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Abstract. This paper is concerned with the uniqueness of stochastic entropy solutions for stochastic scalar
conservation law forced by a multiplicative noise on a bounded domain with a non-homogeneous boundary
condition. The uniqueness is obtained by using the method of Kruzhkov’s doubling variables.

1. Introduction

Let D be a bounded open set in RY with smooth boundary dD. Let T > 0 be arbitrarily fixed. Set
Q=(0,T)xDand X = (0,T)xdD. Let (QO, F, P; {Fi}ie[0,17) be a given probability set-up. In this paper, we are

interested in the first order stochastic conservation laws driven by a multiplicative noise of the following
type

du — div(f(u))dt = h(u)dw(t), inQxQ, (1)
with initial condition

u(0,?) =up(:), inD, (2)
and boundary condition

u=a, onpl, 3)
for a random scalar-valued function u :

t(w, t,x) € AX[0,T] XD ¥ u(w,t,x) = u(t,x) € R, where f =
(fi, ., fn) : R = RN is a differentiable vector field standing for the flux, # : R — R is measurable and
g

w = {w(t)lo<<r is a standard one-dimensional Brownian motion on (Q, 7, P; {F}iejo,r1). The initial data
up : D ¢ RN — R will be specified later and we suppose that the boundary data a : £ — R is measurable.
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Problem (1)-(3) was studied recently by Kobayasi and Noboriguchi in [18] via kinetic solution approach.
By introducing a notion of kinetic formulations in which the kinetic defect measures on the boundary of
domain are turncated, they obtained the well-posedness of (1)-(3).

When h = 0, the deterministic problem (1)-(3) is well studied by many authors in the literature, see for
example [1,29]. The authors of [29] studied the problem (1)-(3) with & = 0 in L!-setting. In order to deal with
unbounded solutions, they have defined a notion of renormalized entropy solution which generalizes the
definition of entropy solutions introduced by Otto in [28] in the L* frame work. They have proved existence
and uniqueness of such generalized solution in the case when f is locally Lipschitz and the boundary data
a verifies the following condition: f..(a) € L'(X), where fmax is the “maximal effective flux” defined by

fmax(@) = {sup |f()|, ue€[-a",a"]}

They gave an example to illustrate that the assumption a € L'(X) is not enough in order to prove a priori
estimates in L!(Q), and that the assumption should be f,.x(a) € LY(X). Furthermore, in [1], the authors
revisited the problem (1)-(3) and introduced a notion of entropy solution to the problem (1)-(3) with 1 = 0.
Following [1], an entropy solution of (1)-(3) is a function u € L*(Q) satisfying

‘f EY(r kalt,x) < f [ = 0 & — xuo(F@) — F(R)) - VE]
b Q
_k+ - d
+ fD (o~ K7E0,) an @)
. f Yok ahx) < f [(k = 1) & — xoulFR) — f)) - V]
b Q

k — 1)~ £(0, - 5
" fD (k- u0) (0, ) ©)
for any & € D([0, T) x RN), & > 0 and for all k € R, where

Y*(x,k,a) = max I(f(r) = f(s)) - Ai(x)l, Y~ (x,k,a):= max, I(f(r) = f(s)) - 7A(x)]

for any k € R, a.e. x € dD, and il denoting the unit outer normal to JD. Here and in what follows,
a Ak = min{a, k} and a V k := max{a, k}. It is remarked that the above definition of entropy solution is a
natural extension of the definition of that given by Otto [28].

Having a stochastic forcing term h(u)dw(t) in Equation (1) is very natural for problem modeling arising
in a wide variety of fields in physics, engineering, biology, jut mention a few. The Cauchy problem of
equation (1) with additive noise has been studied in [17] wherein Kim proposed a method of compensated
compactness to prove, via vanishing viscosity approximation, the existence of a stochastic weak entropy
solution. Moreover, a Kruzhkov-type method was used there to prove the uniqueness. In [30], Vallet
and Wittbold extended the results of Kim to the multi-dimensional Dirichlet problem with additive noise.
By utilising the vanishing viscosity method, Young measure techniques and Kruzhkov doubling variables
technique, they managed to show the existence and uniqueness of the stochastic entropy solution.

On the other other, concerning the case of multiplicative noise, for Cauchy problem over the whole
spatial space, Feng and Nualart in [12] introduced a notion of strong entropy solution in order to prove
the uniqueness for the entropy solution. Using the vanishing viscosity and compensated compactness
arguments, they established the existence of stochastic strong entropy solution only in 1D case. Chen et
al. [5] considered high space dimensional problem and they proved that the multi-dimensional stochastic
problem is well-posedness by using a uniform spatial BV-bound. Bauzet et al.[2] proved a result of existence
and uniqueness of the weak measure-valued entropy solution to the multi-dimensional Cauchy problem.

Using a kinetic formulation, Debussche and Vovelle [7] obtained a result of existence and uniqueness
of the entropy solution to the problem posed in a d-dimensional torus, (also see [16, 18]). Konatar [20]
obtained the uniqueness for stochastic scalar conservation laws on Riemannian manifolds revisited by
using the kinetic formulation and doubling of variables. Lv et al. [25] considered the Kinetic solutions for
nonlocal stochastic conservation laws, also see [27].
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Just recently, Bauzet et al. [3] studied the problem (1)-(3) with a = 0 (i.e., the homogeneous boundary
condition). Under the assumptions that the flux function f and / satisfy the global Lipschitz condition, they
obtained the existence and uniqueness of measure-valued solution to problem (1)-(3) witha = 0. Lv et al.
[24] extended the result of [3] to the stochastic nonlocal conservation law. Gess-Souganidis [13] considered
the scalar conservation laws with multiple rough fluxes.

In paper [26], the authors have established the existence and uniqueness of stochastic entropy solutions
to the initial boundary value problem (1)-(3). But the proof of uniqueness is too long. The reason is
that the boundary value is considered in the proof, that is to say, we used the following fact (r —s)* =
(rvk—sVky*+( ANk—sAk)" foranyr,s,k € R, where k is the maximum value of the boundary function.
And u Vv k will be approximated by k + ns5(u — k). Therefore, it will be complicated. The aim of this
paper is to shorten the proof of uniqueness. Meanwhile, it is worthing noting that, unlike that in [3], the
definition of stochastic entropy solutions needs the information of boundary value. More precisely, when
¢ € D*([0,T) x RY), the constant k must be positive in y, (@) > 0, see Definition 2.1 in [3]. However, in the
next section, definition 2.1 shows that k € R if ¢ € D*([0, T) X RY). For the whole space, Drivas, et al [11]
considered the invariant measures for stochastic conservation laws on the line. The small time asymptotic,
ergodicity and central limit theorem and moderate deviation principle of scalar stochastic conservation
laws are obtained by [9], [10] and [31], respectively.

The paper is organized as follows. In section 2, we introduce the notion of stochastic entropy solution
for (1)-(3) and state the main results. Section 3 is devoted to the proof of uniqueness. We end up this section
with introducing some notations.

Notations. In general, if G ¢ RY, D(G) denotes the restriction of functions u € D(RN) to G such that
support(u) N G is compact. The notation D*(G) stands for the subset of non-negative elements of D(G).

For a given separable Banach space X, we denote by N%(0, T, X) the space of the predictable X-valued
processes. This space is the space L?((0, T) X Q, X) for the product measure dt ® dP on Pr, the predictable
o-field (i.e. the o-field generated by the sets {0} X F( and the rectangles (s, t) X A for any A € ¥, fort > s > 0).

Denote E* the totality of non-negative convex functions n in C>!(RR), approximating the semi-Kruzhkov
entropies x — x* such that 77(x) = 0if x < 0 and that there exists 6 > 0 such that ’(x) = 1if x > 6. Then " has
a compact support and 1 and n’ are Lipschitz-continuous functions. & denotes the set {ij := n(—), n € &}
and & = &' U &. Then, for convenience, denote

sgng(x) =1 if x > 0 and O else; sgny (x) = —sgni(—x) sgny = sgng + sgny,
F(a,b) = sgno(a — b f(@) — f®)]; F*7a,b) = sgny” (@ = b)[ f(@) - fB)],

and foranyne€ &, F'(a,b) = f n'(c = b)f'(0)do.
b

2. Entropy solution and Main result

The aim of this section is to give a definition of entropy solution and to state the main result. Following
the idea of [2], we have the definitions 2.1 and 2.2.

For convenience, for any function u of N2(0, T; L*(D)), any real number k and any regular function
n € &', denote dP-a.s. in Q by 4, the distribution in D defined by

Q- () = fDn(uo - k)p(0)dx + fQ (n(u — k)orp — F(u, k)V) dxdt
’ 1 ’” 2
+ L ' (u — kh(u)pdxdw(t) + 3 fQ N (u — k)h*(u)pdxdt

+fr)’(a — k)oY (x, k,a(t, x))dSdt;
i

o) = [ 0RO+ fQ (11 = K9rgp = 1t Vi) e
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+ f 11 (u — k)h(u)pdxdw(t) + % f i1’ (u — k)h*(u)pdxdt
Q Q

+f17’(a — k)Y (x,k,a(t, x))dSdt,
T

where Y*(x, k,a(t, x)) and Y~ (x, k, a(t, x)) are defined as in Introduction.

Definition 2.1. A function u of N2(0, T; L%(D)) is an entropy solution of stochastic conservation law (1 ) with the
initial condition ug € L (D) and boundary condition a € L*(X), if u € L*(0, T; L*(Q; LF(D))), p = 2,3, -+ and

k(@) 20, pil@) 20 dP—as,
where p € D*((0,TxRY)), k€ R, n € & and ij € &

For technical reasons, we need to consider a generalized notion of entropy solution. In fact, in the first
step, we will only prove the existence of a Young measure-valued solution, see [2, Appendix A.3] for the
basic knowledge of Young measures. Then, thanks to a result of uniqueness, we will be able to deduce the
existence of an entropy solution in the sense of Definition 2.1.

Definition 2.2. A function u of N2(0, T; L>(D x (0,1))) N L=(0, T; LF(Q2 x D x (0, 1))) is a Young measure-valued
solution of stochastic conservation law (1) with the initial condition ug € LF(D) and boundary condition a € L®(X),
p=2,3-,if

1 1
f pni(p)da >0, f wik(p)da =20 dP—as.,
0 0
where p € D*((0,TxRY)), ke R, ne&, aec(0,1)andije &

Throughout this paper, we assume that

(H1): The flux function f : R +— RY is of class C?, its derivatives have at most polynomial growth,
f(0) = Ory, and f” is bounded in R if a # O;

(H2): h : R = R is a Lipschitz-continuous function with 4(0) = 0;

(Hs): ug € L’(D), p = 2 and a € C(X).

The main result of this paper is:

Theorem 2.3. Under assumptions Hy — H3 there exists a unique measure-valued entropy solution in sense of
Definition 2.2 and this solution is obtained by viscous approximation.

It is an unique entropy solution in sense of Definition 2.1.

If uy,uy are entropy solutions of (1) corresponding to initial data um, upx € LP(D) and the boundary data
a1, ap € L®(X), respectively, then for any t € (0, T)

Ej;lul —up| < L|M01 — ugo|dx +f); max I(f(r) = £(5)) - 7i(x).

min(ay a)<r,s<max(a az)

3. Uniqueness

The aim of this section is to prove

Theorem 3.1. The solution given by Theorem 2.3 is the unique measure-valued entropy solution in the sense of
Definition 2.2.
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Let us consider the following stochastic parabolic problem

du® — [eAu® + div(f(u®))]dt = h(u®)dw(t) in Q,
u:(0,x) = ug(x) in D, (1)
ut =af onx,

where we assume that a¢ € C*(Z), ||la|la < |lallz~ and a® — a in L'(X). Moreover, a¢ is the trace on L of a
function U € C([0, T] x D) such that d;U € C*°([0, T] x D), AU € C*°([0, T] x D), U(t,-) € W??(D) for some
y €(0,1) and for any p > 1.

The following comparison result plays a crucial role in proof of Theorem 3.1.

Lemma 3.2. Let uy,up be Young measure-valued entropy solutions to (1) with initial data um, ug € L*(D), a, B e
(0,1) and boundary data a1,a, € L®(XZ), respectively, and assume that at least one of them is obtained by viscous
approximation. Then for any ¢ € D*([0, T) x RN)

1 1
—L(pTJr(x,az,al) < ]Efo0 fo(ul(t,x,oz)—uz(t,x,ﬁ))+8t(pdadﬁdxdt
1 pl
—]Eff f F(ui(t, x, @), uz(t, x, B)) - VoododBdxdt
oJo Jo

v fD (101 — 1102) p(O)x.

Proof. As usual we use Kruzhkov’s technique of doubling variables [21, 22] in order to prove the
comparison result. We choose two pairs of variables (t, x) and (s, y) and consider u; as a function of (f,x) € Q
and u; as a function of (s, y) € Q. For any r > 0, let {B!}i=,.. m, be a covering of D satisfying ByNdD =0, and
such that, for each i > 1, B! is a ball of diameter < r, contained in some larger ball E’; with B; N dD is part
of the graph of a Lipschitz function. Let {¢!||i=,. », denote a partition of unity subordinate to the covering
{Bl};i. Let € D*((0,T) X RN).

Note that, due to the fact that both functions u1, u, satisfy the classical stochastic semi-Kruzhkov entropy
inequalities (neglecting the boundary effect) for any k € R in 9’((0, T) X D), one can prove exactly as in [3]
that uy, u satisfy the following local comparison principle: for any & € D*(Q),

1
0 < ]ELJO‘ j(;(ul(t,x,az)—uz(t,x,ﬁ))+8t£dadﬁdxdt

1 Al
—]Eff f F*(ui(t, x, @), ua(t, x, B)) - VédadpBdxdt
oJo Jo

4 fD (101 — 102)* £O)dx. @

In particular, (2) holds with & = p¢f. Now, leti € {1,---,m,} be fixed in the following. For simplicity, we
omit the dependence on r and i and simply set ¢» = ¢ and B = B. We choose a sequence of mollifiers (p;),

in RN such that x - p,(x—y) € Dforall y € B. g,(x) = fD pn(x — y)dy is an increasing sequence for all x € B
and 0,,(x) = 1 for all x € B with dist(x, RN \ D) > £ for some ¢ = c(i, r) depending on B = B:. Let (gm)m denote
a sequence of mollifiers in R with suppg,, € (-2,0).

Define the test function

Conn(t, %,5,Y) = @, Y)P(Y)Pn(y = X)0m(t —5)
Note that, for m, n sufficiently large

(t,x) = Cun(t,x,5,y) € DO, T) x RN ), forany(s,y) € Q,
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(5, y) = Cunlt,x,s,y) € D(Q), for any (¢,x) € Q.

Let u5(s, y) be the solution of (1) with initial data uy, and boundary data 43, and 1, € E* satisfying

ns(-) = ()* and r];)(-) — sgng(~) as 6 — 0. Then taking C,,.(t, x, s, y) as test function in Definition 2.2, for a. e.

(t,x) € Q, we have

1
0 < f f [no(u1 = K)(Con) = F™ (1, k) - Vil ] dxdtder
0 JQ

1
+f fng(ul_k)h(ul)Cm,ndXdW(t)da
0 JQ

1 1
o3 [ [ wng s - 06,
0 JQ

+fn:‘5(a1_k)an,nT+(x,k,a1)
X

+ f 77:3(”01 - k)Cm,l’l(Ol X, S, ]/)dx
D

Multiplying the above inequality by g(k — 1) and integrating in k and (¢, x) over R and Q, respectively, and
taking expectation, we have

0 < E f f f noito1 — K)o (0, 3,5, y)dxan(k — uS)dkdyds
oJr Jp

1
+E f f f f 51 — k)pPpdiom(t — s)dag(k — u5)dkdxdtdyds
QJQJRJO

1
_Ef f f f FU (111, K)pb0n - Vipu(y — 0)dacan(k — ub)dkdxdtdyds
QJQJRJO

1
+1]Effff hz(ul)r]g'(ul—k)Cm,nda@l(k—ué)dkdxdtdyds
2 JoJoJIrJo

1
+E f f f f 15 (ur = k) (ur ) G ndxdw(t)devor (k — us)dkdyds
QJQ JR JO
”Ef f f M50 = R Y (e K, a)dSdtor(k - us)dkdyds
QJR Jx

= Lh+DL+---+1I
As uf is a viscous solution, the It6 formula applied to fD ns(k — u5)Cn,ndy yields that for a.e. (t,x) € Q

R R L (B
—eLng(k— u5)Aus Cp ndyds — LFﬁ"(k, u5) - Vy G ndyds
5 [ = Cts [ = )Gy,
where we used the fact that for any fixed (f,x) € Q, Cux(t, x, s, y) € D(Q) and
fDd [T]é(k - ui)Cm,n] dy = L%(k — 15) (Cuyn)s dsdy + % jl;qg(k — uS Y (U5) Cy sy

- L 15k = u5)Cnn [(eAu® + div(f(uf))) dt — h(u)dw(t)] dy.
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Multiplying the above inequality by g;(111 — k) and integrating in k over R, in (¢,x) over Q and in a over
(0, 1),respectively, and taking expectation, we have

1
0 < Effff Ns(k — u3)Cu(t, x,0, y)oi(u1 — k)dadkdydxdt
Q JR JD Jo

1
HEf f f f Ns(k = u5)(@s@0m + PIs0n)bpudydsoi(ur — k)dadkdxxdt
QJRJQJO

1
_S]Ef f f f my(k = u3) A5 Con wilydsorur — K)dadkdxdt
QJRJQJO
1
_]Ef f f f Fo(us, k) - Vy G ndydso(ur — K)dadkdxdt
QJR JQJO
1
%]Ef f f f % (k = us)h> () Con il yds i (ur — k)dadkdxdt
QJR JQ JO

1
_]Ef f f f 1 (k = u§)h(u) o ndlydu(s) oy (ur — k)dadkdxdt
QJR JQ JO

= i+t + e

Noting that g,,(t) = 0, t € [0, T], we have

1
]Effff Ns(t1 = k)Cinn(0, x, 5, v)or(k — u5)dadkdydxds
Q JR Jp Jo

1
Effff ns(u1 — K)pPpnom(—s)oik — u)dadkdydxds
Q JR Jp Jo
sy E f (101  t12)* 9(0, V)p(R)x.
D

L+

Duetou; € N2(0, T, L*(D)), ug, ugz € L*(D) and the compact support of C,, ,, we know that the convergences
in above inequality hold, see [2] for the similar proof.
By using the fact d;0,,(t — s) + ds0,(t — s) = 0 and changing variable technique, we get

1
Ef f f f No(t1 = K)pppudiom(t — s)dao(k — uj)dkdxdtdyds
QJQJR JO
1
HEf f f f Mo(k = 15)(@sP0m + PIsom)ppudydso(ur — k)dadkdxdt
QJRJIQJO
1
) Ef f f f No(k = 15)9conpudydso (uy — k)dadkdxdt
QJRJIQJO
1
HEffff o1 — Uy — DNPPPdi0m(t — s)dag(T)dTdxdtdyds
QJQJRJO
1
HEf f f f 511 — 1 = TVPPPds0m(t — 5)dydso(t)dadrdxdt
QJRJQJO

1
B Ef f f f Mo (k = 45)9s@omdpudydso(un — k)dadkdxdt
QJRJIQJO

1,1
—Lome ELL f(;(u1(f,xra)—Mz(t,x,ﬁ))+8tq0(t,x)qb(x)dadﬁdxdt.

L+
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By using again the fact that for any fixed (¢, x) € Q, Cuu(t, x, 5, ¥) € D(Q) and Holder inequality, we obtain

1
I = —e]Effff sk = ug)AyusC ndyds o (uy — k)dadkdxdt
o JR JQ Jo
1
= eIEffff (Ayms(k—u;)—ng(k—uE)IVuglz)Cm,ndydsgl(ul—k)dadkdxdt
0 JR JQ Jo
1
elEffff Ayns(k — u3)Condydso(ur — k)dadkdxdt
0 Jr JQ Jo
1
= elEffff ns(k — u3) Ay Conndydso(ur — k)dadkdxdt
o JR JQ Jo
1
=16 eIEfff(ul—ué)JrAyCm,ndydsdxdt
QJQJO

IA

1
< elEfff [u1|Ay G ndydsdxdt + €E sup |[us5lr2(p)
QJQJO 0<t<T
T Pl , 1
X f f f [ f (Ay(@(s, PoW)paly — 1)) dy] Omdadsdxdt
QJo Jo [Jp
-, 0

where we used Esup_,_; [[t5]l;2p) is uniformly bounded for ¢ > 0.
Noting that V.0 (y — x) + Vypu(y — x) = 0, we have

I3+ ]s = -IE L L jﬂ; fol F% (w1, k)ppom - Vipu(y — x)dagi(k — us)dkdxdtdyds
—]EfQjH; L fol F’7°(u§,k) (P Viy(@P) + PV ypn)omdydso (uy — k)dadkdxdt
- —ELL£1 F® (uy, u)pdpom - Vepn(y — x)dadxdtdyds
—lEfoQfol F (11, u5)pom - Vypn(y — x)dadxdtdyds

1
—]Efff F(uy, u3) - puVy(@P)omdydsdadxdt
QJQJO

1 A
Smsen —lEff f F(ui(t, x, @), uz(t, x, B))V(p(t, x)p(x))dadBdxdt.
oJo Jo

1
I+ 5 = %]EfoQf]Rfo hz(ul)ng’(ul—k)Cm,ndonl(k—ué)dkdxdtdyds
1
+1]Ef f ff ng(k—ué)hz(ué)cmmdydsgl(ul — k)dadkdxdt

—im —Efff 5 (uy — u5) hz(u1)+h2(u2))(p(t NOW)pu(y — x)dydadxdt.

1
Now, we come to the estimate of most interesting part, the stochastic integrals. Since 9(t) = j(; o(us(t, x, ©)—
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k)dt is predictable and if one denotes

() = fD Bk = V) oy,

we have that

— T 1 — T ¢
E S(t)‘ft t(s)dw(s)| = E S(t)f0 L(s)dw(s)]—]E[S(t)](; L(s)dw(s)] =

because that

» T - » T
E|3(t) ‘fo t(s)dw(s)| = E|3()E ( f t(s)dw(s) Iﬁ)] [S(t) f dw(s)]

Similarly, let 9 (s - %) = ok — uj (s -2, y)) and

1
) = fD fo (s = K1) it

then we get that

E fQ fR s(s_ % ) foT (Odw(Odkdyds = fQ fR ]ES(S—%) f( o «(t)dw()dkdyds = 0.

Here for the first equality the compact property of g is used and for the second equality the property of
conditional expectation is used. Thus, we have

1
]Effff sy = k)h(uq) G dxdw(t)devg (k — us)dkdyds
QJQJRJO
T A1
_]Ef f f f f (e = usYh(u5) G nlydeo(s)oi(r — k)dadkdzxdt
QJR JID Jt 0
s 1
E fQ fR f(; iy L fo‘ 151 = k)h(uq) G ndxdw(t)degy(k — u5)dkdyds
s 1
ELLL‘&,YL\/O‘ né(ul _k)h(ul)Cm,ndde(t)da

X [Q[(k -u3(s,y) — o (k —uj (s - %, y))] dkdyds

As dufy = [eAus, + div(f(u3))]dt + h(ub)dw(t) == A.dt + h(u)dw(t), by 1t6 formula, we arrive that

Is + Jg

ok~ 365, 9) - ar (k= (s - 2. )
= —j;s 2 0;(k — u3(0, y))Ac(0, y)do

m

B ]{ 2y 0, (k — u5(a, y)h(u5(o, y))dw(o)

1 s
+5 o' (k = us (0, y)H*(us(o, y))do
2 ‘f(—,iy 1 2 2

d S )
T { f( Ly ok — u3(0, )Ac (0, y)do
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+ ](‘—ff ok = u5(o, v)h(ui(o, y)dw(o)

1 s
-5 0] (k = u3(0, y)h*(us(o, y))dO}
2 ‘f( ) )+ 1 2 2

ST

Therefore,
s = f f f( . f f 71ty = K)(tr) Gy plxdeo(E)da
x{-- - Jdkdyds
= L1+ L+ Ls.

Let us evaluate the limits of L1, L, and Ls. Following [15], we know that the solution uj of (1) will belong
to LP(D) if ug, € LP(D). We assume that uj, € C*(D) and ug, converges to g in L?(D). Thus the solution
u, € LP(D), Vp > 2. By using the propertles of the heat kernel one can prove that u; € W>#(D), see [6, 8, 33].
That is, A, € L?(D). The proof of this part is similar to that of [3]. We first consider L;:

. 1 213
Ll < L]ﬂ;f; ]E[f(—z)*jo‘ ng’(ul—k)h(ul)daCm,ndw(t)]l
s 272
X ]E(j(._z)+ g,(k—ug(a,y))Ag(a,y)da]l dkdxdyds
2 3
< f f f pu(y = x)p(s, y)P(y) ( f f (g — k)gmt—s)h(ul)] dadtl
xﬁ[]E f(s Ly (ol = us(o, y)A(o, y)) da] dkdxdyds
2 i
< Cl\/_fffpn y—x) (f f (ul—k)h(ul)] dadt}
x[]Ef 2y T 2g uz(oy)<0A (o, y)da] dkdxdyds
< Clvm f f f : f (ul—k)h(ul))zdadtdkdxds
+Clvm f f E f( R u(U_MA (0, y)dodkdyds
< Cl‘/_ f f( 2y f f r—<k<u | 12 (1 )dkdaedtdxds
+ClVm f E f( - A%(0, y)dodyds
Q -
<

1
—Z]Eff W (uq)dadtdx + i]Eng(s,y)dsdy
QJo vm  Jg

-, 0.
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Similarly, we get

o 1
Lyl < ly]E f f f f f 0} (1 = k)(111) Gy il (t)da
20 Jo Jr J(s-2)" Ip Jo
% f( Ly 0k = (0, Y2 (w5 o, y)dodkdyds|
1 s 1 212
—_ ]E " _ k h d . nd
= 2fQLfR[ (L_;)+£Wa(ul Y(uq)daC,, w(t)]l
S 213
x ]E( f 0] (k = (0, y)H(us (o, y))do]l dkdxdyds
(-3)
S 1 ) %
: fff[IEf *f (ng(ul_k)h(ul)(;m,n) dadt}
QVDJR[ J(s=)" Jo
c ’ ¢ 2 . 2
Xﬁ[m ﬁ Ly (Qz(k—uz(a, y))) H*(us (o, y))do] dkdxdyds
<

1 3
1
C‘/%fffpn(y—x)[]]i f_zl{ul—(‘)skSul}hz(Mﬂdafdt]
QPR (-3) o 0
1

x[]E f(‘b Ly Ph(us(o, y))do] dkdxdyds

m

1
< Ll(]Eff hz(m)dadtdx+]th4(“§(5fy))d5dy)
Vm \ Jo Jo ©

_>m 0/

where we used the facts that u € L*(D) and u; € L*(D). Thanks to Fubini’s theorem and the properties of

It6 integral, we have
S 1
—lim]Efff ff 1 (U1 = k(1) G ndxdw(t)da
m QJR J(s-2)" JIp Jo

X f( . ak = u5(0, y)h(us(o, y))dw(o)dkdyds

= —liylELLf(sznyfol 15 (1 = (1) G pder

xoi(k — u3(t, y)h(us(t, y))dtdxdkdyds

1
~ -E fQ fD fo 1ty = 5, G, PSPy — DS, y)dadidxdy

1 1
e [ f [
0 JD Jo

X (12 (1) = 2h(aur)(uis) + 2 (u5)) @(t, )b (y)pa(y — X)dydadxdt

1 1
= ElEfff Ny (uy — u3)
oJpJo

lim Li+ L+ L3
m

Therefore, we get

111’1’1[4 + I5 + 15+ ]6
m,l
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X (h(u1) - I1(u§))2 o(t, YY) pn(y — x)dydadxdt

-5 0,
and thus

11({]?1111’12114 + ]5 +1I5 + ]6 <0.
Lastly, we consider 5. By the assumptions of a5, we have
I = E f f fné(al — )G Y (x, k, a1)dSdtoy(k — u5)dkdyds
QJR Jx

Smnled f POY*(x, az,a1)dSdt.
b

Combining all estimates yield
0 < IEf(u01—u02)+(p(O,x)qb(x)dx
D
1l
+]Eff f(u1(t,x,a)—uz(t,x,ﬁ))+8t(p(t,x)(j)(x)dozdﬁdxdt
QJo Jo
1l
“E fQ [ [ Frmtex ot % p0(00, vo00adsaa

+f(p¢Y+(x/a2/al)det.
z

Summing over i = 0,1,---,m,, taking into account the local inequality for i = 0, we find, for any
£ e D((0,T) xRN),

0 < E - *&(0,x)d
< fl;(um u2)"&(0, x)dx
1 1
HEff f(Ul(t/x/a)—Mz(f,x,ﬁ))+3¢5(t,x)dad[a’dxdt
oJo Jo
1 1
—]Eff f Ff(ur(t, x, @), ua(t, x, B))VE(t, x)dadBdxdt
oJo Jo

+ f EY*(x,ap,a1)dSdt.
T

Proof of Theorem 3.1 Now, we consider the second half. Similarly, as u; is a entropy solution, using the
other half of Definition 2.2, and applying the It6 formula to fD 1s(us — k), we have

< E — *£(0, x)d
0 = L(“m um ) E(0, x)dx
1 1
+]EL]O‘ fo‘(uz(t’x"g)_ul(t’x’a))+at5(t/x)dlxdﬁdxdt

1 Al
—]Eff f F*(ua(t, x, B), ur(t, x, a))VE(t, x)dadBdxdt
oJo Jo

+ f EY ™ (x, a0, a1)dSdt.
b
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Summing the above two inequalities, and using the fact |a — b| = (a — b)* + (b — a)*, we have

0 < E f ttor — ol (0, x)dx
D
1 1
+E f f f i1(E, %, @) — a(t, x, B)INE(t, X)dadpdxdt
oJo Jo

1 pl
—]Eff f F(uq(t, x, a), ua(t, x, B))VE(t, x)dadBdxdt
QJo Jo

" f £ max  |(f0) - £s)) - ACOISAL, ()
X

min(ay,a2)<r,s<max(a az)
where we used the fact

Y\i(x/ az, ﬂl) + Y+(x/ as, ﬂl) = max |(f(r) - f(S)) : ﬁ(x)l

min(a; ap)<r,s<max(a; a2)
Now, we prove the inequality in Theorem 2.3. For each n € IN, define
1 if x| <n,
Pn(x) =1 2(1 - %) ifn <|x| <2n,
0 if |x| > 2n.

Foreachh >0and 0 <t < T, define

1 ifs <t
Yn(s) =4 1-% ift<s<t+h,
0 ifs>t+h

Then, by standard approximation, truncation and mollification argument, (3) holds with

&(t, x) = Pu(s)Pn(x)-

Define

A(s) = ]E[]I; jo‘l jo‘l |u1(s,x)—u2(s,x)|dx],

then A € L, (0, T). Itis easy to check that any right Lebesgue point of A(s) is also a right Lebesgue point of

1 1
An<s)=u~:[ fD fo fo |u1(51x)—uz(Szx)|¢n(‘)(x)dx]

for all n. Let t be a right Lebesgue point of A. We choose this f in the definition of ¢(s). Thus, (3) implies

that
1 t+h 1 1
i [ L[ s - e om0 a
t

1 1
IEIQL L F(ul(S,X),Mz(S,x))Vq)n(x)ll)h(s)dxds

IA

+E [ fD 101 () — Moz(x)|¢n(x)dx]

. fz WO max (F() - f6) - St
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Taking limit as 1 — 0, we know that there exists p > 2 such that

IE[L j: j: 1y (t, x) — uz(t,x)|¢n(x)dx]

1l
< lEfQ](; j(; F(ui(s, x), ua(s, x)) Vo (x)dxds
+IE [f 101 (x) — Moz(x)|¢n(x)dx]
D
* f ¢n(X) min(a; az)rsl}?;(max(m az) l(f(r) a f(S)) ' ﬁ(X)ldet
< C( ) 1+ su ]Ellu G4 )+ su ]Ellu (t)||
+E [f 101 (x) — Moz(x)|dx]
R?
* j); min(a; uz)rsrtf;(max(al az) I(f(r) a f(S)) ' ﬁ(X)ldet (4)

Therefore, letting n — oo, we obtain the desired inequality. O
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