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Abstract. The purpose of this paper is two-fold. In the first part, we introduce a novel information measure
known as the mixture Fisher–Shannon information measure, motivated by de Bruijn’s identity. We also
propose and study a specific case of this measure called the difference information measure along with
its Jensen version. Subsequently, the paper delves into an examination of their properties. In the second
part, we introduce (p, η)-Jensen difference Fisher–Shannon information measure. Additionally, we explore
possible connections between this divergence measure and Jensen–Shannon entropy and Jensen–Fisher
information measures. Our analysis not only examines theoretical foundations but also extends to practical
applications. Specifically, we apply these measures to analyze time series data concerning the fish condition
factor index, providing valuable insights into data interpretation.

1. Introduction

Information theory stands as one of the paramount branches of science, finding applications across
diverse fields such as statistics, physics, economics, and engineering. Over the past seven decades, this
theory has captivated the attention of numerous researchers. In particular, Shannon entropy [28] and Fisher
information [14] measures are two fundamental information-theoretic concepts that play crucial roles in
various scientific and engineering disciplines. Shannon entropy characterizes the uncertainty associated
with a continuous random variable X possessing a probability density function (PDF) f defined on the
support X. Shannon entropy is defined by

H(X) ≡ H( f ) = −
∫
X

f (x) log f (x)dx, (1)

where log denotes the natural logarithm.
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[14] proposed a quantity of information, describing the interior properties of a probabilistic model, that
has become vital to likelihood-based inferential methods. Fisher information as well as Shannon entropy
are very important and fundamental criteria in statistical inference, physics, thermodynamics, information
theory, and some other disciplines. For more details, see [3], [31], [15], [16, 17], [9, 10] and [20, 21]. The
Fisher information of a random variable X, about parameter θ, is defined as

I(θ) =

∫
X

(
∂ log fθ(x)

∂θ

)2

fθ(x)dx. (2)

For some recent studies on its properties, one may refer to [15] and [1]. In order to simplify the notation, we
suppressX for integration with respect to dx throughout the paper, unless a distinction becomes necessary.
There is another kind of Fisher information, known as Fisher information of the density itself. Let X be a
continuous random variable with density function f and ρ(x) = ∂ log f (x)

∂x . Then, the Fisher information of
density f itself is defined as

I(X) = I( f ) =
∫ {

ρ(x)
}2

f (x)dx. (3)

Incidentally, the Fisher information measures in (2) and (3) are identical when θ is a location parameter, or
equivalently, when the density f belongs to the location family of distributions [13].

[5] introduced a k-generalized Fisher information, extending (2) for k > 0, in the form

Ik(θ) =
∫ ∣∣∣∣∣∂ log fθ(x)

∂θ

∣∣∣∣∣k fθ(x)dx. (4)

Subsequently, [5] demonstrated the applicability of this measure within the context of non-extensive thermo-
statistics and provided insightful results in this domain. More recently, [6] explored the density version of
Ik( fθ) in (3), expressed as

Ik( f ) =
∫ ∣∣∣ρ(x)

∣∣∣k f (x)dx, (5)

where ρ(x) = f ′(x)
f (x) represents the score function corresponding to the density f . To simplify notation, we

suppress X for integration with respect to dx throughout the paper, unless a distinction is necessary.
de Bruijn’s identity links two fundamental concepts in information theory: entropy and Fisher informa-

tion. Let X be a random variable with finite variance and density function f (x) and Z be an independent
normal variable with zero mean and unit variance. By denoting Xt = X +

√
tZ, de Bruijn’s identity states

∂
∂t

H(Xt) =
1
2
I(Xt), (6)

where H is the differential entropy and I is the Fisher information. Further, if the limit exists as t→ 0, then

∂
∂t

H(Xt)
∣∣∣∣
t=0
=

1
2
I(X). (7)

The identity in (6) plays a key role in signal processing; see, for example, [13]. Moreover, an integral
representation of de Bruijn’s identity can be obtained between entropy of X and Fisher information of Xt
[24] as

H(X) =
1
2

log(2πe) −
1
2

∫
∞

0

[
I(Xt) −

1
1 + t

]
dt. (8)

This paper is motivated by a quest to explore information measures, focusing on Fisher and Shannon
information. Initially, the study delves into comprehending these fundamental concepts within information
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theory. However, the ambition transcends mere understanding, aiming to innovate by proposing a new
information measure called the mixture Fisher–Shannon information measure. This measure is designed
to amalgamate insights from both Fisher and Shannon information measures. The motivation for this
innovation arises from de Bruijn’s identity [24], which highlights a connection between Fisher information
and Shannon entropy. This identity serves as a guiding principle for the proposed measure. Building
upon this motivation, the paper defines the mixture information measure, DS

F( f ;α), incorporating Fisher
information and Shannon entropy. The formulation includes a weight parameter α, enabling adaptable
adjustments reflecting the relative importance attributed to each component. Through this exploration, the
study seeks to unravel the properties and implications of this novel information measure, thus enriching
the broader understanding of information theory.

The rest of this paper is organized as follows. In Section ??, we propose a mixture Fisher-Shannon
information measure by considering de Bruijn’s identity and investigate its properties. This section also
examines a special case of the mixture Fisher-Shannon information measure, known as the difference
information measure, which is defined based on the difference between Fisher and Shannon entropy
measures. Section 3 is devoted to the Jensen-difference Fisher-Shannon information measure. We begin
by establishing and exploring its fundamental properties. Subsequently, we introduce two extensions of
this measure and present key results related to these extensions. The practical implications of our work
are examined in Section 4, where we apply the developed concepts to analyze time series data related to
the fatness condition factor (CF) index of anchovies. By employing mixture information measures and
associated divergences, we revisit previous analyses conducted in references [8, 9, 11]. Finally, we present
some concluding remarks in Section 5.

2. Mixture Fisher–Shannon information measure

In this section, we first consider Fisher and Shannon information measures, and then define a novel
information measure, subsequently examining its properties. From de Bruijn’s identity in (7), we have

lim
t−→0

(1
2
I(X) −

∂
∂t

H(Xt)
)
= 0. (9)

This relationship serves as motivation to introduce the following definition.

Definition 2.1. Let X be a continuous random variable with density f defined on supportX, having Fisher informa-
tionI( f ) and Shannon entropyH( f ). Then, a mixture information measure in terms ofI( f ) andH( f ) for 0 ≤ α ≤ 2,
denoted by DS

F( f ;α) (or DS
F(X;α)), is defined as

D
S
F( f ;α) = α

I( f )
2
+ (1 − α)H( f ). (10)

For a specific PDF f , the measure (10) can be interpreted as a linear equation, i.e., it could have a positive
trend when α increases if the Fisher information is larger than Shannon entropy, and have a negative trend
whenα increases if the Shannon entropy is larger than Fisher information. It seen that the proposed measure
(10) can be derived based on the expectation of the self-information measure, as follows.

D
S
F( f ;α) =

∫
α
2

{
ρ(x)

}2
f (x) dx − (1 − α)

∫
f (x) log f (x) dx

=

∫ α2
{
∂ log f (x)

∂x

}2

− (1 − α) log f (x)

 f (x) dx

= E
[
α
2

(
S′(X)

)2
+ (1 − α)S(X)

]
,

where S(x) = − log f (x) represents the self-information measure of the density f at point x.
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The positivity or negativity of DS
F( f ;α) depends on the relative magnitudes of Fisher information and

Shannon entropy, as well as the chosen weight α. A higher weight given to Fisher information tends to
make the measure positive, while a lower weight may result in a negative measure due to the dominance
of Shannon entropy

If 0 ≤ α ≤ 1, from the relation (10), it is evident that the mixture information measure DS
F( f ;α) is a

weighted combination of the Fisher information I( f ) and the Shannon entropy H( f ), where the weight
parameter α controls the contribution of each component.

• When α = 1, the measure is solely based on the Fisher information, indicating a focus on the amount
of information about the density itself.

• When α = 0, the measure relies only on the Shannon entropy, implying a focus on the uncertainty or
randomness in the distribution.

• For values of α between 0 and 1, the measure balances between the two components, reflecting a
trade-off between information content and uncertainty.

This weighted approach offers a smooth transition between the two types of information, enabling us
to explore the behavior of this information measure in different scenarios (global vs. local). Additionally,
our formulation is consistent with other well-known combined measures, such as the Fisher-Shannon
complexity, which also blends these measures to provide insight into both local and global characteristics.
In practical terms, the mixture information measure can be interpreted as a generalization that captures a
spectrum of information, from purely global (entropy-based) to purely local (Fisher-based), allowing for a
richer analysis than either measure would provide on its own.

If 1 ≤ α ≤ 2, the mixture information measure can be considered as a negative weighted mixture
information measure, and the special case α = 2 possesses some interesting results that will be studied in
the next sections particularly.

Theorem 2.2. LetH( f ) > 0, then a lower bound for theDS
F( f ;α) for 0 < α < 1 is given by

D
S
F( f ;α) ≥ max

{
0+,

( √
I( f )
H( f )

)α(
1 + 2J( f )

)}
, (11)

where J( f ) is extropy measure and defined as

J( f ) = −
1
2

∫
f 2(x)dx, (12)

and the notation 0+ is commonly used to denote a value that approaches zero from the positive side, indicating a limit
as a variable approaches zero without actually reaching zero itself

Proof: From the definition of DS
F( f ;α) and by employing the inequality known as the arithmetic mean-

geometric mean inequality, we have

D
S
F( f ;α) = α

I( f )
2
+ (1 − α)H( f )

≥

(√
I( f )

)α
H( f )1−α

=
( √
I( f )
H( f )

)α
H( f )

=
( √
I( f )
H( f )

)α(
−

∫
X

f (x) log f (x)dx
)

≥

( √
I( f )
H( f )

)α(
1 −

∫
X

f 2(x)dx
)

=
( √
I( f )
H( f )

)α(
1 + 2J( f )

)
,
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where the last inequality follows from the inequality − log(x) ≥ 1 − x, valid for x > 0.
On the other hand, from the assumptionH( f ) > 0 and 0 < α < 1, it is seen that

D
S
F( f ;α) = α

I( f )
2
+ (1 − α)H( f ) > 0.

Now from the above results, we have

D
S
F( f ;α) ≥ max

{
0+,

( √
I( f )
H( f )

)α(
1 + 2J( f )

)}
,

as required.

Corollary 2.3. From Theorem 2.2 and under the assumptionH( f ) > 0, for 0 < α < 1, we have

D
S
F( f ;α) ≥

( √
I( f )
H( f )

)α
. (13)

To further explore the concept of mixture information measure in (10), we turn our attention to a
specific case defined by equation (10), where the parameter α takes the value of 2. This equation represents
the mixture information measure DS

F( f ;α), which combines the Fisher information I( f ) and the Shannon
entropy H( f ) of a density function f . In the specific case where α = 2, the emphasis is solely on the
difference between the Fisher information and the Shannon entropy, providing a clear measure of the net
information content in the density function.

Definition 2.4. Let X be a continuous random variable with density f defined on support X, having Fisher infor-
mation I( f ) and Shannon entropy H( f ). Then, a difference information measure between I( f ) and H( f ), denoted
by DS

F( f ) (or DS
F(X)), is defined as

D
S
F( f ) ≡ DS

F( f ;α)
∣∣∣∣
α=2
= I( f ) −H( f ). (14)

In this definition, we introduce a concept called the ”difference information measure” denoted by DS
F( f ),

which compares the Fisher information I( f ) and the Shannon entropyH( f ) of a density function f on the
support X.

When I( f ) is greater thanH( f ), DS
F( f ) will be positive, indicating that the density function carries more

information about the parameters of interest than the randomness in its distribution. Conversely, when
I( f ) is less thanH( f ), DS

F( f ) will be negative, suggesting that the randomness in the distribution dominates
the information content.

Therefore, DS
F( f ) serves as a useful metric for quantifying the relative importance of information content

and uncertainty in a probability distribution described by the density function f .

Lemma 2.5. Let X be a continuous random variable with density function f . Then, for a positive real value a, we
have

D
S
F(aX) = DS

F(X) +
1 − a2

a2 I(X) − log(a). (15)

Proof: From the definition ofDS
F(X), for a > 0, we have

D
S
F(aX) = I(aX) −H(aX)

=
1
a2I( f ) −H( f ) − log(a)

= D
S
F(X) +

1 − a2

a2 I(X) − log(a),

as required.
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2.1. Upper bounds for DFS information measure
In this subsection, we first provide some bounds for the convolution of two continuous independent

random variables. Then, we examine an upper bound for the absolute value of the difference information
measure with order p > 0.

Let x and y be two real values. The arithmetic mean and harmonic mean are defined as mA(x, y) = x+y
2

and mH(x, y) = 2
1
x+

1
y
, respectively.

Theorem 2.6. Let X and Y be two independent random variables. Then, an upper bound for the difference information
measure of the convolution random variable X + Y is given by

D
S
F(X + Y) ≤ mA

(
mH

(
I(X),I(Y)

)
,mH

( 1
N(X)

,
1
N(Y)

))
, (16)

where N(X) is the power entropy associated with random variable X and is defined as N(X) = e2H(X). For more
details, refer to [7].

Proof: Proof: From the definition ofDS
F(X + Y) and making use of the following inequalities ([13] and [7]):

1
I(X + Y)

≥
1
I(X)

+
1
I(Y)

and

N(X + Y) ≥ N(X) +N(Y),

we have

D
S
F(X + Y) = I

(
X + Y

)
−H

(
X + Y

)
≤

1
1
I(X) +

1
I(Y)

−
1
2

log
(
e2H(X) + e2H(Y)

)
≤

1
2

mH

(
I(X),I(Y)

)
+

1
2

log
( 1
N(X) +N(Y)

)
=

1
2

mH

(
I(X),I(Y)

)
+

1
2

log
( 1
N(X) +N(Y)

)
≤

1
2

mH

(
I(X),I(Y)

)
+

1
2

mH

( 1
N(X)

,
1
N(Y)

)
,

where the last inequality follows from the inequality log(x) ≤ x − 1, valid for x > 0.
Let X and Y be two independent random variables. In information theory, it is widely recognized that

the following inequalities hold:

I(X + Y) ≤ min
(
I(X),I(Y)

)
≤ I(X) + I(Y), (17)

max
(
H(X),H(Y)

)
≤ H(X + Y) ≤ H(X) +H(Y), (18)

where I(·) denotes the Fisher information and H(·) represents the entropy.
These inequalities reveal the predictable impact on information and uncertainty when combining inde-

pendent random variables through addition. Specifically, the Fisher information tends to decrease, while
the entropy tends to increase. Based on these observations, we can obtain an upper bound forDS

F(X+Y) as

D
S
F(X + Y) ≤ min

(
I(X),I(Y)

)
−max

(
H(X),H(Y)

)
. (19)

The inequality indicates that the difference information measure is no greater than the difference between
the minimum Fisher information and the maximum entropy of the individual variables.
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Theorem 2.7. Let X and Y be two independent random variables. Then, an upper bound for the difference information
measure of the convolution random variable X + Y is given by

D
S
F(X + Y) ≤

1
2
D

S
F(X) +

1
2
D

S
F(Y).

Proof: From the definition of difference information measure and upon making use relation (19) and the
facts that

min
(
I(X),I(Y)

)
=
I(X) + I(Y)

2
−
|I(X) − I(Y)|

2
,

max
(
H(X),H(Y)

)
=
H(X) +H(Y)

2
+
|H(X) −H(Y)|

2
,

we get

D
S
F(X + Y) = I

(
X + Y

)
−H

(
X + Y

)
= min

(
I(X),I(Y)

)
−max

(
H(X),H(Y)

)
≤
I(X) + I(Y)

2
−
H(X) +H(Y)

2

=
I(X) −H(X)

2
+
I(Y) −H(Y)

2

=
1
2
D

S
F(X) +

1
2
D

S
F(Y),

as required.

Theorem 2.8. Let X and Y be two independent random variables. Then, an upper bound for the difference information
measure of the mixture random variable αX + (1 − α)Y, α ∈ [0, 1], we have

D
S
F(αX + (1 − α)Y) ≤

1
2
D

S
F(X) +

1
2
D

S
F(Y) +Kα(X,Y),

whereKα(X,Y) = 1−α2

α2 I(X) + 1−(1−α)2

(1−α)2 I(Y) − log(α(1 − α)).

Proof: From the definition of difference information measure of of the mixture random variableαX+(1−α)Y,
α ∈ [0, 1] and upon making use Theorem 2.7, and Lemma 2.5, we have

D
S
F(αX + (1 − α)Y) ≤

1
2
D

S
F(αX) +

1
2
D

S
F((1 − α)Y)

= D
S
F(X) +

1 − α2

α2 I(X) − log(α)

+DS
F(Y) +

1 − (1 − α)2

(1 − α)2 I(Y) − log(1 − α)

as required.

Theorem 2.9. An upper bound for the |DS
F(X)|p, for p > 0 is given by

|D
S
F(X)|p ≤ γp

{
I

p(X) +
γp

2p

((
2πe

)p
Vp(X) + 1

)}
, (20)

where γp = max(1, 2p−1) and I(X) and V(X) are Fisher information and variance of an arbitrary random variable on
support X = R.
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Proof: From the inequality

|a − b|p ≤ γp

(
|a|p + |b|b

)
,with γp = max(1, 2p−1), p > 0,

we readily have

|D
S
F(X)|p = |I(X) −H(X)|p ≤ γp

{
I

p(X) + |H(X)|p
}
. (21)

From the Lemma 1 of [27], we have an upper bound for any arbitrary random variable X on support R as

H(X) ≤
1
2

log(2πeV(X)). (22)

Now, from (21) and (22) and also making use the inequality log(x) ≤ x − 1, x > 0, we find that

|D
S
F(X)|p = |I(X) −H(X)|p ≤ γp

{
I

p(X) + |H(X)|p
}

≤ γp

{
I

p(X) +
∣∣∣∣∣12 log(2πeV(X))

∣∣∣∣∣p}
≤ γp

{
I

p(X) +
1
2p

∣∣∣∣∣2πeV(X) − 1
∣∣∣∣∣p}

≤ γp

{
I

p(X) +
γp

2p

((
2πe

)p
Vp(X) + 1

)}
,

as required.
The special case of Theorem 2.9 when α = 0, has the representation

|D
S
F(X)| ≤ I(X) + (πe)V(X) +

1
2
. (23)

3. Jensen-difference Fisher–Shannon information measure

In this section, we initially establish and explore several properties of a Jensen-difference Fisher-Shannon
information measure. Subsequently, we introduce two extensions of this informational measure and provide
some results in this regard.

Definition 3.1. Let f0 and f1 be two density functions on support X. Then, the Jensen-difference Fisher–Shannon
information measure, JD( f0, f1), is defined as

JD( f0, f1) =
1
2
D

S
F( f0) +

1
2
D

S
F( f1) −DS

F

( f0 + f1
2

)
. (24)

Lemma 3.2. The JD divergence measure in (24) is non-negative.

Proof: From the definition of difference Fisher–Shannon information measure in (10) and making use the
convexity properties of Fisher information with respect to density f , we have that

I

( f0 + f1
2

)
≤

1
2
I( f0) +

1
2
I( f1)

and concavity property of Shannon entropy with respect to density f

1
2
H( f0) +

1
2
H( f1) ≤ H

( f0 + f1
2

)
,
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we have

I

( f0 + f1
2

)
−H

( f0 + f1
2

)
≤

1
2
I( f0) +

1
2
I( f1) −

1
2
H( f0) −

1
2
H( f1).

From this we find that

JD( f0, f1) =
1
2
I( f0) +

1
2
I( f1) − I

( f0 + f1
2

)
+H

( f0 + f1
2

)
−

1
2
H( f0) −

1
2
H( f1)

= JF ( f0, f1) +JS( f0, f1) (25)
≥ 0,

as required, whereJF ( f , 1) is the Jensen–Fisher information divergence [21] between two density functions
f and 1 defined as

JF ( f , 1) =
1
2

D
(

f ,
f + 1

2

)
+D

(
1,

f + 1
2

)
, (26)

D( f , 1) is relative Fisher information divergence [9, 30] between two density functions f and 1 defined as

D( f , 1) =
1
2

∫
X

(
∂
∂x

log f (x) −
∂
∂x

log 1(x)
)2

f (x)dx,

JS( f , 1) is the Jensen–Shannon divergence [8, 22] between two density functions f and 1 which can be
defined in terms of Shannon entropies or Kullback–Leibler divergences [13] as

JS( f , 1) = H
( f + 1

2

)
−

1
2

[H( f ) +H(1)]

= KL
(

f ,
f + 1

2

)
+ KL

(
1,

f + 1
2

)
,

and KL( f , 1) is the Kullback–Leibler divergence between two density functions f and 1 defined as

KL( f , 1) =
∫
X

f (x) log
( f (x)
1(x)

)
dx.

Corollary 3.3. Let f0 and f1 be two density functions on support X. Then, from the proof of Lemma 3.2, we have

JD( f0, f1) =
SD( f0, f1) + SKL( f0, f1)

2
,

where

SD( f0, f1) = D
(

f0,
f0 + f1

2

)
+D

(
f1,

f0 + f1
2

)
,

and

SKL( f0, f1) = KL
(

f0,
f0 + f1

2

)
+ KL

(
f1,

f0 + f1
2

)
.

3.1. Extension to k random variables
We now extend the definition of Jensen-difference divergence measure in (24) to the case of k random

variables. Let X1, . . . ,Xk be random variables with density functions f1, . . . , fk, respectively, and p =
(p1, . . . , pk) be a k-dimensional vector with non-negative real numbers such that

∑k
i=1 pi = 1. Then, the

Jensen-difference measure is defined as

JD

(
f1, . . . , fk; p

)
=

k∑
i=1

piD
S
F( fi) −DS

F

( k∑
i=1

pi fi
)
. (27)
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Lemma 3.4. The JD
(

f1, . . . , fk; p
)

information measure can be represented based on Fisher information distance
and Kullback–Leibler divergence measure as

JD

(
f1, . . . , fk; p

)
=

k∑
i=1

pi

(
D( fi, fT) + KL( fi, fT)

)
,

where fT =
∑n

i=1 pi fi is mixture density.

Proof: From the definition of the Jensen-difference measure in (27) and upon making use the proof of
Lemma 3.2, we have

JD

(
f1, . . . , fk; p

)
=

k∑
i=1

piD
S
F( fi) −DS

F

( k∑
i=1

pi fi
)

= JF

(
f1, . . . , fk; p

)
+JS

(
f1, . . . , fk; p

)
=

k∑
i=1

pi

(
D( fi, fT) + KL( fi, fT)

)

where JF
(

f1, . . . , fk; p
)

and JS
(

f1, . . . , fk; p
)

are Jensen-Fisher and Jensen-Shannon information measures
based on k density functions, defined as

JF

(
f1, . . . , fk; p

)
=

k∑
i=1

piI( fi) − I
( k∑

i=1

pi fi
)

and

JS

(
f1, . . . , fk; p

)
= H

( k∑
i=1

pi fi
)
−

k∑
i=1

piHi( fi). (28)

Theorem 3.5. An upper bound for the JD
(

f1, . . . , fk; p
)

in (27) is given by

JD

(
f1, . . . , fk; p

)
≤

k∑
i=1

k∑
j=1

pip j

{
I( fi) + χ2( fi, f j)

}
, (29)

where χ2( fi, f j) =
∫ ( fi(x)− f j(x))2

fi(x) dx is known as chi-square between two density functions fi and f j; for more details,
one may refer to [18].

Proof: From the definitions of JD
(

f1, . . . , fk; p
)

(27) and JS
(

f1, . . . , fk; p
)

in (28), and using Lemma 3.4, we
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have

JD

(
f1, . . . , fk; p

)
=

k∑
i=1

piD
S
F( fi) −DS

F

( k∑
i=1

pi fi
)

=

k∑
i=1

piIi( fi) − I
( k∑

i=1

pi fi
)
+

k∑
i=1

piKL( fi, fT)

≤

k∑
i=1

piIi( fi) +
k∑

i=1

k∑
j=1

pip jKL( fi, f j)

=

k∑
i=1

k∑
j=1

pip j

{
I( fi) + KL( fi, f j)

}

≤

k∑
i=1

k∑
j=1

pip j

{
I( fi) + χ2( fi, f j)

}
,

where the first inequality follows from the fact that KL( fi, fT) ≤
∑k

j=1 p jKL( fi, f j), and the last inequality
follows from the fact that KL( fi, f j) ≤ χ2( fi, f j).

3.2. (p,w)-Jensen difference information measure
In this subsection, we first review the definition of (p,w)-Jensen–Shannon divergence measure. Then,

we introduce (p,w)-Jensen–Fisher divergence measure and (p,w)-Jensen–difference divergence measure in a
way similar to (p,w)-Jensen–Shannon divergence. Furthermore, we establish some results for this extended
divergence measure.

Let f and 1 be two density functions. The (p,w)-Jensen–Shannon divergence between two density
functions f1 and f2, for α and p ∈ (0, 1), is defined as

JS
(

f1, f2; p,w
)
= H

(
(1 − s̄) f1 + s̄ f2

)
− wH

(
(1 − p) f1 + p f2

)
(30)

−(1 − w)H
(
p f1 + (1 − p) f2

)
= wKL

(
(1 − p) f1 + p f2 : (1 − s̄) f1 + s̄ f2

)
+(1 − w)KL

(
p f1 + (1 − p) f2 : (1 − s̄) f1 + s̄ f2

)
,

where s̄ = wp + (1 − w)(1 − p). For more details, one may refer to [26] and [25].

3.3. (p,w)-Jensen–Fisher information
Definition 3.6. Let X1 and X2 be two random variables with density functions f1 and f2, respectively, Then, the
(p,w)-Jensen–Fisher information measure, for w, p ∈ (0, 1), is defined as

JF

(
f1, f2; p,w

)
= wI

(
(1 − p) f1 + p f2

)
− (1 − w)I

(
p f1 + (1 − p) f2

)
−I

(
(1 − s̄) f1 + s̄ f2

)
, (31)

where s̄ = wp + (1 − w)(1 − p).

Lemma 3.7. The (p,w)-Jensen–Fisher information measure in (31) can be represented as

JF

(
f1, f2; p,w

)
= wD

(
(1 − p) f1 + p f2 : (1 − s̄) f1 + s̄ f2

)
+(1 − w)D

(
p f1 + (1 − p) f2 : (1 − s̄) f1 + s̄ f2

)
,



O. Kharazmi, J. E. Contreras-Reyes / Filomat 39:9 (2025), 3127–3144 3138

where s̄ = wp + (1 − w)(1 − p).

Proof: Let us consider h1(x) = (1 − p) f1(x) + p f2(x), h2(x) = p f1(x) + (1 − p) f2(x), and

hT(x) = wh1(x) + (1 − w)h2(x) = (1 − s̄) f1(x) + s̄ f2(x),

then by letting C = wD
(
h1 : hT(x)

)
+ (1 − w)D

(
h2 : hT), we have

C = w
∫ (h′1(x)

h1(x)
−

h′T(x)
hT(x)

)2

h1(x)dx + (1 − w)
∫ (h′2(x)

h2(x)
−

h′T(x)
hT(x)

)2

h2(x)dx

= w
∫ (h′1(x)

h1(x)

)2

h1(x)dx + (1 − w)
∫ (h′2(x)

h2(x)

)2

h2(x)dx +
∫ (h′T(x)

hT(x)

)2

hT(x)dx

−2
∫ wh′1(x)h′T(x)

hT(x)
dx − 2

∫ (1 − w)h′2(x)h′T(x)
hT(x)

dx

= w
∫ (h′1(x)

h1(x)

)2

h1(x)dx + (1 − w)
∫ (h′2(x)

h2(x)

)2

h2(x)dx +
∫ (h′T(x)

hT(x)

)2

hT(x)dx

−2
∫ (h′T(x)

hT(x)

)2

hT(x)dx

= w
∫ (h′1(x)

h1(x)

)2

h1(x)dx + (1 − w)
∫ (h′2(x)

h2(x)

)2

h2(x)dx −
∫ (h′T(x)

hT(x)

)2

hT(x)dx

= wI
(
h1

)
+ (1 − w)I

(
h2

)
− I

(
hT

)
= JF

(
f1, f2; p,w

)
,

as required.

3.4. (p,w)−Jensen difference Fisher–Shannon information measure
Definition 3.8. Let X1,X2 and Y be random variables with density functions f1, f2 and ψ, respectively. Then, the
(p,w)-Jensen difference information measure, for w, p ∈ (0, 1), is defined as

JD

(
f1, f2; p,w

)
= wDS

F

(
(1 − p) f1 + p f2

)
+ (1 − w)DS

F

(
p f1 + (1 − p) f2

)
−D

S
F

(
(1 − s̄) f1 + s̄ f2

)
, (32)

where s̄ = wp + (1 − w)(1 − p).

Theorem 3.9. The (p,w)-Jensen difference information measure can be expressed as

JD

(
f1, f2; p,w

)
= JS

(
f1, f2; p,w

)
+JF

(
f1, f2; p,w

)
. (33)

Proof: From the definitions of the (p,w)-Jensen difference information measure in (32) and (p,w)-Jensen-
Shannon information measure in (30), and (p,w)-Jensen-Fisher information measure in (31) we have

JD

(
f1, f2; p,w

)
= wDS

F

(
(1 − p) f1 + p f2

)
+ (1 − w)DS

F

(
p f1 + (1 − p) f2

)
−D

S
F

(
(1 − s̄) f1 + s̄ f2

)
= wI

(
(1 − p) f1 + p f2

)
− (1 − w)I

(
p f1 + (1 − p) f2

)
−I

(
(1 − s̄) f1 + s̄ f2

)
−H

(
(1 − s̄) f1 + s̄ f2

)
+wH

(
(1 − p) f1 + p f2

)
+ (1 − w)H

(
p f1 + (1 − p) f2

)
= JS

(
f1, f2; p,w

)
+JF

(
f1, f2; p,w

)
,

as required.
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4. Application

We say that Z is standardized skew-normal distributed [2, 8–10] with shape parameter η and PDF given
by:

f (z) = 2ϕ(z)Φ(ηz), z ∈ R. (34)

where ϕ(·) and Φ(·), are respectively the PDF and cumulative distribution function of the standardized
gaussian distribution. If Z is standardized skew-normal distributed, then is denoted as Z ∼ SN(η).

Proposition 4.1. Let Z ∼ SN(θ) with PDF defined in (34), then

i) [9] The Shannon entropy of Z is

H( f ) = H( f0) − E[log{2Φ(ηZ)}], (35)

where f0 is the standardized gaussian density function with Shannon entropyH( f0) = (1/2) log(2πe).

ii) [10] A suitable approximation of Fisher information of Z is

I( f ) ≈ 1 +
(bη)2√

1 + 2b4η2
, (36)

with b =
√

2/π.

In the part (i) of Proposition 4.1, the expected value of (35) is an integral that must to be evaluated
numerically using, for example, the QUADPACK routine. The Shannon entropy and approximated Fisher
information given in Proposition 4.1 could be replaced directly in (10) to obtain the mixture information
measure. In the left panel of Figure 1 is plotted this measure for several values of α and η. Note that
the information increases when |η| ≫ 0 and α → 2, and tends to 1 when |η| → 0 and α → 0. Minimum
information is obtained at |η| = 0 and α = 2. The right panel of Figure 1 illustrates the particular case of
α = 2 for several values of η, to clarify the latter observations.
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Difference information measure

η

Figure 1: Left: Mixture information measure of a standarized skew-normal random variable with skewness parameter η and 0 ≤ α ≤ 2.
Right: Case α = 2 (difference information measure) for the same random variable.

Proposition 4.2. Let X1 ∼ SN(η1) and X2 ∼ SN(η2), be two skew-gaussian random variables with respective PDFs
f1 and f2 defined as in (34). Then, the Jensen-difference Fisher–Shannon information measure between X1 and X2
given in (25) is the sum of the following two divergences:
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i) [8] The Jensen–Shannon divergence between X and Y is

JS( f1, f2) =
1
2

E
[
log

{
2Φ(η1X1)

Φ(η1X1) + Φ(η2X1)

}]
+

1
2

E
[
log

{
2Φ(η1X2)

Φ(η1X2) + Φ(η2X2)

}]
. (37)

ii) [9, 10] A suitable approximation of Jensen–Fisher divergence between X1 and X2 is

JF ( f1, f2) ≈
(bη1)2√
1 + 2b4η2

1

+
(bη2)2√
1 + 2b4η2

2

−
2η1η2b2√

1 + η2
1 + 2b4η2

2 − η
2
2

, (38)

under condition 1 + η2
1 > η

2
2(1 − 2b4).

As in the Shannon entropy case, the expected values of (37) must to be evaluated numerically using the
QUADPACK routine. In Figure 2 is illustrated the Jensen-difference Fisher–Shannon information measure for
several values of ηi, i = 1, 2. It is observed in Figure 2 that JD( f1, f2; p1, p2) = 0 when η1 = η2. In addition,
the distance increases when skewness parameters increase such as in Jensen–Shannon divergence [8] and
Jensen–Fisher divergence [9] cases. However, it can be observed that information is mainly affected by the
Jensen–Fisher divergence where, for η1 , η2, we observe that measure has the highest values.
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Figure 2: Jensen-difference Fisher–Shannon information measure for two independent skew-normal random variables with skewness
parameters η1 and η2.
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4.1. Maximum likelihood estimator

For this application, is considered the maximum likelihood estimator (MLE) of shape parameter ηi
computed in [8] with the sn library of R software’s. Let z1, . . . , zn be a sample of size n from a skew-normal
random variable, the MLE η̂i is obtained numerically by maximizing the log-likelihood function:

ℓ(ηi) = −
1
2

n∑
t=1

z2
t +

n∑
t=1

log Φ{ηizt},

i.e., η̂i = arg maxηi
{ℓ(ηi)}. Moreover, MLE η̂i could be replaced in (35)–(38) as a plug-in estimator to obtain

the required measures.

4.2. Fish condition factor time series

In this section, we revisited the time series analyzed in [8, 9, 11] about fatness condition factor (CF)
index of anchovies from the perspective of mixture information measure and related divergence. The CF
index is a biological indicator for the morphometric relationships of the weight and length. Therefore we
consider skew-normal-distributed CF monthly time series (from 01/1990 to 12/2010), denoted as Z ∼ SN(ηi),
for lengths 12, . . . , 18 (cm) and genre groups (males and females) [see Figure 5 of 8]. Total number of lengths
are 7 and the sample size of each time series is n = 264. Table 1 shows the maximum likelihood estimations
of skewness parameters based on the skew-normal density fits and related to each time series and group.

Table 1: Shape parameter estimates of standardized skew-normal densities with its respective standard errors in parenthesis, for each
length class and group (males or females). Source: [8].

Length Males Females
12 -1.065 (0.147) 0.552 (0.196)
13 1.778 (0.134) 2.267 (0.128)
14 -1.086 (0.166) 1.242 (0.157)
15 -0.442 (0.150) 0.728 (0.174)
16 1.616 (0.149) 1.702 (0.155)
17 -3.092 (0.080) -0.689 (0.149)
18 1.368 (0.201) -1.581 (0.136)

Mixture information measure is considered first to compares between length classes of CF time series
for several orders. Figure 3 shows the mixture information measure values for α ∈ [0, 2], where information
for males are quite similar to than one of females. However, some interesting difference between groups
can be highlighted depending on length class. For example, for males, only length classes 13 and 17 have
positive trends, while for females, only length class 13 have positive trend.

Given that mixture information measure has the advantage of detect predominance of Fisher informa-
tion or Shannon entropy for CF time series, results obtained from this measures allow new light on the
interpretation of the data. In particular, for latter length classes, Fisher information is always predominant
over Shannon entropy. This means that increments the whole information in CF data are produced by the
presence of asymmetry, which is modelled by skewness parameter of SN model. In addition, uncertainty
considered by Shannon entropy not affect enough the whole information. This predominance of Fisher in-
formation over Shannon entropy was not detected by traditional tools, such as Fisher–Shannon information
plane [9, 12], which consider the product of both measures.
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Figure 3: Mixture information measure for both genres and all lengths (12, 13, . . . , 18) based on standardized skew-normal random
variables with estimated skewness parameters of Table 1 and order α ∈ [0, 2].

Jensen-difference Fisher–Shannon information measure between length classes of males are given by

0.000 15.271 0.000 0.214 11.446 7.144 7.178
4.808 0.000 4.991 1.806 0.015 107.575 0.086
0.000 15.341 0.000 0.226 11.503 6.835 7.221
0.424 11.843 0.459 0.000 8.744 25.676 5.297
4.634 0.017 4.815 1.664 0.000 106.648 0.035
1.086 18.391 1.068 1.663 14.226 0.000 9.566
4.342 0.131 4.520 1.439 0.045 104.692 0.000


and for females are given by

0.000 6.211 0.544 0.026 2.014 1.195 8.789
0.949 0.000 0.401 0.796 0.137 2.987 12.658
0.248 1.102 0.000 0.147 0.176 2.030 11.159
0.021 4.154 0.265 0.000 1.234 1.429 9.614
0.546 0.229 0.108 0.413 0.000 2.486 11.962
1.001 30.364 4.779 1.510 11.841 0.000 1.001
1.913 35.869 6.371 2.529 14.544 0.364 0.000


From the latter measures, specifically for males, the length class L = 13 and 17 cm produces the higher

values of Jensen-difference Fisher–Shannon information measure with the pairs of length classes (13, 14),
(13, 17), (16, 17) and (17, 18); since the high value of estimated skewness parameter for L = 13 and 17 cm
(Table 1). For females, Jensen-difference Fisher–Shannon information measure produces clear discrepancies
for the length classes L = 13 and 18 cm with respect to other classes, such as those detected by Jensen–
Shannon divergence [8]. Specifically, the Jensen-difference Fisher–Shannon information measure highlights
the discrepancy of the pairs of length classes (13, 17), (16, 18) and (13, 18); since the high value of estimated
skewness parameter for L = 13 and 18 cm (Table 1). Similar results for both groups were detected by Fisher–
Shannon information plane based on skew-normal densities [9] and belief Fisher–Shannon information
plane [12]. These discrepancies were also detected for these length classes with respect to other ones by
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the Jensen–Shannon divergence, the Kullback–Leibler divergence-based hypothesis tests [8, 11], and the
Jensen-variance distance [19].

5. Conclusions

In this paper, we have introduced and investigated various information measures, focusing primarily
on the Fisher-Shannon framework. Beginning with the exploration of foundational concepts such as Fisher
and Shannon information measures, we extended our inquiry to propose a novel mixture Fisher-Shannon
information measure. Motivated by de Bruijn’s identity, we established its properties and examined a
specific case known as the difference information measure. Moving forward, we delved into the Jensen-
difference Fisher-Shannon information measure, elucidating its fundamental properties and introducing
two extensions to broaden its applicability. By rigorously exploring these measures, we provided valuable
insights into their theoretical foundations and practical implications. Furthermore, our analysis extended
beyond theoretical considerations to practical applications, as demonstrated in the examination of time
series data related to the fatness condition factor (CF) index of anchovies. Through the application of
mixture information measures and associated divergences, we revisited previous analyses, shedding new
light on the interpretation of the data.

It will also be of great interest to study cumulative versions of these measures, and we plan to do this in
our future work. Additionally, there is potential to extend the idea based on generalized Fisher information
and the generalized extensions of Shannon entropy (Rényi and Tsallis) measures [23]. We are currently
working on these problems and hope to report our findings in a future paper.
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