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Existence and non-existence of positive solutions for a class of
fractional boundary value problems

S. Panigrahi®”, Raghvendra Kumar?

?School of Mathematics & Statistics, University of Hyderabad, Hyderabad - 500 046 India

Abstract. In this paper, we consider a boundary value problem consisting of the nonlinear fractional
differential equation

—D§.u+aD),u = f(t,u), 0<t<l,
with nonlocal boundary conditions
DEu(0)=0, Di7u(l)=au(l), u'(1)=0,

where, 2 <y <a<3,0<f<a-y,0<a<T(a-y+1)and f(tu) € C([0,1] X [0, 00), [0, 00)) and Dy, is
the standard Riemann-Liouville fractional derivative of order a. The associated Green’s function is derived
in terms of the generalized Mittag-Leffler functions and it is shown that it satisfies certain properties. An
attempt has been made to establish the existence and non-existence of positive solutions by using Leggett-
Williams fixed point theorems on a cone in a Banach space. The results obtained in this paper extended and
generalizes the result of [R. Graef, L. Kong, Q. Kong and M. Wang, Positive solutions of nonlocal fractional
boundary value problems, Discrete Contin. Dyn. Syst. 7 (4) (2013), 283-290]. Finally, we provide a couple
of examples to illustrate the validation of established results.

1. Introduction

Fractional differential equations have a wide range of applications in various fields of science and en-
gineering and play an important role in describing physics more accurately than classical integer order
differential equations. Existence of positive solutions for nonlinear fractional boundary value problems
with different boundary conditions have been studied by many researchers [2, 4, 7, 10] and the references
therein. There are many techniques for solving fractional boundary value problems. If Riemann-Liouville
fractional derivative is involve, the only viable way is to transform the boundary value problem into an
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integral equation, and use various fixed point theorems to find the fixed points of the respective operators.
This idea is used by many researchers ; see, for example, [2, 4, 5, 7, 8, 10], and the references therein. The
operators are constructed based on establishment of the associated Green’s function. Furthermore, to apply
fixed point theory, one usually require the positivity of the Green’s function.

Finding the Green’s function is a difficult task in case of fractional boundary value problem, but there
are several papers dealing with existence of positive solutions for fractional boundary value problems
with the help of properties of the Green’s function and appropriate conditions on the nonlinear part of the
differential equation. Bai and Lii [2] investigated the existence and multiplicity of positive solutions by
using the Green’s function for the nonlinear fractional boundary value problem:

-Dg.u+ f(t,u)=0, 0<t<1, (1)
and
u(0) =0 =u(1), 2)

where, 1 < a < 2 is a real number, f : [0,1] X [0,00) — [0, o0) is continuous, and Dy, is the standard
Riemann-Liouville fractional derivative of 1 : [0,1] — R defined by

1 a"

Do) = T(n—a)dt

t
f (t = 5)"" % h(s)ds,
0

where n = |a] + 1 and |a] is the integer part of a, provided that the integral on the right hand side exists.

By using Krasnosel'skii and Leggett-Williams fixed point theorems, along with growth conditions on f,
they established the existence of at least one or three positive solutions respectively. By using [2, Lemma
2.2], Bai and Lii [2] constructed the Green’s function for the boundary value problem

-Dg.u=0, 0<t<l1, 3)
and

u(0) = 0 = u(1), 4)
by first taking the a-th integral of the equation

—Dg.u = h(t) (5)

and determining the constants by using boundary conditions (4). This approach has also been employed
by M. Feng et al. [4] and C. Goodrich [5] to construct the Green’s functions for the problems consisting of
equation (3) along with one of the boundary conditions

u®0)=Dp.u(1)=0, 0<i<N-21<v<N-2

or
) 1
uD0) = 0,u(1) = f h(s)u(s)ds, 0<i<N-2,a<N<a+l,
0

where N is defined as in [2, Lemma 2.2].

However, all boundary conditions investigated so far involved the boundary condition #(0) = 0, which
is vital in the construction of the corresponding Green'’s function. In fact, by [2, Lemma 2.2], a term with a
negative power Cyt*~N will appear after integrating equation (3). This term causes a singularity at ¢ = 0 if
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Cn # 0. Hence, u(0) = 0 is used to ensure that Cy = 0.

Using the idea used by Bai and Lii [2] and together with spectral theory, Graef et al. [7] investigated the
boundary value problem consisting of the nonlinear fractional differential equation

—Dg.u+au =w(t)f(t,u), 0<t<l, (6)
and the integral boundary conditions

u(0) = 0,u(1) = Ig. u(1), (7)
where, 1 <a<2,0<a<yla+1), wel[0,1], w(t) > 0a.e. on[0,1] and f € C([0, 1] X [0, o0), [0, o0)). Here,
I7. is the a-th Riemann-Liouville integral of / : [0, 1] — R defined by

ar4 o 1 ' a—
Dyih(t) = I h(t) = % fo (t = 5)* h(s)ds,
and I' is the Gamma function.
In 2013, Graef et al. [6] studied the boundary value problem
-Dg.u + aDg+u = f(t,u), O<t<l, (8)
with the boundary conditions
B _ a-y _
D0+u(0) - 0/ D0+ M(l) - ﬂu(l), (9)
where, 1<y <a<2,0<f<a-y,0<a<I(a-y+1)and f(t,u) € C([0,1] X [0, o), [0, 00)).

Motivated by the above problems, we consider the boundary value problem consisting of the fractional
differential equation

—D§.u+aD),u= f(t,u), 0<t<1, (10)

with boundary conditions
B _ -y _ 11y —
Dy u(0) =0, D "u(l) =au(l), u'(1)=0, (11)
where,2 <y <a<3,0<B<a-y,0<a<I(a—-y+1)and f(t,u) € C(0,1] X [0, o), [0, 00)).

In this paper, we first derive the corresponding Green’s function in terms of the generalized Mittag-
Leffler function. It is independent of  as long as § satisfies 0 < f < a—y,0 <a <I'(a—y +1). Consequently,
the problem (10) and (11) is converted to an equivalent Fredholm integral equation of the second kind.
Finally, an attempt has been made to establish the existence of at least one or more positive solutions by
using Leggett- William fixed point theorems on a cone in a Banach space for the fractional derivative of
order a, where 2 < y < @ < 3. We would like to mentioned here that results obtained in this paper are new
even in the case @ = 3, and extended and generalizes the results of [6].

The plan of the paper is as follows. In Section 2, we provide some elementary results concerning the
fractional calculus and Leggett-Williams fixed point theorems. Section 3 deals with the construction of the
Green’s function and its various properties. In Section 4, we establish the existence of at least one or the
multiplicity of positive solutions. Finally, in Section 5, we give a few examples to justify the results in the
previous section.
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2. Definitions and Preliminaries

For basics on fractional calculus, one can refer to the books [11], [14], [15]. The following basic results
on fractional calculus are used to study the existence or multiplicity of positive solutions.

Definition 2.1. (see [13, Definition 2]) Let X be a real Banach space. A nonempty closed, convex set & C X is
called a cone if it satisfies the following two conditions:

(i)Ifue P,A>0implies Au € &;

(i) Ifu € &, —u € & implies u = 0, where 0 denotes the zero element of X.

Definition 2.2. (see [11, Equation 1.8.17]) A two parameter function of the Mittag-Leffler type is defined by the
series expansion

[oe] Zn
il = ).

where z,7y € C and R(a) > 0. It is an entire function and hence it is convergent for all z € C.

Definition 2.3. (see [2, Definition 2.3]) The map 0 is said to be a nonnegative continuous concave functional on a
cone & of a real Banach space X provided that 0 : &7 — [0, o0) is continuous and

O(Au+ (1 - A)v) > A0(u) + (1 — 1)0(v),
forallu,ve P and0 <A <1.
Remark 2.1. As a basic example, for A > =1 and a > 0,
- r(A+1)
agd _ a+A
Dwt‘rm+A+nt'
Similarly, fora > 0,A > -1,

TA+1) 4,
TA—a+1)

Lemma 2.1. (see [2, Lemma 2.1]) Let & > 0 and u € C(0,1) N L(0, 1). Then the solution of the differential equation

A _
Dt =

Dg.u(t) =0

N
is given by u(t) = Z C,-t“’ifor someC;eR,i=1,2,3,...,N.
i=1

Lemma 2.2. (see [2, Lemma 2.2]) Assume that a > 0 and u € C(0,1) N L(0, 1) has an a-th fractional derivative that
belongs to C(0,1) N L(0,1). Then

N
Dof (Dg.u(t) = u(t) + Y Ct*™;
i=1

forsomeC;eR,i=1,2,3,..., Nanda <N <a+1.

Note that Lemma 2.1 and Lemma 2.2 are crucial in finding an integral representation of the boundary
value problem (10) and (11).

Lemma 2.3. (see [11, Lemma 2.3]) If R(a) > 0, R(y) > 0, and u € LP(0,t) (1 <p < ), then

Dyt (D u(®) = Dyl (Dgfu(®) = D! u(t)

holds almost at every point in [0, t].
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Lemma 2.4. (see [11, Lemma 2.4]) If R(a) > 0 and u € LP(0, t) (1 < p < o0) then the following relation
D3 (Dyu(t)) = u(t)
holds almost everywhere on [0, t].

Lemma 2.5. (see [11, Property 2.2]) If R(a) > R(B) > 0and u € LF(0,t) (1 < p < o0), the relation
D}, (Dyu(t)) = Dy Put)
holds almost everywhere on [0, t].

Lemma 2.6. (see [12, Theorem 7.3-1, page no. 375]) Let X be Banach space and 2 : X — X be a linear operator
with the operator sup norm || 2|| and spectral radius p of 9. Then
(@) p(7) <112l

)

(W) If p(2) < 1, then (I — D)L exists and (I - P)! = Z 9", where I stands for identity operator.
k=0

In order to show the existence or multiplicity of positive solutions of the boundary value problem (10),
(11), we will use the following Leggett-Williams fixed-point theorems [13].

Theorem 2.7. (see [13, Theorem 3.2]) Let & be a cone in a real Banach space X, &, = {u € & : |lu|| < c}.
Suppose T : P. — P is completely continuous and suppose there exists a concave positive functional 6 on 2 with
O(u) < |lull and forallu € & and P(0,a,b) = {u € & : O(u) 2 a, ||lul| < b}, and there exist numbers 0 <a <b <c
satisfying the following conditions:

(C1) {ue X0,a,b): 0u)>a} +¢and O(Tu) >aifu e £(0,a,b);

(C2)Tue P ifuec £6,a,c);

(C3) 6(Tu) > a, forall u € (0, a,c) with ||Tul| > b.

Then T has a fixed point u € 2(0,a,b).

Theorem 2.8. (see [13, Theorem 3.5]) Let & be a cone in a real Banach space X, P, = {u € & : |lu|| < c}.
Suppose T : P. — P is completely continuous and suppose there exists a concave positive functional 0 on 2 with
O(u) < |lull, and forallu € & and P(0,a,b) = {u € & : O(u) 2 a, ||ul| < b}, and there exist numbers 0 <a <b <c
satisfying the following conditions:

(C4){ue £0,b,c): O(u) > b} # ¢ and 6(Tu) > bifu € #(0,b,c);

(C5) |Tull < aifu e P;

b
(C6) 6(Tu) > EIITuIIfor each u € 2. such that ||Tul| > c.
Then T has at least two fixed points in Z,.

Theorem 2.9. (see [13, Theorem 3.3]) Let & be a cone in a real Banach space X, &, = {u € & : |lu|| < c}.
Suppose T : P, — P. is completely continuous and suppose there exists a concave positive functional 6 on P with
O(u) < |lull and 22(6,a,b) = {u € 2 : O(u) = a,|lul| < b}, and there exist numbers 0 < d < a < b < c satisfying the
following conditions:

(C7){ue P0,a,b): 0u)>a}+¢and O(Tu) >aifue £(0,a,b),

(C8 ITull < difue Py

(C9) 6(Tu) > a, forall u € Z(0,a,c) with ||Tul| > b.

Then T has at least three fixed points uy,uy, uz with ||uy|| < d, O(uz) > a, |luzll > d, and O(u3) < a.

Remark 2.2. (see [2, Remark 2.3])) If b = ¢, then condition (Cy) implies condition (Co) in Theorem 2.9.
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3. Green’s Function and its Properties

In this section, we derive an integral representation of the solution in terms of the generalized Mittag-
Leffler function for the linearized problem with fractional boundary conditions.

Lemma 3.1. Let Eyyo-2[a] = (y = 1)Ea—ya-1la] # 0. If u € C(0,1) N L(0, 1) is a solution of
—-D§.u+aD),u=h(t), 0<t<1, (12)
with boundary conditions
DEu0) =0, D37 u(l)=au(l), u'(1)=0, (13)

where,2 <y <a<3,0<pf<a-y,0<a<I(a-y+1),andhe C([0,1] X [0, 0)). Then

1
u(t) :f(; G(t,s)h(s)ds ,

where,

Gl(t, S), S Z t/
G(t,s) = (14)
Gl(tl S) - (t - S)a_lEa—y,a [Ll(f - S)a_y]/ s < t,

where,
(1= 8)*?Ea—y,a-1la(l = 8)* 7] = (1 = 8) " Eq-y a-1la]
Ea—ya2lal = (y = DEa—y,a-1lal
(1= 8)*?Ea—y,a-1la(l = 8)* 7] = (1 = 8) ' Eq-y 0-1la]
Eqya-2lal = (y = 1)Ea—y a-1la] )]

and G(t, s) is called the Green’s function associated to the homogeneous boundary value problem (10), (11).

Gi(t,s) = t“—zEa_m_l[atﬂ—Y](

7 B ofat ] [(1 =5y -y =1)

Proof. For any h € C[0,1], let u be a solution of boundary value problem (12), (13). On applying D; on
both the sides of the equation (12), we obtain

—Dy#(D§.u) + aDy# (D}, u) = Dyh(t),
that is,
—Dy (D) +aDy* (D! (D}, ) = Dyh(t).
By using the Lemma 2.2, we obtain
—[u(®) + &t + 51972 + 51973 +aD T (t)) +aDy T @) + aDy T (658 2) + aDy T (Gt )
= Dy h(t).
By Remark 2.1, this becomes

- _ _ “(a—y () e I'y-1 ,_ I'(y-=2) .-
~ qa-1 , = qa-2 | = ja-3 _ (a=y) e W ar _ L AV T T4 s
u(t) + 61t + Gt + Cat aD,.” "(u(t)) — acy F(a)t acs Ta - 1)f ace T(a = 2)t

= —Dg*h(t).

Combining like power terms of f, we obtain

(I —aDy " yu(t) = e1t* + 12 + c3t* — D h(t). (15)
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Taking D§+ on both sides of the equation (15) gives

DE,u(t) — aDl (D, u(t)) = e1DE, 177! + &,D8, 4972 4 ¢;Df, #4738 — DE (D52 h(t)).
By Remark 2.1 Lemma 2.5, we obtain

(=B~ Ia) Ma-1) . Ma-2) o ~(a—p)
DEu(t) = aD P u(t) = o e 16 g 0B 2 g o O ST panfd @Ry
0+u( ) a 0+ 1/[( ) C1 F(oz _ﬁ) CZF(OK _5 — 1) C3F(OK _ﬁ _2) 0 1/[( ) (16)
asa—pf—-y>0,s0 D(;(a*ﬁ*y)u(t) is a fractional integral, and a —f -3 < 0; @ =3 < O impliesa - -3 < - < 0;
anda— > 0.

Since, D€+u(0) = 0 and the value of the fractional integrals D(;(a_’g _y)u(t), D(;(a_’g )u(t) at t = 0 is zero, from
equation (16), we obtain

Ia-1)

Ia) 4
) I LG Sk
o Ta-g-1)

I'a-2) ja—p-3
I(a—-p)

P2 b
t=0 Ta-p-2) t=0

Dg+u(t) - aD(;(a_ﬁ _y)u(t) =0
t=0 =0

~ D, Pu(p)

t=0
that is,

0=c; X0+ X0 +c3 ltin(} 13 = ¢y ltino1 t97P=3 which implies c3 = 0.

Applying D, to both the sides of equation (15) and using Remark 2.1 and Lemmas 2.4 and 2.5, we obtain
Dg:yu(t) —au(t) = chg:yt"‘_l + czDg:Vt"‘_z - Dg:y(Daf‘h(t)).
That is,

DS u(t) - aut) = —C}Z;?)ﬂ"l + —Czrf;“_‘li)

Using the boundary condition Dg:yu(l) =au(1) in (17), we obtain

72 =D, h(t). (17)

1 ! .
Ta=1) ](; (1 - s) " h(s)ds. (18)

Let us define the map’s &/ and % on Banach space X by
(u)(D) = a(Dy u)(t) and (Bh)(E) = crt* + cxt*2 — Dh(H).

From equation (15), we have

ala-1D+c@y-1)=

(I = @ )u(t) = (Bh)(®). (19)
Since0<a<T(a—y+1),
|| = ”SIJPIWL!II
ul|=1

= sup ||11D(;+(“_V)u||
< sup

llull=1
llull=1 F(oza— ) j; (t =9 ulds

1
a
< 1-19)*7"1ds
FM—WLX )
a
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From equation (19) and Lemma 2.6, we obtain
ut) = Y /" (BN,
n=0
that is,

u(t) = Y o/ [ent*™ + ot" = DyTh(B)] 20)
n=0

Calculation of &7"(%h)(t) gives
et + oot = DFPR(H)] = 1. " + M0 — /" (DGEh)().
The value of &/"(t*"!), by using the Remark 2.1, is found to be
"N =t A (107
|
ntimes
= ... o (A"7Y)
————
(n—1)times
= o .../ @D, " V)
——
(n—1)times

=adf ... /(D )
~——

(n—1)times
—ad ... ﬂ(ﬂtzw-l)
~——— 1"(20: - ]/)
(n—1)times
a”T(a) t(a—y)n+a—1‘ (21)

T T((a- y)n+a)
Similarly, we have

a'T(a—1)
I(a-=ym+a-1)

" (ta—Z) - t(a—y)n+a—2. (22)

The value of /" (D h(t)) by using Lemma 2.3 is

A" (DGh(t) = o ... (Dg*h(b))
———
ntimes
= o ... (DG h(b))
S————
(n—1)times

=ad ...o(D;" " Dyh(t)
N——
(n—1)times

=ad ... (D, )
————

(n—1)times

n t
— ﬂ— _ (ar—)/)n+a—1h ds. 23
(EET fo (t—s) (s)ds (23)



S. Panigrahi, R. Kumar / Filomat 39:9 (2025), 3099-3125 3107

Using the equations (21), (22) and (23), we obtain the expression for «7"*(%h)(t) to be

"(Bh)() = - m f (t = s)@Mmralp(5)ds
(o) #T(a-1) 4
1 (a=y)n+a-1 + 0 t(a—)/)n+a—2.
F((a -y +a) I'(a-ym+a-1)
Using (24) in (20), we obtain
B et Rl ant(oz—y)n w2 sl ant(a—y)n
O =T L e T L e @)

_ g)la=y)n
f (t - s)* 12;[(; ;)ni h(s)ds.

By using the Mittag-Leffler function in (25), the expression for u(t) is given by

¢
u(t) = clt"“ll"(a)Ea_),,a [at*7] + cot* T (a — DEs—y a-1[at™™7] - f (t- s)“‘lEa_},,a[a(t —5)* 7 h(s)ds. (26)
0
From (25), we obtain

= a"(n(ar - 7/) +a — Dprlaryra o a'(n(a —y) + a — 2)ra)vas
u'(t) = a1T(@) Z (@—pn+a) + ol = 1) ”Z:a o raD

a"(n(a —y) + a — 1)(t — s)"@n+a=2
fo 20 T@-pn+a) o)

On applying the property of the Gamma function, namely I'(z) = (z — 1)['(z — 1), we obtain

o = a'(n(a —y) + a — 1)ran+a2 a'(n(a —y) + a — 2)m@y+a3
w(t) = al(a) Z-; ((a=ym+a-DI((a-ym+a-1) tel@=1) Z T(@a—ym+a-2T(a—yn+a-2)

n=

v a"(n(a—7y) +a—1)(t—s)r@n+a2
Z T h(s)ds.

o ZHI((@-ymn+a-DI((@-yn+a-1)

That is,

ntn(afy)+ut—2 a" tn(oz—y)+a—3

wW(t) = al( Z IFra-ym+a- 1)+C2F(a_1)21"((oc—7/)n+a—2)

=0 n=0
© an(t _ S)n(a—y)+a—2
- h(s)ds.
j; ;F((a—y)n+a—l) )

Expressing u’(t) in terms of the Mittag-Leffler function gives

t

W (t) = c1t* *T(@)Eaey,aa1[at* V] + cot**T(a = 1)Eqey qnlat®] — f (t = 8)* ?Eqeyao1la(t — 5)* 7V Th(s)ds.
0

(27)

Using the boundary condition u/(1) = 0 in (27), we obtain

1
Clr(a)Ea—y,a—l [lZ] + CZF(‘X - 1)Ea—y,a—2[a] = f (1 - S)(X_zEa—y,a—l [a(l - S)Uf—)/]h(s)ds. (28)
0
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On solving the equations (18) and (28), the values of ¢, c; are given by

1

=—I
C1 T(@) 1

where,

1 1- S)Q_zEa— y a—l[a(l - S)Dt_y] -(1- S)V_lEa— a-10a]
_ A Y 2 U _ V4 1%
11 B ‘fo‘ [(1 S)) (7/ 1){ ED(*]/,&'*Z[“] - (V - 1)Ea7)/,a71 [a] }]h(S)ds

and

(1-9)* *Ea- —y,a- 1la(1=)*7] - (1 - S)y_lEa—y,a—l [a]
2" Ta- 1%[[

Eq- y,a—z[ﬂ] (V 1)Ea—y,a—1[a] ]h(s)ds,

Therefore, the unique solution of the problem (12), (13) is

1
mn:jﬁqgwwm&
0

This completes the proof of the lemma. [

The following lemma gives the existence of the Green’s function for the boundary value problem (10), (11).
Lemma 3.2. The function G(t, s) defined by (14), is the Green’s function for the boundary value problem (10), (11).
Lemma 3.3. Let 0 <a<I(a—y+1), for 0<t<1. Then the following hold:

(@) Ea—yalal <Eqyp-1lal, forall0 <a <T(a -y +1).

(b) Ea-yula]is monotonic increasing for a € [0,['(a — y + 1)).

(¢) E4—ya-1[at*™7] is monotonic increasing for ¢ € [0, 1].

(d) Eq—yala(t —s)*7] is monotonic increasing for all t which satisfy the relation 0 <s <t < 1.

(€) Ea—y,a-1[at® 7] 2 Ea—y olat* 7] forall t € [0,1].

(f) - s)“‘lEa_W l[a(t—s)*7]<(1- s)"“lEa_),,a [a(1 —s)*77] for all f which satisfy the relation0 <s <t < 1.

Proof. (a) We have

00

a
Eaﬂ/,a[ﬂ] - Eaf}/,a 114 Z T(ax — y)n +a) nZO T — ]/)Vl +a-1))

" 1 1
4 {F((a—y)n+a) B F((a—y)n+oz—1)}

n

5 101 I02¢ 1

a” 1 1
T(a-ym+a-1) |(@a—ym+a-1)
a" l-(a—ym—-—a+1

Z IFr(a-ym+a- 1){ ((a=ym+a-1) }

n=0

_y @e-a@oym
= T(a-yn+a)

Since, 2 —a < 0,-n(a —y) <0, then (2 — a) — n(a — y) <0. Thus,

< 0.

Eafy,a [61] - Eafy,a 114

f:”@ a—(a=ym)
= T((@-yhn+a)
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Hence,
Eo—yalal < Exya-tlal, for all 0 <a<T(a—y+1).

(b) Note that

Ea—yolal = (29)

Z EorEnt

Differentiating the equation (29) with respect to a, we obtain

1

d Vl
da Eayalal = da ZF(O( )/)n+zx) ZF(O( )/)n+oz)

Hence, E,—, «[a] is monotonic increasing for a on [0, ['(a — y + 1)).

(c) Note that,

ad a t‘rl(U( 7)
Ea—’,/,a—l[ata_y] = .
;I‘((a—y)nwwx—l)

Differentiating w.r.t. f, we obtain

3 21 ay) = n(a —y)atie)-l
e a=y] = —_ =
atEa—y,a—l [llt ] ot ; r((a - )/)1’1 +a— 1) ; F((a - )/)1’1 +a-— 1)

Since t"@)~1 > 0, for all t € [0,1] and na"(a — y) > 0, then

0
EEQ_),,a_l[at“’V] >0, forall te]0,1].
Hence, E,—) +-1[at*”] is monotonic increasing for ¢ € [0, 1].

(d) We have,

. s n(t_s)na )
Eqyola(t—s)*7] = Zl"(n(a—y)-i-a)

n=0

Differentiating w.r.t. t, we have

n _ n(a— y) ) _ n _ n(a—y)—l
8 (t-5s) B 2 n(a —y)a"(t —s) >0,

EEupanilalt - 9] —atir(n(a—w— Tl =)+ )

since each term in the summation is non-negative. Hence, E,—, ,-1[a(t — s)*7”] is monotonic increasing for
alltsuchthat0 <s<t<1.



S. Panigrahi, R. Kumar / Filomat 39:9 (2025), 3099-3125 3110

(e) Note that,

(o]

antn(a—y) s a" tn(afy)
Eueyac1lat®?] = Egey o[at®™?] = _
apailaf] = Baoyalat™] nzz(;l”((n(a—y)+a—1) ;F(n(oz—y+a))

i gpre) { . 1 }
HTI(ma-y)+a=-1) na—y+a)-1)

3 i aa=y) { na-y)+a-2 }
HI(a-y)+a=-1) (m@-y+a)-1)

(o]

a"t" V(e —y) + a—2) .
oy I((n(a—y) +a)

since, for all t € [0, 1], each term in the summation is non-negative. Hence,
Eqya-1lat®™] 2 Eoyolat®™™],  for all te]0,1].

(f) Note that,

' (t — s)Hey)ra-

T(n(@—-y)+a)

(£ =9 Eampala(t =) 1= )

n=0

Differentiating with respect to ¢, we obtain

0 a(t — syrayral & gi(p(a — ) — T)(t — s)Ha-)a=2

a a—1 a=y1] — ___ =
E(t =97 Eayalalt =971 = ot = Fn(@—-y)+a) ; T'(n(e-vy) +a)

a*(n(e —y) = 1)(f - s)@=y)ta-2
(ma—y)+a—-DIn(@—-y)+a-1)

niy _ ynla—y)+a-2
a(t—s) >0,
I'nla-y)+a-1)

(o]
n=0
oo
n=0

since each term in summation is non-negative. Hence, for all ¢ suchthat0 <s <t <1,
(t- S)a_lEa—y,a[a(t —s5)* 7] < (1~ S)a_lEa—y,a[a(l —5)*7].
This completes the proof of the lemma. [J

Next, we state the properties of the Green’s function which will be subsequently used to prove our main
results.

Lemma 3.4. The Green’s function G(t,s) as defined in (14) with

_ Gyls)
~ Gs(9) >0

forall s € (0,1), where

Ga(s)

G4(S) = (1 - S(V - 1)){(1 - s)a_zEafy,afl [a(l - s)a—y] - (1 - S)y_lEafy,a—l [a]}

- 55?(2 {(1 - S)a_lEa—)/,a [ﬂ(l - S)a_y](Ea—y,a—Z[a] - (7/ - 1)Ea—y,a—1 [a])}

and
Gs(s) = Ea—y,a—Z [a] - (y - 1)Ea—y,a—1 [a],
satisfies the following properties:



S. Panigrahi, R. Kumar / Filomat 39:9 (2025), 3099-3125 3111

(i) G(t,s) < G(s) for all (1, s) € [0,1] x [0,1],
where,

G(s) = Ea_y,a_l[a][l +y {

1- S)aizEa—y,a—l [a(1—s)*7]+ (1 - s)yilEa—y,a—l[a] }]

| Ea—y,a—Z[a] -(y- l)Ea—y,a—l [a] |
a—2
(i) G(t,s) > Gs(s) for all (¢,s) € (0,1) x (0, 1), where Gs(s) = % X Ga(s).
(iii) Since G(s), Gs(s) are positive bounds, we conclude that 0 < Gz(s) < G(t,s) < G(s); hence G(t,s) > 0 for
all (¢,s) € (0,1) x (0, 1).
(iv) G(t,1) =0forall t € [0,1].
(v) G(0,s) =0foralls € [0,1].
(vi) G(t,s)is a continuous function for all ¢,s € [0, 1].

Proof. (i) To find the upper bound of G(t,s), we will use 1 < 1,t%2 < 1,and (1 —s)’"! < 1, and properties

(@), (c) and (e) of Lemma 3.3. From (14), we obtain G(t,s) < Gi(t,s) for all ¢, s € [0, 1], where G; (¢, s) is defined
as in the Lemma 3.1. For s > £, from the Lemma 3.1, we have

G(t,s) = Gi(t,s) < |G1(t,9)l,
where
G(t,s) = Gi(t,s)

<

ja-2p o t“‘?’]( (1=9)"?Eay,a-1[a(1 = )71 = (1 = 5) " Eamyat [a])
a—y,a-1

Ea—y,a—Z[a] -(y- 1)Ea—y,a—1[a]
+ 1 E gy o[at* VX

(1~ )" 2Eqya1la(l =] = (1 = )" Eq-y oera]

Easyaalal = (7 = DEamyaila] )] ‘

(1~ 8 2Eqryacala(l = )]~ (1 =) Eq_yoila]
Eayaalal = (7 = DEa—yila]

[(1 =) = (y - 1)(

< ta—Z Ea—)/,a—l [ata—y]

+ [ By lat* 7%

- (1= 5)*?Ea—ya-1la(l =s)* 7] = (1 =) " Eqy a1lal
’ [‘1 B 1’( Eacyaald] (7~ DEay o] )] ‘
(1 =5)*?Ea—ya1la(l —s)*7] . (1=5)"Eq—y,a1la] ]
| Eaey,a—2[al = (¢ = DEa—ya-1lal | | Eaey,a—2lal = (y = DEa-y,a-1la] |
(1=5)*2Ea—ya-1la(l —5)*7]
| Eaeya—2[a] = (y = 1)Eay,a-1]a] |}
(1—=5)"Eqya1la]
| Ea-y,a—2[a] = (y = 1)Ea—y,a-11a] |}]
(1 =5 2Eq—ya1la(l —s)*7] N (1=5)"Eq—ya1la] ]
| Ea-ya-2[a] = (¥ = DEa—ya-1lal | | Ea-ya-2[a] = (v = DEa—ya-1la] |
(1-95)2Eseya-1la(l —s)*7]
| Eq—y,a-2la] —-O/—-l)anﬂl[a]I}

Ea—y,a—l [a]
" ()/ - 1) {| Ea—)/,a—Z[a] - (V - 1)E06—’/'“_1 [ﬂ] |}]

< Ea—y,a—l [a][

+ Eafy,afl [a][(l - S)y_l + (7/ - 1) {

+W—D{

< Ea—y,a—l [ﬂ][

+ Ea—)/,a—l[a][(l - S)V_l + (V - 1){
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Combining all the similar terms for (1 — s)*~2 and (1 — )"}, we obtain
(1~ 5)*2Eqya-1[a(1 = 8)* 7]+ (1 =) Eg—y a-1[a] }}]

{Ea—y,a—Z[a] - (7/ - 1)Ea—)/,a—1 [a]

G@@sEaW1MP+V{

(ii) For s < t, we have

G(t,s) = Git,s) = (t = 8)* " Eamyala(l = 5)*7]
(1-8)*2Ea—ya-1[a(1 = 8)*7]1 = (1 = ) "' Eqy01la]
Ea—ya-2[a] = (y = DEa-y a-1lal
(1=8)*?Eqyo-1[a(l =) 7] = (1 = 5) "' Eq_y a-1]a]
Eoya-2la] = (y = DEa—ya-1[a] )]

= ta_2Eoc—y,a—1 [ata_y][ ] + ta_lEa—y,a[ata_y] X

[(1 —s) 7 = (y - 1)(
- (t - S)a_lEa—y,a[a(t - S)a_)/]~
For t > s, we have %! > s*~! and t*2 > s*2 and using (e) and (f) of the Lemma 3.3, we obtain

(1 - S)a_ZEatfy,afl [a(l - s)a—y] - (1 - s)y_lEa—y,afl [a]]
Ea—y,a—Z[a] - (7/ - 1)Ea—y,a—1 [a]

G@@zﬁ*@yﬂWWWw
+ s”“lEa_),,a [at*V]x

[(1 =) = (y - 1)(

— (t = 9)* ' Eayala(t —s)*7]
§42 [(1 ~5)*?Eqyq1la(l =s)* 7] = (1 - S)V_lEa—y,a—l[a]] N 5o y
[(a) Ea—ya-2la]l = (¥ = 1)Ea-y,a-11a] [(a)
(1=5)*?Ea—yala(l =s)* 7] = (1 =) " Eqyailal
Eq—ya-2lal = (y = 1)Ea—ya-1la] )]

(1- S)aizEa—y,a—l [a(l - S)aiy] - (1 - s)yilEa—y,a—l[a] )]
Ea—)/,a—Z[a] -(y- l)Ea—y,a—l [a]

\%

[(1 -y =y~ 1)(

— (1= )" Eqryela(l = )*7]
_wﬂw—Wﬂuwﬂm—Wﬂ—uﬂwmwmmwﬁwaﬂwl
T(@) Eamyaala] = (7 = DEaeyailal T(@)
(y = 151 [(1 = §)*2E ey qeala(l = )" = (1 = 8" Eqey o-1la]
T [ Eaya-2la] = (7 = DEqey,a-14] J

— (1= )" Eqeyala(l = )* 7]

512 [(1 =) 2E,y o [a(l = $)* 7] = (1 = ) Eqey ailal
rmi Ea—yaala] = ( = DEaryaila] }

(y = 1)s* 1 [(1 = 8)*2E ey qeala(l = )" = (1 = )" Eqey o-1la] N N
- [ T o 1 ]‘“‘” Facyala(l =97
s22(1 = s(y = D) (1 = 9)*2Eu_yala(l = )] = (1 = ) Eyy 01 [a]

T(a) [ Ea—ya2la] = (7 = DEaryaila] ]
s272 F(a)(Ea—y,a—2[a] = (y = DEa—ya-1la]

- I'(e) §a2 Ea—y,a—z[a] - (7 - 1)Ea—y,a—1 [a]
Safz

= mGz(S)

)t = 9 B ala(t = 7]



S. Panigrahi, R. Kumar / Filomat 39:9 (2025), 3099-3125 3113

Since, G,(s) > 0 for all s € (0, 1),

G(t,s) > I:z Z)Gg(s) >0, for all (t5)€(0,1)%x(0,1).

Proof of (iii) follows from the (i) and (ii). Hence,
0 < Gs(s) < G(t,5) < G(s), for all (t,5) €(0,1) x (0,1).

Proof of the (iv), (v) and the (vi) are trivial, and hence are omitted.

This completes the proof of the lemma. [
Now we consider the nonlinear boundary value problem (10), (11). Define an operator
(Tu)(t) = ! Ea—yalat™7]x
1 1-5)*2E,_, 4o1[a(1 =) 7] = (1 =)’ YE,_y 4_1]a
f [(1_5)),1_(7/_1){( ) Vi 1[( ) ] ( ) Vi 1[]
0 Ea -y,a— 2[”]_(7_1) a— ya—l[a]

[at®~ }]f [ " *Eo- —y.a- 1la(l =) 7] -1 - s)y_lEa—y,a—l[a]
a va-l a y,a—Z[a] (V - l)Ea—y,a—l[a]

}]f(s, u(s))ds

]f (s, u(s))ds
- f (t- s)“‘lEa_y,a[a(t —5)*7]f (s, u(s))ds
0

1
_ f G(t,)f(s, u(s))ds,
0

where G(t,5) is defined as in Lemma 3.1. It is easy to observe that u € C[0, 1] is a solution of the boundary
value problem (10), (11) if and only if u is a fixed point of T. Let ¢, f, € [0, 1]. Then,

1
(T = T = | [ 16,9~ Gz, 916, ueds |
0
Since G(t, s) is continuous on [0, 1] X [0, 1], then for €; > 0, there exists a 6 > 0 such that
|G(t1,5) — G(t2,5)| < €1, whenever |t;—ty|<6 for all s€[0,1].

Hence,

1 1
|(Tu)(tr) - (Tu)(t)] < f |Gt1,9) = Glta, 5)|| f(s, u(s))|ds < ex f | f(s,u(s)) | ds .
0 0

Since f(s,u(s)) is continuous on [0, 1] X [0, o0), then exists a constant M > 0 such that |f(s, u(s))| < M for
s € [0,1]. Hence,

|(Tu)(tr) = (Tu)(t2)| < Mey.

Thus, Tu is a continuous operator for all # € C[0, 1]. Further,

1 1
< fo 1G(t,9) Il fs,u) | ds < max_|G(t,9)]| fo | Fls,u(s)) | ds

_____

1
|(Tu)(t)| = ‘fo G(t,s)f(s, u(s))ds
< max |G(ts)| M.

,,,,,

Hence, T is a bounded operator for all u € C[0,1] and for all ¢t € [0, 1].
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If S ¢ C[0,1] is a nonempty and bounded subset, then T(S) is equicontinuous. Indeed, Let € > 0.
Since G(t, s) is continuous on [0, 1] X [0, 1], G(¢, 5) is uniformly continuous on [0, 1] X [0, 1]. So, there exists a
0 > 0 such that for all ¢, £, € [0,1],

|ty =ty |< & implies | G(t1,s) — G(ta, s) |< €1

Let us takeany u € Sand 0 < t; < t, < 1; we obtain

1
(Tt = (T = |87 Byl 1 [ [0=77 = =1

{ (1=9)*2Eq—y,a-1[a(1 = )] = (1 =) " Eq—y,a-1[4]
Eqya-2lal = (y = 1)Ea—y,a-1la]

+ 157 Eqry qlaty VX

' =) 2Eayaa[a(l =) 7] = (1 = 5) " Eqy n-1a]
fo [ Eaya-2lal = (y = 1)Ea—ya-1lal

} ] (s, u(s))dsx

]f(s, u(s))ds
tr
- fo (ts = ) Eu alalt — 51 1£(s, u(s))ds

1
— 1 Eay alat] 7] f [(1 —s)t
0

1- S)a_zEafy,afl [a(1—s)*7]-(1- S)y_lEafy,afl [a]
B ()/ B 1) { Ea—;/,a—Z[a] - (7/ - 1)Ea—y,a—1 [a]
— 8 Eqya1lat] 7 ]x
- S)a_zEa—y,a—l [a(1—9s)*7]-(1 - S)y_lEa—y,a—l [a]
L [ Ea—)/,u—2 [a] - (y - 1)Ea—y,a—1 [a]

}]f(s,u(s»ds

]f (s, u(s))ds

t
+ f (t — s)“‘lEa_),,a[a(tl —5)*7]f(s, u(s))ds
0

<

1
f (t1 = )" Ea_y ala(t: — 5171 f(s, u(s))ds
0

+

tg_lEafy,a [ﬂfg_ylx

t>
- fo (t2 = 51" Earyala(ts — 51 1G5, u(s))ds

1
[ a-ot-g-nx

{(1 - S)a72Ea—)/,a—1 [ﬂ(l - S)aﬂ,] -(1- S)yilEa—y,a—l [a]
Ea—y,a—Z[a] - (7/ - 1)Ea—)/,a—1 [a]

}]f(w(s))ds

1
— 8 Eqy alat] 7] f [(1 - = (y = 1)x
0

{(1 - S)DﬁZEa—)/,a—l [a(l=9s)*7]-(1- 5))/71Ea—y,a—1 [a]
Ea—y,a—Z[a] -(y- 1)Ea—)/,a—1 [a]

— a—
tg zEa—y,a—l[atz )/]X

fl {(1 - S)a_ZEafy,afl [a(l - s)a—)/] - (1 - S)y_lEaf)/,afl [a]
0 Ea—)/,a—Z[a] - ()/ - 1)Ea—y,a—1 [{Il]

}]f(w(s))ds

+

}]f(w(s))ds
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- ttlxiz Ea—y,a—l [atlf_y]x

fl {(1 - S)a_zEa—y,a—l [a(1 =) 7] - (1 - s)y_lEa—y,a—l [a]
0 Ea—y,a—z[a] - (V - 1)Ea—y,a—1 [a]

}]f(s, u(s))ds

t fy
: f (b1 = )" Eanyala(ty = )" 71f(s, u(s))ds f (t2 = ) Eay ala(ts = 5)* 71 (s, u(s))ds
0 0
1
+ tg_lEa—y,a[atg_y] f(; [(1 —sy - (y —=1x
(l - S)a_zEa—y,a—l [a(l - S)a_y] — (1 — S)V_lEa—y,a—l [ll]
{ Eaya-2[al = ( = 1)Ea—y a-11a] }] f(s,u(s))ds
1
- t?_lEa—y,a[attlx—y] f [(1 . (y—-1x
0
- S)a_zE“_%a—l [a(1-s)*7]-(1- 5)7/_1Ea—y,a—1 [a]
{ Eua—ya-lal = (y = 1)Eaey a-1la] }]f(S, u(s))ds
+ tg_ZEa—y,a—l [atgiy]x
' [(1=8)*?Eapaai[a(l = 9)* ] = (1= 8 Eaeya-ilal] a2 amy
jo‘ { Ea—ya-lal = (y = DEqaey a1lal }]f(s, u(s))ds — t{“Eq—y a-1lat] "Ix
U (1= 8)2Eqya-1la(l = $)¥7] = (1 = $) 7 Eqrya1la]
j(: { Ea—ya—lal = (y = 1)Eqey a1lal }]f(s, u(s))ds
ty
= f {0 =9 Earyalatts = 971 = (12 = 9 Eanpalatta = 771 Fls, u(s)ds
0

+ + M(t5 Eaeyalaty 1= 57 Easy alat] )%

ty
f (2 — 8 Eu_yala(ts — )7 1£(s, u(s))ds
f

! _ (1 - S)Q_ZEa—y,a—l [a(l - S)a—y] - (1 - S)y_lEa—y,a—l [a]
—sy 1y =
‘fo [(1 ) =1 { Ea—y,a—z[a] -(y- 1)Ea—)/,a—l [a] }]f(SI u()ds

1
[ a-o-0-nx

{<1 =9 *Ea-ya-1[01 =971~ (1= ) "' Eacyanala] } [, s

Ea—y,a—Z[a] - (V - 1)Ea—y,a—1 [a]
1
[ a-or-o-nx

(1= 8" 2Eayant[a(l = 9)*7] = (1 =) Eacyania]
{ Ea—y,a—Z[a] - (]/ - 1)Ea—y,a—1 [g] }]f(s, M(S))ds

Clearly, the right-hand side of the above inequality tends to zero as t; — t,. So, for any t € [0, 1], the
family {(Tu)(t) : u € S} is equicontinuous. Hence, T is continuous, bounded and equicontinuous, so by
Arzela-Ascoli theorem [3, 9], T is a completely continuous operator in C[0,1]. This leads to the following
lemma.

+ Mt Eamyalaty 1= 87 Egeyalaty ™ ])

+ M(tg_zEafy,afl [at;ﬁy] - t[f_zEafy,afl [atfle)’])

Lemma 3.5. The operator T : . — & is completely continuous.

4. Main results

In this section, we focus on the study of existence and nonexistence of positive solutions to the nonlinear
boundary value problem (10), (11) by using the Leggett-Williams fixed point theorems.
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Let X = (C[0, 1], |IIl), where |[ul]| = sup,_,, [u(t)|. Then X is a Banach space. Define the cone & C X by
&P ={ueCl0,1]: u(t) =0, for all te][0,1]}.
Let the nonnegative continuous concave functional 0 on a cone & be defined by

O(u) = min |u(t)|.

0<t<1

We have the completely continuous operator T : &, — & defined by

1
Gmm=l:awv@mm%,

where G(t,s) is defined as in Lemma 3.1. Property (iii) of Lemma 3.4 is also satisfied. Note that the fixed
points of T are solutions of the boundary value problem (10), (11).

Theorem 4.1. Suppose f(t, u) is continuous on [0,1] X [0, co) and there exist constants 0 < a < b < ¢, such that the

following assumptions hold:
1

1 _
(H) ft,u(t) > ( f G(s)ds ) a, for all (¢t,u) € [0,1] X [a, b];
0
1 -1
@) fitu) < ( [ Gods ) e foralt () € 0,11 % ol
0
1 -1
(Hs) f(t,u(t) > ( f Ga(s)ds ) a, for all (t, 1) € [0, 1] x [a, cl.
0
Then, the boundary value problem (10), (11) has at least one positive solution u with O(u) > a and ||u| < c.
Proof. We shall show that all the hypothesis of Theorem 2.7 are satisfied. Let us take u(t) = d € (a,b) for
some t € [0,1]. Clearly, u(t) € #(6,4a,b) and 6(d) > d; hence {u € £(0,a,b) : O(u) > a} # ¢. lf u € F(0,a,b)
then u(t) € [a,b], so by (H;),

O(Tu) = Snir}(Tu)(t)

<t<

1
=minf G(t,s)f(s, u(s))ds
0

0<t<1

1 1 -1
> minf G3(s)(f G3(s)ds) a ds
0<t<1 0 0

>a.

Hence, 6(Tu) > a.
Given u € (0,4, c) this implies O(u) > a, ||u|| < ¢ which implies u(t) € [a,c] and by using (H;), we obtain

1
[|Tul| = supf(; G(t,s)f(s, u(s))ds

llull=1

< f)l E(s)( j;l E(s)ds )_1c ds <c.

Hence, Tu € 22,.
Further, we have u € #(6,a,c), so u(t) € [a,c], and by using (H3), we obtain

1
0(Tu) = minf G(t,s)f(s, u(s))ds
0

0<t<1

1 1 -1
> minf G3(s)(f G3(s)ds) a ds
o<t<1 J, 0

>a.
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Hence, all the hypothesis of Theorem 2.7 are satisfied. Therefore, the boundary value problem (10), (11) has
at least one positive solution with 6(u) > 4, |[[u|| < c. O

Theorem 4.2. Suppose f(t,u) is continuous on [0, 1] X [0, 00) and there exist constants a,b,c with 0 <a <b < ¢
such that the following assumptions holds:

1_ -1
(Ha) f(t,u(t))<( f G(s)ds) a, forall (t,u) € [0,1] x [0,a];
0
1 -1
(Hs) f(t,u(t))>( f Gg(s)ds) b, forall (t,u) € [0,1] x [0, c];
0
1
Gg,(S)dS) b, forall (t,u) € [0,1] X [b, cl.
0

Then the boundary value problem (10), (11) has at least two positive solutions uq, uy with |lus|| < c, |luz|| < c.

(Ho) fit,u(0) > f 1 )

Proof. Let us define a positive concave functional

O(u) = min u(t).
0<t<1

We will show that all the hypothesis of Theorem 2.8 are satisfied. We have a completely continuous operator

1
T: P — & defined by (Tu)(t) = f G(t,s)f(s, u(s))ds, where G(t,s) is defined as in Lemma 3.1 and satisfies
0

the property (iii) of Lemma 3.4.

Take u(t) = % for some 0 < t < 1; clearly, this u(t) € 22(6,b,c). Then O(u) = Q(E) = é +

c
5 515 > b. Hence,
the set {u € 22(0,b,¢) : O(u) > b} # ¢.

Since u € #(0,b,c¢), u(t) € [b,c]. Using assumption (Hg), we obtain

1
0(Tu) = ggtisr}(Tu)(t) = gggsr}fo G(t,s)f(s, u(s))ds

> fo 1 Gg(s)( j; ' Gato)ds )_1b ds

=b.
Hence, 6(Tu) > b, for all (t,u) € [0,1] X [b, c].
1
Since (Tu)(t) = f G(t,s)f (s, u(s))ds, using assumption (H,), we obtain
0

1
[|Tul| = supf G(t,s)f(s, u(s))ds

lull=1 <O
< f 1 E(s)( f 1 G(s)ds )_1a ds
0 0
=a.

Hence, ||Tul| < a, for all t € [0, 1]. Further, by assumption (Hs), we have

1
O(Tu) = ggtisr}(Tu)(t) = ggtisr}fo G(t,s)f(s, u(s))ds

1 1 -1
> minf G3(s)(f G3(s)ds) b ds
o<t<1 J, 0

=b.
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Hence, 6(Tu) > b forall (t,u) € [0,1] X [0, c]. All the hypothesis of Theorem 2.8 are satisfied, so the boundary
value problem (10), (11) has at least two positive solution uy, up, with |lu1l| < ¢, |[uzll <c. O

Theorem 4.3. Suppose f(t,u) is continuous on [0, 1] X [0, co) and there exist constants 0 < d < a < b < c such that
the following assumptions hold:

(Hs) f(t u(t)) < ( fo 1 C(s)ds)

-1
d, for all (t,u) € [0,1] X [0,d];

1 1
(Ho) f(t,u(t))s( fo G(s)ds) b, forall (t,u) € [0,1] X [0, b];

1 -1

(Hio) f(t,u(t))>( fo G3(s)ds) a, forall (t,u) € [0,1] X [a, b].

Then the boundary value problem (10), (11) has at least three positive solution uy, up and uz with |lu1l| < d, O(up) >
a,|lus|l > d, 6(us) < a.

Proof. Define a positive concave functional on a cone &, with

O(u) = min u(t).
0<t<1
We have,
1
(Tu)(t) = f G(t,s)f(s, u(s))ds,
0

where G(t, s) is defined as in the Lemma 3.1. On using the assumption (Hy), one can show that the operator
T : Py — &Py is well defined and

1
[|Tul| = supf G(t,s)f(s, u(s))ds

|lull=1 JO
1 1 -1
< f G(s)( f G(s)ds) b ds
0 0
<b.

Hence, ||Tul| < b implies that Tu € .

Let us take u(t) = btc for some 0 < t < 1. Clearly, u € £2(0,a,b), and it is easy to verify that O(u) > a.

Hence {u € #(0,a,b) : O(u) > a} # ¢. By (Hyo), we obtain

1
O(Tu) = ggtisr}(Tu)(t) = gggsr}j; G(t,s)f(s, u(s))ds
1 1 -1
> f G3(s)( f G3(s)ds) a ds
0 0
=a.

and by (Hg), we obtain

1
ITull = sup fo G(t, ) (s, u(s))ds

llull=1

< I)l E(S)( j(;l G(s)ds )_161 ds

=d.
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By using the Remark 2.2 one can conclude that condition (C7) implies condition (Cy) in Theorem 2.9. All

the hypothesis of Theorem 2.9 are satisfied, hence the boundary value problem (10), (11) has at least three
positive solutions u1, uy and uz with [lu1l| < d, O(uz) > a, |luz|| > d with O(uz) <a. O

-1

1
Theorem 4.4. Suppose f(t,u) < u(t)( f E(s)ds) for all (t,u) € [0,1] X [0, o0), then boundary value problem
0
(10), (11) has no positive solution.

Proof. Assume that the boundary value problem (10), (11) has a positive solution u with |[u|| = , so there
exists f; € [0,1] such that u(t;) = r. Then

1
(Tu)(tl)zf G(t,s)f(s, u(s))ds

<ulty) f Gs) f G(s)ds) ds.

If boundary value problem (10), (11) has a solution, then it must be fixed point of T, so
u(t1) < u(ty) implies v <,

which is a contradiction. Hence, the boundary value problem (10), (11) has no positive solution. [

5. Examples
Example 5.1. Consider the fractional differential equation
-Diu+0.1D5'u = f(tu), 2<y<a<3, 0<t<l, (30)
with boundary conditions
Dbu(0) =0, DYu(l) =au(l), u'(1)=0, (31)
-0.01

2
where, 0 < B < 0.7, and f(t,u) = (ﬁ +0. 2) 2 Vcos ul00,

The positive lower bound of the Green’s function G(t,s) corresponding to the homogeneous boundary value problem
of (30), (31) is given by

0.8 0.8 G
Go9) = TG = j—6§8

where
Gu(s) = (1 - 1~15){(1 —8)"8Ep7,18[0.1(1 — 5)*7] — (1 - 5)1'150.7,1.8[0-1]}
_16 {(1 - 5)"®E0728[0.1(1 — 5)*7](E97,08[0.1] — (1-1)E0.7,1.8[0-1])}/

and

Gs(s) = Eo7,08[0.1] = (1.1)Eg.7,1.8[0.1].
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Figure 1: Gy(s) is positive for « = 2.8,y = 2.1 and a = 0.1

The upper bound of the Green’s function G(t, s) corresponding to the homogeneous boundary value problem (30), (31)
is given by

G(s) = Eg71 8[0.1][1 +21 {(1 —8)"8Eg718[0.1(1 = 5)°7] + (1 — s)l-lgw,l.g[o,u}].

| Eo7,08[0.1] = (1.1)Eq7,1.8[0.1] |

-1

1 1 -1
We also have ( f G3(s)ds) ~ 0.416 and ( f G(s)ds) ~ 0.136 and choosing positive constants a = 0.01,
0 0

b =c=0.2, we see that

, w3 —0.01 (0.2)3 = 0.01

f(t,u) = (ﬁ + 0.2) e 2 Veosul® < (0.01+0.2)% 2 y/cos(0.2)100

= 0.016
<(0.136 X 0.2) = 0.0272.

1 -1
Hence, f(t,u(t)) < (f G(s)ds ) ¢ = 0.0272 for all (t,u) € [0,1] x [0.01,0.2] and
0

t , 12— 001 (0.01)° = 0.01
Ft,u) = (m ; o.z) e 2 Veosw®>(02% 2 /os(0.01)1%0
— 0.0397
> (0136 x 0.01)
— 0.00136.
1 1

Hence, f(t, u(t)) > (f G3(s)ds) a =~ 0.00136 for all (t,u) € [0,1] x [0.01,0.2]. All the hypothesis of Theorem 4.1

0
are satisfied, hence the boundary value problem (30), (31) has at least one positive solution with 6(u) > 0.01 and
[Ju]] < 0.2.

Example 5.2. Consider the fractional boundary value problem
-D3?%u +0.162D3%%u = f(t,u), 2<y<a<3, 0<t<l, (32)
and

Dbu0) =0, D37u(1) =0.162u(1), (1) =0, (33)
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Figure 2: Gy(s) is positive for & = 2.909,y = 2.002 and a = 0.162

where, 0 < B < 0.907, and
, w2 —0412 e?

t — J—
f(t,u) = (m + 0.1) e 2 (cos14 ulo)( In(e+1)2 ) The positive lower bound of the Green’s function G(t, s)

corresponding to the homogeneous boundary value problem of (32), (33) is given by

0.909 0.909 G
_s Gals) = s 4(8)/
1.84 1.84 Gs(s)

Gs(s)
where
Gy(s)=(1- 1'9095){(1 = 8)"*%E907,1.900[0.162(1 — 5)**] — (1 - 5)1'002E0.907,0.109[0-162]}

1.84
- W{(l —5)*E0.9072909[0.162(1 = 5)**"](E0 907,0.909[0.162] — (1~002)E0.907,1.909[0-162])},

and
Gs(s) = E0.907,0.900[0.162] — (1.002)Eg.907,1.909[0.162].

The upper bound of the Green’s function G(t,s) corresponding to the homogeneous boundary value problem of (32),
(33) is given by
G(s) = Eo.907,1.909[0.162]x

[1 +2.002 { (1~ )" Eo907,1.909[0.162(1 — )] + (1 — )™ Ep.007,1.909[0-162] }]
. | E0.907,0.909[0.162] — (1.002)E.907,1.909[0.162] | :

1 -1

-1 1
Also, we have ( G3(s)ds) ~ 0.0081 and ( f G(s)ds) ~ 0.0056. Let us choose the positive constants
0 0
a=0.1,b=0.102 and ¢ = 0.105, so that

; , u*—0.412 e
f(t,u) = (ﬁ + 0.1) e 2 (cos14 ulo)( In(e+1)2 )
, (0.1)2-0.412 &

< (0.01 + 0.1) e 2 (cos14(o.1)1°)( In(e + 1)5)

= 0.0000098
< (0.0056) x (0.1)
= 0.00056.
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-1

1
Hence, f(t, u(t)) < (f E(s)ds) a, for all (t,u) € [0,1] x [0,0.1]. Note that
0

, u?—0412 e?

ft,u) = (ﬁ + 0-1) e 2 (Cos14 ulo)( In (e + t)g)

0412 @
> (012 2 (1n2(e) 2 )

= 0.00813
> (0.0081) x (0.102) = 0.0008262.

1 1
Hence, f(t,u(t))>( f G3(s)ds) b, for all (t, u) € [0, 1] X [0,0.105] and
0

t , 42— 0412 &
(g5 )
f(t,u) (100+01)e cos“u || In(e+1t)
(0.105)2 — 0.412 é

> (0.1)2 2 (cos14(0.105)10)(1n2(e) 2 )

= (0.0037

> (0.0081) x (0.102)

= 0.0008262.

1 -1

So, f(t, u(t)) > ( f
0
hence the boundary value problem (32), (33) has at least two positive solutions with |lu1]| < 0.105 and ||uz|| < 0.105.

Gs (s)ds) b, for all (t,u) € [0, 1] x[0.102,0.105]. All the hypothesis of Theorem 4.2 are satisfied,

Example 5.3. Consider the fractional boundary value problem
-D3'u + 01Dy = f(t,u), 2<y<a<3, 0<t<l, (34)
and
Dbu(0) =0, DPu(l)=0.1u(1), w'(1)=0, (35)

where 0 < B < 0.69 and

t2

+ du° 0O<u<l

1000 !
f(t/ M) = 1
7 £ (11000

>
2 000" T 2 0 M2

The positive lower bound of the Green’s function G(t,s) corresponding to the homogeneous boundary value problem
of (34), (35) is given by,

0.691 0.691
s Gals) = s G4(s),
1.53 1.53 Gs(s)

Gs(s) =
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Figure 3: G;(s) is positive for @ = 2.691, = 2.001 and a = 0.1

where

Gu(s) = (1 - 1'0015){(1 — 8)" g 69.1.601[0.1(1 — 5)*%] = (1 - 5)1'00150.69,1.691[01]}

1.53

- m{(l —5)" " Eg69,2,601[0.1(1 = 5)**1(E0 69,0691 [0-1] = (1.001)Eg.69,1.691 [0-1])},

and

Gs(s) = E0.69,0691[0.1] = (1.001)Eq 69,1.60[0.1].

The upper bound of the Green’s function G(t,s) corresponding to the homogeneous boundary value problem of (34),
(35) is given by,
G(s) = Eoe9,1.601[0.1]x

(1 -9 Eq,60,1.601[0.1(1 = 5)*°] + (1 — 5)M9 Eg 69 1 .601[0.1] }]
| E0.69,0.691[0-1] — (1.001)Eq.69,1.691[0-1] | ’

1+2.001 {

-1

-1 1
~ 0.536 and ( f a(s)ds) ~ 0.134, and here take the positive constantsd = 0.2,a =
0

1

Also, we have ( f G3(s)ds)
0

1and b = 25, so that

f(t,u) = : (t)z 5 4ud < 10% +4(0.5)°
=0.0028
< (0.134)(0.2)
= 0.0268.

1 -1
This shows that f(t,u)s( f G(s)ds) d for all (t,u) € [0,1] x [0,0.2]. Note that
0

1

£ 1000 7
0007 2 2
4

\%

+

ft,u) = g+ %

> (0.536)(1)
= 0.536.
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1 -1
Hence, f(t,u) > (f G3(S)d5) a, for all (t,u) € [0,1] x [1,25].
0

Also we have,

1 1
7 £ (1000 71 (251000
= — < = —
fw =5+t 2 <M =3+ 05" 32
= 3.0026
<3.35.

1 1
So one can conclude that f(t,u) < ( f G(s)ds) b for all (t,u) € [0,1] x [0,25]. All the hypothesis of Theorem
0

4.3 are satisfied, hence the boundary value problem (34), (35) has at least three positive solutions with ||uq|| < 0.2,
O(uz) > 1, and ||us|| > 0.2 with O(u3) < 1.

Example 5.4. Consider the fractional boundary value problem

-D37%u+02D5"*u = f(t,u), 2<y<a<3, 0<t<l, (36)
and
DEu(0) =0, DJFu(l)=02u(l), w'(1)=0, (37)
2
where 0 < B < 0.64, and f(t,u) = ﬁil) The positive lower bound of the Green’s function G(t,s) corresponding
to the homogeneous boundary value problem of (36), (37) is given by
078 078 Gy(s)
Gs(s) = ﬁcz(s) = 164 Gs(s)’
where

Gy(s) = (1 - 1-145){(1 —9)*78Ep641.78[0.2(1 — 8)*%4] = (1 - 5)1'14E0.64,1.78[0-2]}

0.78
- S[)W{(l —5)'7%E0 64,278[0.2(1 — 5)"**](Eo.64,078[0.2] — (1-14)E0.64,1‘78[0‘2])}

and

Gs(s) = Eo.64,078[0.2] — (1.14)Eo.64,1.78[0.2].
The upper bound of the Green’s function G(t,s) corresponding to the homogeneous boundary value problem of (36),
(37) is given by,

G(s) = Eqs41.78[0.2]%

[1 +214 {(1 —5)78E0,64,1.78[0.2(1 = 5)%*] + (1 — 5)1*Eg 64,1.78[0.2] }]
‘ | E0.64078[0.2] = (1.78)Eq.64,1.78[0.2] | :

-1

1 -1 1
Also, we have ( f G3(s)ds) ~ 0.425 and ( f G(s)ds) ~ 0.125, so
0 0

f(t,u) _ ut

0 T 10wsD) < 0.1 <0.125.

1 -1
Hence, f(t,u) < u(t)(f G(s)ds) forall (t,u) € [0,1] X [0, 00)). All the hypothesis of Theorem 4.4 are satisfied, so
0
the boundary value problem (36), (37) has no positive solution.



S. Panigrahi, R. Kumar / Filomat 39:9 (2025), 3099-3125 3125
6. Conclusion

In this paper, we extend the results in [6] to 2 < y < a < 3, dealing with existence and nonexistence
of positive solutions of fractional differential equation with fractional boundary conditions. The main tool
used in this paper is Leggett-Williams fixed point theorem on a cone in a Banach space. In Lemma 3.4,
we have shown that the Green’s function is positive by use of Lemma 3.3. Theorem 4.1, Theorem 4.2 and
Theorem 4.3 provide existence of at least one, at least two and at least three positive solutions respectively.
Theorem 4.4 provides the existence of no positive solutions. Finally, examples illustrate the validity of the
results.
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