane,1, 2−dimethylpropyl-.

To construct the model in Equation (3), we use the multiple linear regression method. We take as
dependent variable BP and as independent variables the SL index and the number of vertices of the graph
n.

BP = 63.42 SL − 72.37n + 152.65 . (3)

In Figure 4 we show the values of the boiling point predicted by the previous model (BPpre) vs. the
experimental values of the boiling point (BPexp).

Figure 5: Experimental and predicted values of the boiling point (BP) of cycloalkanes compounds by the model in Eq. 3.

The statistical parameters of the model in Equation (3) are, number of observations N = 41, determi-
nation coefficient R2 = 0.988, adjusted determination coefficient R2

adj = 0.987, standard error SE = 4.665,
significance test F (F = 1515.102, p = 5.8 × 10−37). Figure 4 shows the standard residuals obtained in the
model.
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Figure 6: Standard residuals obtained in the model in Equation (3)
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