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Abstract. The notion of a multiplicative metric space was introduced in 2008 by Bashirov et al. In a
such space, the usual triangular inequality is replaced by a multiplicative triangle inequality. The literature
includes numerous fixed point results in multiplicative metric spaces. Unfortunately, it was shown that the
most obtained fixed point results in such spaces are equivalent to the corresponding fixed point results in
metric spaces. In this paper, we open new directions in fixed point theory in multiplicative metric spaces
by investigating new contractions on such spaces that cannot be reduced to contractions on metric spaces.
We first establish a new multiplicative version of Banach’s fixed point theorem. Next, a new multiplicative
version of Kannan'’s fixed point theorem is proved. Unlike Kannan’s contraction in metric spaces, we show
that a multiplicative contraction of Kannan-type may have more than one fixed point. We also provide
sufficient conditions under which any multiplicative contraction of Kannan-type possesses one and only
one fixed point. Some examples are provided to illustrate the validity of our obtained results.

1. Introduction

The topic of multiplicative calculus was introduced by Grossman and Katz [12] in 1972. Inspired from

[12], Bashirov et al. [5] introduced the notion of multiplicative metric spaces. We recall below some basic
definitions related to such spaces.

Let M be a nonempty set. A mapping D : M X M — [1,c0) is called a multiplicative metric, if for all
u,v,w € M, we have

(D1) D(u,v) =1ifand only if u = v;

(DZ) D(I/l, U) = D(U/ 1/[),

(Ds3) D(u,v) < D(u, w)D(w, v) (multiplicative triangle inequality).
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In this case, the pair (M, D) is called a multiplicative metric space.

Let (M, D) be a multiplicative metric space and {u,} be a sequence in M.
We say that {u,} is multiplicative convergent to u € M, if for all ¢ > 1, there exists a natural number n such
that D(u,, u) < ¢ for all n > ny, or, equivalently,

lim D(u,, u) = 1. (1)

n—oo

It can be easily seen that, if {u,} is a multiplicative convergent sequence, then there exists a unique u € M
such that (1) holds.

We say that {u,} is a multiplicative Cauchy sequence, if for all ¢ > 1, there exists a natural number 7y such
that D(u,, u,,) < € for all n,m > ny, or, equivalently,

lim D(u,,u,) =1.

n,m— 00

If every multiplicative Cauchy sequence {u,} € M is multiplicative convergent to a certain u € M, then
(M, D) is called a complete multiplicative metric space.

The study of fixed point theory in multiplicative metric spaces was first considered in the paper [17]
by Ozavsar and Cevikel, where they extended three fixed point theorems: Banach’s contraction principle,
Kannan’s fixed point theorem and Chatterjea’s fixed point theorem, from (standard) metric spaces to
multiplicative metric spaces. We recall below the standard versions of these three theorems.

Theorem 1.1 (Banach’s contraction principle [4]). Let (M, d) be a complete metric space and F : M — M be a
given mapping. Assume that there exists A € (0, 1) such that

d(Fx,Fy) < Ad(x,y), x,yeM. (2)
Then F possesses one and only one fixed point.

Theorem 1.2 (Kannan’s fixed point theorem [15]). Let (M, d) be a complete metric space and F : M — M be a
given mapping. Assume that there exists A € (0, 1) such that

d(Fx,Fy) < Ald(x,Fx) +d(y,Fy)], x,ye€M.
Then F possesses one and only one fixed point.

Theorem 1.3 (Chatterjea’s fixed point theorem [7]). Let (M, d) be a complete metric space and F : M — M be a
given mapping. Assume that there exists A € (0, 1) such that

d(Fx,Fy) < A[d(x,Fy) +d(y,Fx)], x,yeM.
Then F possesses one and only one fixed point.
Ozavsar and Cevikel [17] obtained the following multiplicative versions of the above fixed point theorems.

Theorem 1.4 (A multiplicative version of Banach’s contraction principle [17]). Let (M, D) bea complete mul-
tiplicative metric space and F : M — M be a given mapping. Assume that there exists A € (0, 1) such that

D(Fx,Fy) < [D(x,y)I', x,y€M. 3)
Then F possesses one and only one fixed point.

Theorem 1.5 (A multiplicative version of Kannan'’s fixed point theorem [17]). Let (M, D) be a complete mul-
tiplicative metric space and F : M — M be a given mapping. Assume that there exists A € (0, 1) such that

D(Fx,Fy) < [D(x, Fx)D(y,Fy)]", x,ye€M.

Then F possesses one and only one fixed point.
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Theorem 1.6 (A multiplicative version of Chatterjea’s fixed point theorem [17]). Let (M, D) be a complete
multiplicative metric space and F : M — M be a given mapping. Assume that there exists A € (0, 3) such that

D(Fx,Fy) < A[D(x, Fy)D(y, F¥)]", x,y€ M.
Then F possesses one and only one fixed point.

Other fixed point results in multiplicative metric spaces can be found in [1, 3, 13, 14, 18, 19, 21-23] (see
also the references therein).
Let D (resp. d) be a multiplicative metric (resp. metric) on M. We denote by dp the mapping dp :
M x M — [0, ) defined by
dp(x,y) =In(D(x,y)), x,yeM.

We denote by D, the mapping D, : M X M — [1, c0) defined by
Dy(x,y) = Ay yEM
Basing on the following observations:
(1) If D is a multiplicative metric on M, then dp is a metric on M;
(1) If (M, D) is a complete multiplicative metric space, then (M, dp) is a complete metric space;
(1) If d is a metric on M, then D, is a multiplicative metric on M;
(tr) If (M, d) is a complete metric space, then (M, D,) is a complete multiplicative metric space,

Dogenovic¢ et al. [9] (see also [2, 10, 11]) established that several fixed point results obtained in multiplicative
metric spaces are equivalent to the corresponding fixed point results in metric spaces. In order to explain
the used approach in [9], consider for instance a mapping F : M — M satisfying (3), where (M, D) is a
complete multiplicative metric space. Applying the Logarithmic function in both sides of (3), we obtain

In(D(Fx, Fy)) < AIn(D(x,y)), x,y €M,

that is,
dp(Fx,Fy) < Adp(x,y), x,y€M.

Then, by (1), () and Theorem 1.1, we obtain that F possesses one and only one fixed point. This shows that
Theorem 1.1 implies Theorem 1.4. Conversely, consider a mapping F : M — M satisfying (2), where (M, d)
is a complete metric space. Applying the exponential function in both sides of (2), we obtain

A
!EFY) < [ed(x'y)] , XYyeM,

that is,
Dy(Fx, Fy) < [Dg(x, y)]A, X,y €M

Then, by (utt), (teer) and Theorem 1.4, we obtain that F possesses one and only one fixed point. This shows
that Theorem 1.4 implies Theorem 1.1. Consequently, Theorems 1.1 and 1.4 are equivalent. Following the
same approach, we can show that Theorems 1.2 and 1.5 (resp. Theorems 1.3 and 1.6) are equivalent.

Motivated by [9], it is natural to ask whether it is possible to find new contractions in multiplicative
metric spaces, which cannot be reduced to contractions in metric spaces. A positive answer is given in this
paper. Namely, we establish new extensions of Theorems 1.1 and 1.2 from metric spaces to multiplicative
metric spaces, so that the used approach in [9] cannot be applied. The paper includes some examples
showing the validity of our obtained results.

Our main results are provided in Section 2. Namely, in Subsection 2.1, we fix some notations that
will be used throughout this paper. In Subsection 2.2, we obtain a new multiplicative version of Banach’s
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contraction principle by considering the class of mappings F : M — M (where (M, D) is a multiplicative
metric) satisfying contractions of the form

@(D(Fx, Fy)) < Ap(D(x, y))

for all x,y € M with D(x,y) > 1, where A € (0,1) is a constant and ¢ : [1,00) — [0, o) is a given function.
Under certain conditions on ¢, we show that F possesses one and only one fixed point. We also show
that the used approach in [9] is inapplicable. In Subsection 2.3, a new multiplicative version of Kannan’s
contraction principle (see Theorem 1.2) is established by considering the class of mappings F : M — M
(where (M, D) is a multiplicative metric) satisfying

@(D(Fx, Fy)) < A [p(D(x, Fx)) + ¢(D(y, Fy))]

for all x,y € M with D(x, y) > 1, where A € (0, %) is a constant and ¢ : [1,00) — [0, ») is a given function.
Unlike Kannan’s fixed point theorem in metric spaces, we show that under certain conditions, the mapping
F may have more than one fixed point. An example is provided to illustrate this fact. Moreover, the
uniqueness of the fixed point is obtained under additional conditions on ¢.

2. Main results

We start this section by fixing some notations that will be used throughout this paper. We refer the
reader to [6], where some suggestions are provided for unifying the terminology in fixed point theory.

2.1. Notations

We denote by M an arbitrary nonempty set. For a given mapping F : M — M, we denote by Fix(F) the
set of fixed points of F, that is,
Fix(F) = {u e M : Fu = u}.

For u € M, the Picard sequence {F"u} is defined by
Fu=u, F"'u=FFu), n>0.
We denote by @ the set of functions ¢ : [1, c0) — [0, o0) satisfying:
p(s) = c(Ins)?, s>1 4)
for some constants ¢, > 0.
Remark 2.1. Observe that from (4), we have
@) >0, s>1.

We set
@' = {p € D : ¢ is nondecreasing} .

Let us provide some examples of functions ¢ € ®T.

Example 2.2. Let
Q(s)=a+bs" +cs°, s>1,

wherec,0 > 0and a,b,y > 0. Then ¢ is nondecreasing and

@) = cs’ = c(Ins)?, s> 1.
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.
[z i s=1,
fp(s)—{S : '

Then ¢ is nondecreasing. Moreover, for all s > 1, we have

Example 2.3. Let

@(s) =s > Ins.
Example 2.4. Let p > 1 be a natural number and
4
o(s) = Z ¢i(Ins)?, s>1,
i=1

where cij,0; 20 forallie{1,---,p}and c;04 # 0 for some iy € {1,--- ,p}. Clearly, the function ¢ is nondecreasing.
Moreover, for all s > 1, we have
P(s) 2 ciy(Ins)™.

Finally, we set
Dy ={ped:p(l)=0}.

2.2. A multiplicative version of Banach’s contraction principle

In this subsection, we provide a new extension of Banach’s contraction principle from metric spaces to
multiplicative metric spaces. Namely, we have the following fixed point result.

Theorem 2.5. Let (M, D) be a complete multiplicative metric space and F : M — M be a given mapping. Assume
that the following conditions hold:

(i) There exist A € (0,1) and ¢ € @ such that
@(D(Fx, Fy)) < Ap(D(x, y)) (5)
forall x,y € Mwith D(x,y) > 1;

(ii) Forallu,ve M, if
lim D(F"u,v) =1,
n—oo

then there exists a subsequence {F"u} of {F"u} such that

]}im D(F™*u, Fo) = 1.

Then F possesses one and only one fixed point.

Proof. We first prove that, if the set of fixed points of F is nonempty, then it contains one and only one fixed
point. Indeed, suppose that u, v € Fix(F) with u # v. Then, making use of (5) with (x, y) = (1, v), we obtain

@(D(Fu, Fv)) < Ap(D(u, v)),
that is,
¢(D(u,0)) < Ap(D(u, v)). (6)
On the other hand, since u # v, then D(u, v) > 1, which implies (see Remark 2.1) that

@(D(u,v)) > 0.
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Then, dividing (6) by ¢(D(u, v)), we reach a contradiction with 0 < A < 1.
We now establish that Fix(F) # 0. Indeed, for an arbitrary xy € M, let {x,} C M be the Picard sequence
defined by
X, = F'xg, n>0.

There are two possible cases.

Case 1: There exists 1y > 0 such that x,,, = x,,41.

In this case, obviously, x,, is the unique fixed point of F.
Case 2: x;, # x,41 forall n > 0.

In this case, making use of (5) with (x, y) = (xo, x1), we obtain

¢(D(Fxo, Fx1)) < Ap(D(xo, x1)),
that is,
P(D(x1,x2)) < Ap(D(xo, x1))- 7)
Similarly, using (5) with (x, ¥) = (x1, x2), we obtain
P(D(x2,x3)) < Ap(D(x1, x2)),

which gives by (7) that
P(D(x2,x3)) < A2p(D(x0, x1)).

Continuing in the same way, we get by induction that

@(D(xy, xn11)) < A"@(D(x9,x1)), n=0. (8)

On the other hand, we obtain by (4) that

c[In(D(xy, X441))]° < @(D(xp, Xns1)), 1 =0. 9)
Then, it follows from (8) and (9) that

@(D(x0,x1))

1
. ] k", nx=0, (10)

In (D(y, ¥41)) < [

where k = A7 € (0,1). Next, making use of the multiplicative triangle inequality, for all n > 0 and m > 1,
we obtain
D(xn/ xn+m) < D(xn/ xn+1) e D(xn+m—1/ xn+m)/

which implies by (10) that

In (D(x, Xp4m)) < In(D(x, Xp41)) + -+ - + I (D(Xpm—1, Xnm))

@(D(xo,xl»]l

< (Kn +.“+Kn+m—l)|:
c

=

_ K"(1 = «™) [@(D(xo,xl))]

1-x c

IA

K" [(P(D(XO,M))T

1-x c

which is equivalent to
1
e [w(D(xo/xl))r

1-x c

D(xy, Xp4m) < € — lasn — oo.
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Consequently, {x,} is a multiplicative Cauchy sequence in the complete multiplicative metric space (M, D).
Then, there exists ¥ € M such that

lim D(x,, %) =1, (11)
which implies by (ii) that {x,} admits a subsequence {x,,} such that

lim D(xys1, FX) = 1. (12)

Hence, it follows from (11), (12) and the uniqueness of the limit that ¥ € Fix(F). This completes the proof of
Theorem 2.5. O

Remark 2.6. We point out that, if (5) holds for all x,y € M, then taking x = y, we get

P(1) < Ap(1),

which yields (since 0 < A < 1) ¢(1) = 0. So, in order to avoid this condition on @, (5) is assumed to be satisfied only
for x,y € M with D(x, y) > 1 (or, equivalently, x # y).

Remark 2.7. Clearly, if F is a continuous mapping, then condition (ii) of Theorem 2.5 holds.
Observe that the mapping dyp) : M X M — [0, o0) defined by

if x=y,

0
om0 ={ ), [P W] i x#y

is not necessarily a metric on M. So, in the general case, (5) cannot be reduced to a contraction in a metric
space. Therefore, the used approach in [9] cannot be applied in our case. The following example shows
this fact.

Example 2.8. Let M = {ki,ky, k3} and D : M X M — [1, o0) be the mapping defined by
D(ki, ki) =1, D(ki,kj) = D(kj, ki), D(k1,k2) = 2, D(k1,ks) = 3, D(k, ks) = 4. (13)

Remark that
D(k1, k3)D(ks, k) = 12 > 2 = D(k .k2),
D(ky, k2)D(k2, k3) = 8 > 3 = D(ky, ks),
D(kz, kl)D(kl,kg) =6>4= D(kg, k3),
which shows that D is a multiplicative metric on M.
Consider the function ¢ : [1,00) — [0, oo) defined by

3s if 1<s<2,
p(s) =13 2s if 2<s<3,
is if s>3.

Observe that for all s > 1, we have
(s) > 11
P(s) 2 7 Ins,
which shows that ¢ € @ (indeed, @ satisfies (4) with c = + and o = 1).

On the other hand, we have
»B)=5>3=p2)p4),
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which implies that
In[p(3)] > In[p(2)] + In[p(4)]-

The above inequality is equivalent to

In[p(D(k1, k3))] > In[@(D(k1, k2))] + In[p(D(k2, k3))1,

that is,
dop)(ki, k3) > dypy(ki, k2) + dpo)(ka, k3),

which shows that d,(py is not a metric on M.
We provide below an example to illustrate Theorem 2.5.
Example 2.9. Let M = {ki, kp, k3} and F : M — M be the mapping defined by
Fki =k, Fky = k3, Fk3 = k.

Let D : M x M — [1, oo) be the multiplicative metric defined by (13).
Observe that there is no A € (0,1) such that

D(Fk1, Fky) < [D(k1, k2)1".
Indeed, if a such A exists, then by the definition of F, we get
D(ki,k3) < [D(k1, k2)]",

that is,
3<24,
which is equivalent to
In3
>—>1
A= 2~

Hence, we reach a contradiction with A € (0,1). This shows that Theorem 1.4 due to Ozavsar and Cevikel [17] is
inapplicable in this example.
Consider now the function @ : [1,00) — [0, oo) defined by
0 if s=1,
2s if 1<s5<2,
if 2<s5<3,
3s if s>3.

P(s) =

Remark that for all s > 1, we have
@(s) = Ins,
which shows that ¢ € @ (indeed, ¢ satisfies (4) with ¢ = ¢ = 1). On the other hand, by the definition of the function
@, for (i, j) = (1, 2), we have
@(D(Fki, Fkj)) — @(D(Fky, Fky))
oDk k) — (D1, k2))

_ @(D(k1, k3))

~ (D1, k)

_90

9




S. Radenovi¢, B. Samet / Filomat 39:9 (2025), 3083-3097 3091

For (i, j) = (1, 3), we have
@(D(Fki, Fkj)) = o(D(Fki1, Fk))
= @(D(ky, k1))
=1
=0.
For (i, j) = (2,3), we have
P(D(Fki, Fk;)) _ @(D(Fkz, Fks))
@Dk, k) — ¢(Dlkz, k3))
_ @(D(ks, k1))
@Dk, k)
_90)
 p4)
1
T
Consequently, F satisfies (5) for all 3 < A <1, which shows that condition (i) of Theorem 2.5 is satisfied.
Moreover, for all u € M, we have by the definition of F that

Flu=k, n>2.
So, if limy_,co D(F"u,v) = 1, then v = ky and
lim D(F"*'u, Fv) = D(Fki,Fky) = 1,

n—oo

which shows that condition (ii) of Theorem 2.5 is also satisfied. Thus, Theorem 2.5 applies. On the other hand, ki is
the unique fixed point of F, which confirms our obtained result.

We now study the particular case, when ¢ € ®T. We have the following result.

Proposition 2.10. Let (M, D) be a multiplicative metric space and F : M — M be a given mapping. If F satisfies
condition (i) of Theorem 2.5 with ¢ € ®, then condition (ii) of Theorem 2.5 holds.

Proof. Let u,v € M be such that
lim D(F"u,v) = 1. (14)
n—00

If there exists some 1y > 0 such that F'u = v for all n > ny, then

lim D(F**'u, Fv) = D(Fv, Fv) = 1.

n—00

Otherwise, there exists a subsequence {F*u} of {F"u} such that
Fu+v, k>0,

that is,
D(F"™u,v)>1, k=>0.

Then, making use of (5) with (x, y) = (F™u, v), we obtain
P(D(F"'u, Fo)) < Ap(D(F"u,v)) < p(D(F%,0)), k>0,
which implies (since ¢ is nondecreasing) that

1 < D(F"*'y, Fv) < D(F*u,v), k> 0.
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Then, making use of (14) and passing to the limit as k — oo in the above inequality, we get
]}im D(F™*u, Fo) = 1.
This shows that condition (ii) of Theorem 2.5 is satisfied. O
From Theorem 2.5 and Proposition 2.10, we deduce immediately the following result.

Corollary 2.11. Let (M, D) be a complete multiplicative metric space and F : M — M be a given mapping. Assume
that there exist A € (0,1) and ¢ € @' such that (5) holds. Then F possesses one and only one fixed point.

2.3. A multiplicative version of Kannan’s fixed point theorem

In this subsection, we provide a new extension of Kannan’s contraction principle (see Theorem 1.2) from
metric spaces to multiplicative metric spaces. Namely, we have the following fixed point result.

Theorem 2.12. Let (M, D) be a complete multiplicative metric space and F : M — M be a given mapping. Assume
that the following conditions hold:

(i) There exist A € (0, %) and @ € O such that
@(D(Fx, Fy)) < A[@(D(x, Fx)) + ¢(D(y, Fy))] (15)
forall x,y € Mwith D(x,y) > 1;

(ii) Forallu,ve M, if
lim D(F"u,v) =1,

then there exists a subsequence {F"u} of {F"u} such that

I}im D(F"*u, Fo) = 1.

Then F possesses at least one fixed point.
Proof. For an arbitrary xo € M, let {x,,} € M be the Picard sequence defined by
x, =F'xy, n=0.
If x,,, = xpy+1 for some ng > 0, then x,,, is a fixed point of F. Assume now that x,, # x4 for all n > 0, that is,
D(xy, xp41) >1, n2>0.
Then, using (15) with (x, y) = (xo, x1), we obtain

@(D(Fx, Fx1)) < A[@(D(xo, Fxg)) + @(D(x1, Fx1))],

that is,
P(D(x1,x2)) < A [@(D(x0, x1)) + p(D(x1,x2))],
which yields
P(D(x1,x2)) < xp(D(x0,x1)), (16)

where x = ﬁ € (0,1). Similarly, using (15) with (x, y) = (x1, x2), we obtain

P(D(x2,x3)) < A[p(D(x1,x2)) + p(D(x2, x3))] ,
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which implies that
P(D(x2, x3)) < k(D (x1, x2))- (17)

Then, from (16) and (17), we get
P(D(x2, x3)) < K*p(D(xo, x1)).

Continuing this process, we get by induction that
(P(D(xn/ xn+1)) < Kn(p(D(xOr xl))/ n > 0.

So, by (4), we get

@(D(x0,x1))

:
a', n>0,
c

In (D(xn, Xp41)) < [
where a = k7 € (0,1). Proceeding as in the proof of Theorem 2.5, for all n > 0 and m > 1, we obtain

ot [ #(D(xg.x1))

1
D(xy, xp4m) < e'™L ¢ ] —lasn— oo,

which shows that {x,} is a multiplicative Cauchy sequence in the complete multiplicative metric space
(M, D). Then, there exists X € M such that

lim D(x,, %) =1, (18)
n—o0
which implies by (ii) that {x,} admits a subsequence {x,, } such that

lim D(xy 1, F%) = 1. (19)

Finally, (18) together with (19) implies that ¥ is a fixed point of F. This completes the proof of Theorem
212. O

Remark 2.13. Notice that, if (15) holds for all x,y € M, then taking x = y, we get
(1) < 2A¢(D(x,Fx)), x€ M.

In particular, if x = Fx, then
(1) <21p(1),

which implies (since 0 < A < 1) that ¢(1) = 0. In order to avoid this condition on ¢, (15) is supposed to be satisfied
only for x,y € M with D(x, y) > 1.

Unlike the Kannan fixed point theorem in metric spaces (see Theorem 1.2), the following example shows
that under the conditions of Theorem 2.12, the mapping F may admit more than one fixed point.

Example 2.14. Let M = {ki, k, k3} and F : M — M be the mapping defined by
Fki =k, Fky = ko, Fks = ko.

Let D : M x M — [1, oo) be the multiplicative metric defined by (13).
We introduce the function @ : [1, 00) — [0, 00) defined by

3 if s=1,
ps)=1{ 2(s+2) if 1<s<4,
Zs if s>4.
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Observe that
o(s) > %lns, s>1,

which shows that ¢ € @ (indeed, ¢ satisfies (4) with ¢ = § and o = 1).
Let us now calculate

@(D(Fki, Fkj))
@(D(ki, Fki)) + @(D(kj, Fk}))’

R@,j) =

For (i, j) = (1,2), we get

@(D(Fki, Fk2))
@(D(k1, Fk1)) + ¢(D(ka, Fk2))
_ p(D(k1, k2))
~ @(D(k1, k1)) + 9(D(kz, 2))
_ 9@
2p(1)

R(1,2) =

For (i, j) = (1, 3), we get

@(D(Fky, Fks))
@(D(k1, Fk1)) + @(D(ks, Fk3))
_ @(D(k1, k2))
~ @(D(k1, k1)) + @(D(ks, k2))
92
T (1) + p(4)

R(1,3) =

Finally, for (i, j) = (2, 3), we obtain

¢@(D(Fky, Fk3))
@(D(ka, Fk2)) + ¢(D(ks, Fk3))
_ @(D(ka, k2))
~ @(D(k2, k2)) + @(D(k3, k»))
o)
" () + ()
_ 3
==

R(2,3) =

From the above calculations, we deduce that

» (@ )) €i1,2),(1,3),(23)),

W =

R@G, j) <

which shows that (15) is satisfied forall + <A < 1.

(i, j) €{(1,2),(1,3),(2,3)}.

3094

We now show that condition (ii) of Theorem 2.12 is satisfied. Remark first that for all i € {1,2,3}, there exists

j €1{1,2,3} such that

F'k; = k]', n>?2.

(20)
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Indeed, by the definition of F, we have
F'ky =k,
F'ky=ky,, n=>2,
Fnk3 = kz, n=2
Hence, if for some i € {1,2, 3}, we have
lim D(F'k;, q) =1,
n—oo
then by (20), we get q = k; and
lim D(F"*'k;, Fq) = D(Fk;, Fq) = D(Fq,Fq) = 1.
n—o0

Consequently, condition (ii) of Theorem 2.12 holds. Then, Theorem 2.12 applies. Remark that in this example, we
have
Fix(F) = {ky, k2}.

We now show that, if ¢ € @' in Theorem 2.12, then F possesses one and only one fixed point.

Theorem 2.15. Assume that all the conditions of Theorem 2.12 hold, where ¢ € ®'. Then F possesses one and only
one fixed point.

Proof. From Theorem 2.12, we know that the set of fixed points of F is nonempty. So, we have just to prove
that F admits a unique fixed point. We argue by contradiction supposing that ¥ and j are two distinct fixed
points of F, that is,

D(%,7) > 1, x=F%, 7 =Fy.
Then, using (15) with (x, y) = (%, i), we obtain

P(D(Fx, Fp)) < A[p(D(x, FX)) + (D(, Fy)],
that is,
(D, 7)) < 2A9(1).
Since 2A < 1, it holds that
(D, 7)) < ¢(1).
Next, using that ¢ is nondecreasing, we obtain
D(x, ) =1.
Hence, we reach a contradiction with D(%, /) > 1. This completes the proof of Theorem 2.15. [

We now consider the case, when ¢ € @.

Theorem 2.16. Assume that all the conditions of Theorem 2.12 hold, where ¢ € ®y. Then F possesses one and only
one fixed point.

Proof. From Theorem 2.12, we know that the set of fixed points of F is nonempty. So, we have just to prove
that F admits a unique fixed point. From the proof of Theorem 2.15, if X and i are two distinct fixed points
of F, then

0< (D 7)) < ¢(1) =0,

which implies that
p(D(x, 7)) = 0. (21)
On the other hand, from Remark 2.1, we know that ¢(s) > 0 for all s > 1. Then, from (21), we deduce that

Dx, ) =1,

and we reach a contradiction with ¥ # i. This completes the proof of Theorem 2.16. [
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3. Conclusion

Due to the numerous applications of multiplicative calculus (see e.g. [5]), several works have been
devoted to the development of fixed point theory in multiplicative metric spaces. Unfortunately, it was
shown that the most fixed point results obtained in multiplicative metric spaces are equivalent to the
corresponding fixed point results in metric spaces (see [9]). So, in order to get more significant fixed point
results in multiplicative metric spaces, it is natural to ask whether it is possible to find new contractions
in multiplicative metric spaces, which cannot be reduced to contractions in metric spaces. This question is
investigated in this paper. Namely, making use of a function ¢ : [1,00) — [0, o) satisfying

@(s) = c(Ins)’, s>1,

where ¢, 0 > 0 are constants, we considered contractions on a multiplicative metric space (M, D) involving
the mapping ¢(D), where

pD)(x, y) = p(D(x, y)), x,y €M
In this way, the mapping dyp) : M X M — [0, o) defined by

0 if x=y,
In[p(D@x, )] if x#y,

is not necessarily a metric on M (see Example 2.8). So, the used approach in [9] consisting in reducing a
contraction on a multiplicative metric space to a contraction on a metric space, cannot be used.

Following the above idea, a new multiplicative version of Banach’s contraction principle is established
(see Theorem 2.5). A further result is also obtained in the special case, when the function ¢ is nondecreasing
(see Corollary 2.11). Next, a new multiplicative version of Kannan’s fixed point theorem is obtained (see
Theorem 2.12). It is interesting to mention that unlike Kannan’s fixed point theorem in metric spaces,
under the assumptions of Theorem 2.12, the mapping F : M — M may have more than one fixed point (see
Example 2.14). Further results are also obtained in the special cases, when ¢ is nondecreasing (see Theorem
2.15) or ¢(1) = 0 (see Theorem 2.16). Namely, in Theorems 2.15 and 2.16, the uniqueness of the fixed point
is proved.

In this work, only multiplicative versions of the Banach and Kannan fixed point theorems are provided.
It would be interesting to extend the present study to other fixed point theorems, for instance, Chatterjea’s
fixed point theorem [7], Reich’s fixed point theorem [20], Ciri¢’s fixed point theorem [8], Meir-Keeler’s fixed
point theorem [16], etc.

%@mw:{
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