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Caputo-hybrid Hermite-Hadamard and Newton’s type inequalities in
multiplicative calculus with applications

Muhammad Umar?, Saad Thsan Butt**

®Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Pakistan

Abstract. The study addresses the need for a comprehensive mathematical framework for multiplicative
(geometric) P-convex functions, specifically in the context of P, (Proportional Caputo-Hybrid) operators.
The research identifies a significant gap in existing literature concerning the formulation of specific inequal-
ities and their applications to this class of functions. This study aims to fill the gap by developing and
presenting new H,H,; (Hermite-Hadamard) type inequalities tailored to multiplicative P-convex functions
using P, operators. The lack of a detailed understanding and established results in this area underscores
the importance of the study. The main contributions include the derivation of novel inequalities that ex-
tend the traditional concepts of convexity into a multiplicative framework. Additionally, a new Newton’s
type identity applicable to multiplicatively P-differentiable functions is introduced, which provides fresh
insights and tools for analysis in this domain. The practical implications of the findings are demonstrated
through applications to special means and type-1 modified Bessel functions. These applications not only
validate the theoretical results, but also highlight their versatility and relevance in broader mathemat-
ical contexts. Research significantly advances the theoretical understanding of multiplicative P-convex
functions, offering new analytical tools and frameworks. This advancement has potential implications
for various mathematical and applied fields, including optimization and numerical analysis. The study
suggests that future research could explore additional applications and extend the theoretical framework
to other types of functions and operators, thereby broadening the scope and impact of the findings in this
emerging area of study.

1. Introduction

Convexity theory has proven invaluable in many fields of mathematics and engineering, providing a
thorough and cohesive framework for examining a wide range of issues. The exploration of convexity in
conjunction with integral inequalities represents a captivating area of research and has a close relationship
in the development of the theory of inequalities, which is an important tool in the study of some properties
of solutions of differential equations as well as in the error estimates of quadrature formulas. In the
subsequent, we provide the basic terminologies relevant to convexities and inequalities.
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Definition 1.1. [26] The mapping f: 1 c R — R is designated as convex, if
f(ut+ (1 - Hv) < thu) + (1 - HAV), )
VY te[0,1]and u, v € T holds.

Definition 1.2. [26] A positive function f : I — R is designated as logarithmically convex or multiplicatively
convex, if

F(ut+ (1~ Hv) < [(w)][Av)]*?, @)
VY te[0,1]and u, v € 1 holds.

The inequalities for convex functions identified by J. Hadamard and C. Hermite hold substantial impor-
tance inside the written works, see ([11, 17] ([30], p.137)). Such kind of inequalities states thatif f: I — R
is possessing convexity onI C R and u, v € I with u < v, then

I(U;V)gviuﬁ f(X)d(x)gw. .

In the case of a concave function, the inequalities are satisfied in the reversed direction. Notably, Hadamard’s
inequality can be viewed as an improvement on the concept of convexity and Jensen’s inequality makes it
easy to derive. Over the past two decades, there has been a substantial focus on obtaining new bounds for
both the right-hand and left-hand sides of inequality (3).

1.1. Multiplicative Calculus

Between 1967 and 1970, Grossman and Katz introduced a novel approach to derivatives and integrals,
wherein they replaced subtraction and addition with division and multiplication. This innovation led to
the development of a new calculus known as multiplicative calculus or non-Newtonian calculus. Despite
effectively addressing various calculus-related issues, multiplicative calculus has not gained the same level
of popularity as Newton and Leibniz’s calculus. Its application is relatively limited, mainly encompassing
positive functions. This raises the question of whether it is rational to create a specialized tool when a
more comprehensive one already exists. The analogy can be drawn to mathematicians employing a polar
coordinate system alongside the rectangular coordinate system, as each serves its purpose effectively([15,
36]).

Next we initiate by revisiting certain definitions, properties, and concepts related to differentiation,
along with exploring aspects of multiplicative integration.

Definition 1.3. [5] Assume that the function f: R — R is positive. The function fdenotes multiplicative derivative
by f is defined as follows.

d&f Lo (fx +h))i
G - Te9= 11355( )

Remark 1.4. If f has positive values and is differentiable at x, then f* exists and the relation between * and ordinary
derivative f' is as follows:

o o0 — o5

The multiplicative derivative admits the following properties:

Proposition 1.5. [5] Let f and g be multiplicatively differentiable functions and c is arbitrary constant. Then
functions cf, fg, f/g and f+ g are * differentiable

1. (cfy () = £ (%)
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2. (fg)"(») = £(2)g"(»)

3. (F+ 8 () = F ()T (O T
4 (5) 00 = 65

5. ()60 = £ (0808

The multiplicative integral, occasionally referred to as the * integral, is symbolised by the symbol

fu "(£(»))¥*. This mathematical model proposed by Bashirov et al. in [5]. In defining the classical Riemann
integral of f over the interval [u, v] the approach involves employing the sum of product term, The defini-
tion of the multiplicative integral of fover the interval [u, v] involves raising the product of terms to a power.

The relationship that exists between the multiplicative integral and the Rimann integral is as outlined
below [5]:

Proposition 1.6. Riemann integrability of fon [u, v] implies the multiplicative integrability of fon the same interval.

f V(f(%))d" — oy In(fG0)dx

Furthermore, as demonstrated by Bashirov et al. [5], multiplicative integrable has the subsequent
characteristics and outcomes:

Proposition 1.7. Riemann integrability of fon [u, v] implies * integrability of f on the same interval

e N (O

2 [(60g60)” uf (FC0™ ] 560y
e e

4. f C{) R f (FGO)™. f (fG)™ u<c<v
5. f (Fo0r™ =1, f (FGO)™ = ( f (f(m))d”)_l.

Alternatively, the subsequent multiplicative Riemann-Liouville fractional integrals were put forward
by Abdeljawed and Grossman [1].

Definition 1.8. The symbol WP A0 is a designation of multiplicative left Riemann-Liouville fractional integral of
order B, € C,Re(B,) > 0 with f, as an initial point is given by

(I (3¢) = e oMo,
and what defines the multiplicative right one is
(P () = U0 (nenG

Here ]f; fand ]ﬁ ".f describe the right and left Riemann-Liouville fractional integral, given by [19]

Po g — 3\Bo-1
I A(t) F(ﬁo)f(t nPeT f(H)dt, v > n.
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and

i f() = f - P R, u < x

1
I'(Bo)
accordingly, where T(B,) = fooo e~cufoldu. Hereis J° f(x) = f(») = °, f(x).

Theorem 1.9. (Multiplicative integration by parts [5]) Let f : [u,v] — R and g : [u,v] = R are possessing *
differentiability and differentiability respectively, so the function f& is * integrable then it implies that

v § B dx _ f(V)g(V). 1 ‘
j; (f ()8 )) e fuv (f(%)g'(%))d%

Lemma 1.10. [3] Let f: [u,v] = R and g : [u,v] — R are possessing * differentiability and differentiability
respectively, so the function f® is * integrable then it implies that

. W eoge0 ) _ f(V)g(V)_ 1 .
[ (pnGoyen)” < 20 (oo

Let us now provide some essential definitions and mathematical preliminaries of multiplicative calculus
theory that will be used throughout this paper.

Proposition 1.11. The log convexity of f and g, implies the log convexity of fg and é.

For convex functions, the standard H,H, inequality is provided by the equality (3).

In [2], Ali et al. demonstrated the H,H; inequality for multiplicatively convex functions in the following
way:

Theorem 1.12. Let the positive function f is possessing multiplicatively convexity on [u, v] then the subsequent
disparities are true.

(59)=<( [ o) < Gt 0 @

where G(., .) is geometric mean.

However, the H,H; inequality for multiplicative Riemann-Liouville fractional integrals was demon-
strated in [6], which is a noteworthy inequality.

Theorem 1.13. Let the positive function f is possessing multiplicatively convexity on [u, v], then, we obtain the
subsequent H,H, inequality for multiplicative fractional integrals of Riemann-Liouville

t(u;— V) < [ulf“f(v).*lli“f(u)];fj ” < G(f(w), (v)), ¥

where G(., .) stands for geometric mean.

Theorem 1.14. [6] Let the positive function f is possessing multiplicatively convexity on [u, v], then, we obtain the
subsequent H,H,; inequality for multiplicative fractional integrals of Riemann-Liouville

2Po-11(g,+1)

(557 < [ AT f)] " < Glfw), ), ©

0
2 2

where G(., .) stands geometric mean.
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The following definition is very important for multiplicative calculus.
Definition 1.15. The multiplicative left latest proportional caputo hybrid operator of order p, € C designated by
(UDE"f)(%) with Re(B,) > 0 by assuming B, as an initial point is given by
(D A(x) = el Dirtnehe0

and what defines the multiplicative right one is

(DF () = el P ineneo,

Definition 1.16. [33] Let B, > 0and B, ¢ {1,2, ...}, n = [Bo] + 1, f € AC"[u, V], the space of functions having n—th
derivatives absolutely continuous. The right-sided and left-sided Caputo fractional derivatives possessing order f,
are described as below:

1 \’%4
e ft :—f t— )" Pl (Hdt, x < v.
(D) T =fo) %( ) (®
and

C1yBo n—p,—1
D Af(t) = e —ﬁo)f -1 ' (Hdt, x> u

If Bo = n € 1,2,... and usual derivative f'(t) of order n exists, then Caputo fractional derivative CDﬁ ° f(t) overlaps
with £'(f) whereas CD[jﬁf(t) with exactness to a constant multiplier (=1)". In particular we achieve,

D). f(t) = “DY_f(t) = f()

wheren = 1and p, = 0.

Within the topic of fractional calculus, one commonly utilized fractional derivative operator as the Caputo
derivative operator. In terms of time, it may be defined as the fractional derivative of a function whose
order is non integer.

In fractional calculus Caputo operator is widely used along with its derivative operator. It is define as
the fractional derivative of a function with respect to time, where the order of the derivative is a non-integer
value. The Riemann-Liouville integral operator, on the other hand, is a fractional integral operator that is
also commonly used in fractional calculus. Several studies have been done in literature pertaining a variety
of fractional integral operators concerning H,H;s integral inequalities. The recent latest P, is a mathemat-
ical operation that has been proposed as a non-local and singular operator, incorporating both derivative
and integral operator components in its definition. It can be written as a simple linear combination of the
operators for the Caputo derivative and the Riemann-Liouville integral [4, 16].

Definition 1.17. [4, 16] Let the function f: 1 c R+ — R is possessing differentiability on I° and £, € L'(I). Then
the Py, may be described as

o 4 o
DY = gy f (K (Bor 200 + Ko(Bo, 2)F GOt = 20 Fodlx,

where B, € [0, 1] and Ko and K are function satisfying
ﬁlln(}+ KO(ﬁO/ %) = OI ﬁhrnl KO(,BOI %') = 1/ KO(ﬁO/ %) ;t O/ ﬁo € (O/ 1]/

lim Ky(Bo, 0 = 0; lim Ka(Bo, %) = 0; Ka(Bo, 20 # 0, fo € [0,1),
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Next we define the latest P,,, of order f3,:

Definition 1.18. [4, 16] Let the function f: 1 C R* — R is possessing differentiability on I° and f,f € L(1). The
right-sided and left-sided P,y of order B, are described as below:

PC1fo _ 1 Y _ _ / — ») Po
DAY = f (K60 v = 50150 + Kol v = 50 0| (v = 20l

and
VDL f(w) = r(%ﬁ) f [Kl(ﬁo,% — u)f(x) + Ko(Bo, % — u)f'(%)](x — u)Pody,

where B, € [0,1] and Ko(Bo, t) = (1 = Bo)?t'Fe and Ky (Bo, ) = o> tF.

1.2. Newton-type inequalities

Researchers have focused a lot of emphasis on Newton-type inequalities since they have several applications
in both the pure and practical sciences. As an example, integer-order Newton-type inequalities related to
p-harmonic convex functions were established by Noor et al. [27]. Additionally, Sitthiwirattham et al. [35]
introduced several Newton-type inequalities within the context of RL-fractional integrals. Furthermore,
Luangboon et al. [20] used the (p, q)-derivatives in 2021 to derive a few Newton-type inequalities.

These days, multiplicative calculus is becoming more and more popular because of its uses in inequality
theory. In [28] and [29], Ozcan studied the H,H,-type inequalities for multiplicatively P-convex functions
and multiplicatively preinvex functions, respectively. Chasreechai et al. [9] created the multiplicative
integral inequalities of Newton type in 2022. Additionally, several uses for the outcomes were provided.
For 2023, the authors [39] derived integral inequalities of midpoint and trapezoid type by means of mul-
tiplicative functions twice differentiable. Meftah [22] deduced the multiplicative integral inequalities of
the Maclaurin type in the same year. Readers will note that the topics covered in these articles included
integer-order multiplicative calculus inequalities. To top it off, researchers have been tackling multiplicative
fractional inequalities theory piecemeal. For example, Budak and Ozgelik [6] obtained the multiplicative
RL-fractional integral inequalities for the first time. Fu etal. [14] then introduced two new integral operators
and analysed multiplicative fractional H,H-type inequalities, which they called multiplicative tempered
fractional integrals. Subsequently, the authors of the paper [32] proved fractional H,H;-type inequalities
for *differentiable mappings by using multiplicative fractional integrals with exponential kernels.

Furthermore, the equivalent fractional H,H;-type inequalities were derived by Kashuri et al. [18] using
generalised multiplicative fractional integrals. We recommend readers to the published works [12, 13, 23—
25, 31, 40] for current results on fractional multiplicative calculus.

2. Hermite-Hadamard’s Type Inequalities for Multiplicative P—Integrals

To initiate our article, we aim to derive the H,H,’s inequality pertaining to the Multiplicative proportional
Caputo-hybrid operators.

Theorem 2.1. Let f: 1 ¢ R* — R be differentiable function on 1°, the interior of the interval 1, where u, v € 1° with
u < vand £, { be the multiplicative convex function on 1. Then the following inequalities hold:

I'(1-po)

ﬁoz(v_u)ﬁU %(1_ﬁu)(v_u)17ﬂ“ v—u)l=Po
(o TET R et

< (f(u) . f(V))zﬁoz(v—u)ﬂn | (f*(u) . f*(V))(l—ﬁn)(V_uy;;u'
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Proof. Since fand f* are multiplicative p-convex function on interval [u, v], then we have

u+v) Jut+(I-Hv+tv+(1-1Hu
f( 2 )_f( 2 )
< [Aut+ (1 - )V)][f(tv+ (1 - Hu)]

1nf(” ; ") <Inftu+(1 - Ov) + In (v + (1 — D),

similarly for f*

u+v

1nf*( )g Inf(tu+ 1 - Hv)+Inf(tv+ (1 - du).

Multiply (8) with B,%(v — u)’> and (9) with (1 — ,)%(v — u)' o £'=2% respectively, we have

po2v = Inf
< BA(v—u)fr Inf(tu+ (1 - Ov) + B, (v — w)f In f(tv + (1 — Hu),

Ll+V)

and

(1 =B (v—u) Pt =% In f*( u+ v)

< (1 =B (v—u) Pt Inf(tu+ (1 - )v)
+ (1 =B (v—u) P Inf(tv + (1 - Hu).

3151

(10)

(11)

Adding these two expressions by side to side, then integrate the resulting inequality with respect to t over

[0,1], we obtain

B,2(v — u)f" lnf(u - V) (1= B2 (v — ) 1nf*(%’) fo gy
< fo 1 [ﬁoz(v — Wt In f(tu + (1 - Hv)

(1= B2 (v — )PP In f(tu + (1 - t)v)]t-ﬁodt

+ fo 1 [ﬁf(v — w)ft In f(tv + (1 — Hu)

(1= B2V = WP In (v + (1 - t)u)]t-ﬁodt.

Using the change of variable, we obtain

B = w2+ 50 - g - o P e ()

< m f [ﬁoz(v — 0P Inf(¢) + (1 = Bo)(v — )P 1HF(%)](V oFrdn
’ ﬁ f B2 = 0 I 0 + (1= o = ! In £ ()¢ = )Pl
) ﬁ fuv [Kl(ﬁ‘” (v = 2)) In £(2¢) + Ko(Bo, (v = 2)) In f*(%)](v — 2 Podx
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+ ﬁ fv [Kl(ﬁo, (3¢ — ) In £3¢) + Ko(Bo, (3¢ — u)) In f*(%)] (= ) Pedls

_ T(1-B)

- —[PCH+D€” Inf(v) + PC, D¥ In f(u)].
(v—u)l=F

Thus we get,

[f( u+ V)]&Z(V_U)ﬁn [F( u+ V)F(l—ﬁn)(v—u)lﬁ“
2 T2

['(1-po)

< [exp{PC;Dlé" In f(v) + ", D In f(u)}] o

I'(1-po)
(v—u)l=Po

- [L,Df"f(v).*DE,”f(U)]

This is the first part of inequality (14).
As fand f* are Multiplicative convex functions on t € [0, 1], then we have

flut+ (1 - v) < Au)v)

fvt+ (1 - Hu) < Av)f(u)
ie.

Inf{ut+ (1 - v)+Inflvt+ (1 - Hu) (12)
<Inf{u) + Inf(v) + In (u) + In (v)
=2Inf(u) + 2In f(v)

silimarly for f*

Inf'(ut+ (1 -t)v) +Inf(vt+ (1 - Hu) (13)
<2Inf(u) +2Inf(v)

Multiply (12) with B,2(v — u)f* and (13) with (1 — B,)?(v — u)' P =%, we have

Bo>(v — wf In f(ut + (1 — t)v) + B>(v — u)’ In vt + (1 — t)u)
< BA(v— u)f[21n f(u) + 21n (V)]

and

(1= B2 (v =) P % Inf(ut + (1 - t)v)
+ (1 =B (v—w)! P2 Inf (vt + (1 - t)u)
<(1- ‘BO)Z(V— )P 1262 In £ (u) + 2In £ (V)]

Adding these two expressions by side to side, then integrate the resulting inequality with respect to t over
[0,1], we obtain

1
f [ﬁoz(v— Wt In f(ut + (1 - t)v)
0

+ (1 =B (v—w)l Pt P Inf(ut+ (1 - t)v)]t‘ﬁodt
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1
o2(v—u)f o In £ 1-
+f0[/3 (v = u)f % In f(vt + (1 — Hu)
+ (1= By = W PP Inf(ve+ (1= ou)|ede
< BA(v - u)ﬁv[z In f(u) +21n f(v)] (L= Bo)(v— u)l—ﬁo[lnf*(u) +1In f*(v)].

Using the change of the variable, we obtain that
r(l B ﬁo)

T €D In () + 7€, D) In fw)|
v—u °

< B2(v— u)ﬁv[z In f(u) +21n f(v)] (1= Bo)(v— u)l—ﬁo[lnf*(u) +1In f*(v)]

I'(1-po)

[0t ). D0 )|

26, (v=u)f (A=po)(v—u)'Fe
< (f(u) : f(v)) .(f*(u) : f*(v)) .
Which completes the proof. O

Example 2.2. The Figure 2.1 describes the validity of the inequalities of Theorem 2.1 for fix) = 3, u=0, v=1and
po €10,1].

Corollary 2.3. If fand g are two positive and multiplicative convex functions,then we have the following inequality

[ f(u + v) (u + v)rﬂz(v‘”)ﬁo [f*(u + v) *(u + V)]%O—ﬁo)(v—u)”’n
2 )8\ 2 )82

T'(1-po)

S I:quo fg(V)-*DED fg( U)] (v—u)l=Po

. (f(u)f(v))zﬁoz(v_uw.( £ () F(V))(l—ﬁo(v— )ifo . (g(u)g(v))ZﬁOZ(V_um. (g*(u)g*(v))(l_ﬁn)(v_u)lﬂu.

Proof. Since fand g are positive and multiplicative p-convex functions, then g is positive and multiplicative p-convex
function. Thus, if we apply Theorem 2.1 to the function fg,then we obtain the corollary 28. [

Remark 2.4. If we take B, = 1 in corollary 28, then we have the following inequality

(25) ¢(12) < ([ wor= [ o)
< ({WAV)? - ()W)

Theorem 2.5. Let f: 1 R* — R be differentiable function on 1°, the interior of the interval 1, where u, v € 1° with
u < vand £, {* be the multiplicative p—convex function on 1. Then the following inequalities hold:

u+v Bo2(v—u)fe . U+ v 226072 (1-,)(v—u)'F
=) =)

T'(1-Bo)

v—u)l=Fo
<D 0. Dl )|
2

)2[502 (V_ u)ﬁ“

(1=Bo)(v—u)l=Fo
) . (14)

< (f(u)f(v) .(f*(u) )
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= Right Term

—

0.2 0.4 0.6 0.8 1.0
(a) Graphical and Numerical illustration o f Theorem 2.1.

Values of B, | Left Term | Middle Term | Right Term
0 1.37944 1.90285 2.4139
0.1 1.34313 1.804 2.25938
0.2 1.32222 1.74827 2.20976
0.3 1.31602 1.73191 2.25832
0.4 1.32431 1.75381 241163
0.5 1.34738 1.81544 2.69104
0.6 1.386 1.92099 3.13772
0.7 1.44147 2.07783 3.82291
0.8 1.51572 2.29741 4.86697
0.9 1.6114 2.59662 6.47453

1 1.73205 3 9

(b) Numerical illustration o f Theorem 2.1.

Figure 2.1: Graphical and Numerical illustration of Theorem 2.1.

Proof. Since fand f* are multiplicative p-convex function on interval [u, v], then we have

57)-
<[+ (5
f(+

similarly for f*

1nf*(u+

Bo 2(v—u)f lnf(

< B2(v — u)fe 1nf(§u +

t
V) < lnf*(iu +

Multiply (15) with B,%(v — u)f> and (16) with 2%1(1 — B,)?(v — u)! P !~% respectively, we have

f(u +( )V;— V+< )Ll)

o5+ (57 ]
9 <tnr{lus (250 (229))

(55) e e (557))

u+V)

(%) v) B (v — w) 1nf(§tv+ (ZT_t) u),

= Middle Term

3154

(15)

(16)

(17)
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and

(1 Bo)2(v — w)! P % In f*(
<(1- ﬁo)z(v— u)! Pt =2 Inf (%u + (ZT_t) v)

(1= B2 (v = u) P In (Etv ; (ZT_t) u). (18)

Adding these two expressions by side to side, then integrate the resulting inequality with respect to t over
[0,1], we obtain

Bo*(v — u)ﬁolnf( ; ) 1= Bo)*(v—u)"~ ﬁalnf*(u;rv)fltlzﬁﬂdt
0
f[ﬁoz(v )P o lnf( u+(1——)v)

+(1- &ﬂVlﬁ%PmmF(u+ﬂ—ﬂﬂp%m

f[ﬁo (v — ) o lnf( V+(1——)u)

+(1- ﬁo)z(V u)l_ﬁ“tJ o lnf*( v+(1- —)u)]t‘ﬁOdt.

u+v)

Using the change of variable, we obtain

u+v

Bo* (v — u)* 1nf( ) + %(1 = Bo)(v—u) P Inf (

1
D
(v— u)l’ﬁo

u+v)

f ' [ﬁf(v C 0P In f() + (1 = Bo)2(v = 30" P In f"(x)](v — %) Pedx

m f [ﬁoz(% —ufInfx)+ (1 - Bo) 2( —u)t P 1nf*(%)](% —u)Podx

3 1
T
;1
(v —u)l-Fo
T -By)
BT
Thus we get,

[{u + V)]ﬁoz(v—u)ﬁ” [F(u + V)]i(l—ﬁa)(V—u)’ﬁv
2 ' 2

I'(1-po)

< [exp{PC;Dé" Inf(v) + ¢, D% In f(u)}] e

f [Kl(ﬁor (v = 3)) In £3¢) + Koo, (v = %)) In f*(x)](v — %) Pdx
f V [Kl(ﬁof (3¢ — 1)) In f() + Ko(Bo, ( — u)) In f"(%)](% ) Pdx

[PCwDﬁV" In f(v) + ", D In f(u)].

T(1-po)
(v-uwl=Po

- [qu"f(V).*thff(u)]

This is the first part of inequality (14).
As fand f* are Multiplicative convex functions on t € [0, 1], then we have

flut+ (1 - Hv) < {u)fv)
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fivt+ (1 - Hu) < Av)f(u)
ie.

Influt+ (1 - Hv) +Infivt+ (1 — Hu) (19)
<Influ) + Inf(v) + In f(u) + In (v)
=2Influ) +2Inf(v)

silimarly for f*

Inf'(ut+ (1 - t)v) + Inf'(vt+ (1 - Hu) (20)
< 2Inf(u) +2Inf*(v)

Multiply (19) with ﬁoz(v — u)f and (20) with (1 — B,)*(v — u)! P 172, we have
ﬁoz(v— u)f In fut + (1 - v) + ‘BOZ(V— wf Inf(ivt+ (1 - Hu)
< BA(v—u)f[2In f(u) + 2In (V)]

and

(1= Bo)*(v—u) Pt Inf(ut + (1 - V)
+ (1 =B (v—u) Pt 2P Inf (vt + (1 - Hu)
< (1= Bo)(v—u) Pt 21n f'(u) + 2 In f'(v)]

Adding these two expressions by side to side, then integrate the resulting inequality with respect to t over
[0,1], we obtain

1
f [ﬁfw— WP e In fut + (1 - Hv)
0
F (1= B (v— )P AP In f(ut + (1 - t)v)]t-ﬁodt
1
o2(v—u)ftfo In £ 1-
+f0[/3 (v— wf e Infivt + (1 - Du)
F (1= B (v— WP AP In f (ve+ (1 — t)u)]t-ﬁodt

< BA(v— u)ﬁ“[Z In f(u) + 21nf(v)] (1= Bo)(v— u)l—ﬁn[lnf*(u) +1n f*(v)].

Using the change of the variable, we obtain that

I'(1-p,)

oo PCH+D€“Inf(V)+PCTD€"lnf(u)]
Vv—u 0

< B2(v— u)ﬁo[z In f(u) +21n f(v)] (1= Bo)(v - u)l‘ﬁ"[lnf"(u) +1n f*(v)]

T(1-po)

[0 . D s

< (f(u) . f(V))2ﬁnz(Vu)ﬁo | (f*(u) ' f*(v))(lﬁo)(‘,upﬁo'

Which completes the proof. O
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Example 2.6. The following figure 2.2 describe the validity of the inequalities of Theorem 2.5 for f(x) = 2X, u = 0,
v=1andp, €[0,1].

25}
= Right Term
201 — Middle Term
15
_4- L s s 1 s s s 1 s s s
0.4 0.6 0.8 1.0

(a) Graphical illustration o f Theorem 2.5.

Values of §, | Left Term | Middle Term | Right Term

0.2 1.0059 1.01184 1.02383
0.3 1.02451 1.04962 1.1017
0.4 1.05071 1.104 1.21882
0.5 1.08509 1.17741 1.38629
0.6 1.12838 1.27323 1.62112
0.7 1.18155 1.39607 1.94901
0.8 1.24584 1.55213 24091

0.9 1.32277 1.74972 3.06152

1 1.41421 2 4

(b) Numerical illustration o f Theorem 2.5.

Figure 2.2: Graphical and Numerical illustration of Theorem 2.5.

Corollary 2.7. If fand g are two positive and multiplicative convex functions,then we have the following inequality

[f( u+ V) . (Ll + V)]ﬁ"z(v_u)ﬁo ) [f*( u+ V) ) ,;( u+ V)]iﬁ—ﬁu)(v—u)l“"’
2 )82 2 )8\ 72

I'(1-po)

< [qu“fg(V)-*D[jzafg(U)] (v-u)l=Po

= (f(wf(v))%zw_uwo -(f*<u)f*(v))(1_ﬁ”)(v_“Ho

2‘[502(‘/— u)fe 1-Bo)(v— u)l-bo
: (g(U)g(V)) .(g*(u)g*(v)) _

Proof. Since fand g are positive and multiplicative p-convex functions, then fg is positive and multiplicative p-convex
function. Thus, if we apply Theorem 2.1 to the function fg,then we obtain the corollary 28. [

Remark 2.8. If we take B, = 1 in corollary 28, then we have the following inequality

(225)¢(*2) < ([ wor= [ o)

< ((wf(v))* - (g(w)g(v))*.
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3. Newton’s Type Inequalities for Multiplicative p-Integrals
To prove our other main results, we require the following lemma.

Lemma 3.1. Let f: 1 c R* — R be a multiplicative differentiable function on 1°, the interior of the interval 1,where
u,vel®withu< vand f,f" € L[u, v]. Then the following identity hold

[f(u) f(2u + V)3 f( u+ 2V)3 f(V)]”gz(Vu)ﬂal

3 3

(1=po)(v—up*Po

: [f* (u) f (2”3"‘ V)3 ¢ ( u J;Zv)3 ¢ (V)] 163170

1

T
[ D 0 Dl (25 - D (2)] ™

=31 XTI X I3 X Iy XI5 X I,

where
. ﬁnz(v;u)/‘o
d
2u NGO
S=| [ |F(a-ou ) ,
3
0
—po )(v—u 3=Po
—2B0 _3
2u +v 8
%, = f f** (1-Hu) ) ,
3
0
) /s02<v9—u>ﬁv
dt
5 = F((l t)2u+v+tu+2v)(t_%)
3 = 3 3 7
0
(1-po)(v—w)>Fo
dt\~ 3320
( 2u+v u+2v\(E7=3 :
= ff** (1-9 )+t )
3
0
" ﬁoZ(V;U)ﬂ“
d
u + 2V (=)
S5 = (1 - + fV)
0
and
—po)(v—u, 3-Fo
dt %

G

I =

(G pna P
(- (@057 + o)

Se—

Proof. Using integration by parts for multiplicative integrals from J;, we have

po2(v-u)o

1

3y = f[f*((l—t)u+t2u3+ V)H)Jdt

0




M. Umar, S. I. Butt / Filomat 39:9 (2025), 3145-3170

1 (v—u) Vuﬁ" _% dt
:f[f*((l—t)u+t2u?:rv) | ( ( )(t )]
0

f(zu%’) 2 o2 (v—uyfo™!

1

F(u)fe P (F) T po2(v—upfo=1 \ At
W) f(f((l -Du+ tZU—BTV) ’ ]
0
2u+ v\ 1
e o
1

ﬁuz(v_u)ﬁ071
ﬁnz(V—H)ﬁr] 11 f 2u+v
exp Tf n ((1 -Hu+ tT)dt
0

1

2u+v

exp oo u)2 o f Bo>In £ () dx

2

2u+ vy (v
:P(“ V).amﬂ

Similarly for 3,

vu [ (1=po)v-w?Fo at

2u+v) ; (W)(F’”"—%

FTO—0u+t

,\(),?
Il
O%H

s (1=Bo)(v=u)?~Fo

2u+ v\ | BT
:[f*( ) .f*(u)é]
1
1 (1=po2(v-up2Po dt’
/ (f (- pur ) % uol‘z’%)
0
(1=Bo)(v-u)?~Po

s =
_ [f* (2u2+ v) r (u);]

1

exp{(l }9032(‘;";1.1)2 Bo fl ( <(1 _ t U + t2u+V)) HOl—Zﬁudt}
(1=o)v-u)> o

= 1 231720
. [f*(zwy* f*(u)g]

2
1

2utv

exp W [ Ge=w' (1= B,)* Inf () dx

3159

(21)

(22)
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Using (21) and (22), we get

[f(2u+v)24 f(u)} ]

2u+tv

exp {(v_i)z,p(, fs (ﬁo2 (¢ — WP In£(2) + (1 = Bo)? (2 — u) P £ () ) Ot — 1P dx}

—y)Po1
]

U+ v\ By (v-u)f*
- [f( V) .f(u)s]

S 120

L(2u+ vye 23 1

. [f ( 2 ) f (u)s ) (r(l)—érsi,ll7 : (23)
|- Dl fw)|
By using similar method
fo—1
S, = f(u + ZV)é f(Zu + V) Fpet
3394 = 3 3
2 i 2 i (1—/)’;7)3(;;_27%)2*/% 1

fu+2vys (2u+ V)6 e

[f( ) £ (55 )} | T 4

u+2v

[ D" f (@)] (P

and

2

2 3 B2 (v-wfo!
+ 21
35+ I = [f( = V) ~f(u):‘]

23120 1

5
. [f* (2u2+ V)24 SECH ' i) (25)
[ Dﬁu f( 2u+V)] (v-u)2~Po

Using (23), (24) and (25), we get the required result. [J

Remark 3.2. Put f, = 1 in lemma 3.1, we get Remark 4.7 of [41].

[f(“)f(zu; V)3f(u+32V)3 f(wr[fb f(x)w]w

a
v—u

- [fl(f ((1 —Hu+ t2“3+ V)(t_g)]dt] :

(=}

v—u

f* (1—t)

A
2u+V u+2v (t-3) !
e )

fl _

. u+2v <f—z>)“J |
f 1-9 + tv)

S e
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Next, we will consider

w5 5 ]

(1=po)(v—u)} Fo

. [f* (u) f (2”; V)3 ¢ ( u +32v)3 ¢ (V)] 25170

1

r(1-po) |/

[Dlznz”‘)f(u) D(u+2‘) (2 ) Df‘o,)f(%/)] (—wpoT

Theorem 3.3. Let f: I ¢ R* — R be a multiplicative differentiable mapping on [u, v] with u < v and f,f" is
multiplicative convex on [u, v]. Then the following identity hold
. 25802 (v=u)1 tPo
Mi(u, v) < (f (u) (f*(V))) =

(v—u

(fu- ( ) (f** (V))) 233 2P0 [ 9(Bo )+Ql(ﬁn)+‘21(ﬁ0)]

where

1 3y 3
Yolfo) = 3_—250[1‘2(5) ]‘3—2'

W)= 3 —1250 :1 - (%)2_%]’

and

oar_ L | 5] 5
H(ﬁ")‘s—zﬁo_l_z(é) ]Jrﬁ'

Proof. Taking modulus in Lemma 3.1, we get
M (u, v)

exp{wfl(t—g)ln(f"((l—t)u+t2u; V))dt}

0

(1-B,) (v—w*P
“ { 2.3 %

<

X

1

f t2 %, _ ln f** ((1 —Hu+ t2”3+ V))dt}‘

0
2SI [ ol fo-0 25+ 242

0

(1= o) (v—uy ™
X exp{ > 3%,

1
f tzzﬁ“—— f**((l—t)2u+v+tu+2v))dt}‘
3 3
0

X
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1

e B Z)in e (0 - 052Y o))

0

1

el LB [ B (10 252 )]

0

Sexp{wﬂt— g"ln(f* ((1— t)u+t2u; V))
0

1

(1= Bo) (v=w*
X exp{ 233‘12& f

0

1
ﬁoz(v—u)1+ﬁ” ‘ 1H (*( 2u+v u+2v))

xexp{ 9 t 2lnf 1-9 3 +t 3

0

i

22 _ g’ ‘m (f*" ((1 _fu+ Y ; V))‘ dt}

i

(1= Bo) (v —u)* P
xexp { 2332,

1
1 2u+v u+2v
_zﬁo__ x _
ftz 2Hh‘(f ((1 D=3+t ))dt}
0

<ol [l 1= 52
0

(1- ) (v—uf [
2.33-26 f

22 _ g‘ ‘m (f*" ((1 _p X J;ZV ; tv))’ dt}

X exp{
0

i

2o — g‘ ‘ln (f“ (B—_tu + év))

CBEw-wME Ll 3| (LBt ¢
= exp{ =g Oﬂt_g"ln(f(T‘”év))
1

(1 - ﬁo) (v— U)Z_ﬁo
X exp { 2.3 f

0

1
8 {ﬁDZ(V_u)1+ﬁu f‘t_l“ln(f*(z_t +1+t ))
exp —9 5 _3 u _3 \%
0

1
(1-Bo) (v—u)*F
X exp { 2,352 f

1 2—t 1+t
—Zﬁa__ w [ = - - -
£ 2Hln(f ( u+ 3 V))

0

1
ﬁoz(v—u)“ﬁ“f‘ SH (*(1—1‘ 2+t))‘ }
xexp{ 9 t 3 In(f Ut v dt
0

3162

(26)
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(1-B,) (v—u)’* P 2, W(l-t 2+t
xexp{ > 3%, flt2 - —H f ( 3 u+ 5 V)) dt}.
Using the multiplicative P—convexity of f* and f*, we obtain

(3—t
ln(f( 3 u+3v))

Similarly

In (f** (?%tu + gtv))
in(r (S50 ) <
(e (S57u 5)

(11—t 2+t
1“(f( 3 U773 V))

<In(f (u)f* (v)).

<In(f (W) f (v)),

n(f (w) £ (v)),

<In(f (W) £ (v),

n (f (u) £ (v)),

and

L(1-t 2+t
in(f (S5 u 55)

Thus, it follows that

<In(f (u)f (v).

1
ﬁo (V u 1+ﬁ(7
Mi(u, v) < exp t— e t— Z

0
1

le- -l )dt[f" () £ (v)]}

X exp{(1 fo) (v — )" f ‘tz—z,so - g' + ‘tz‘zﬁo - %‘ + 'tz‘zﬁv - g‘)dt[f’“*(u) f“(v)]}.

2.33°%.
0

The desired result can be obtained by noting the following results

Oj|tz-zﬁo P
Ofl.tz_zﬁu - %‘dt e —1250 [1 - (%)Hﬁu]’

and

+3—2.

1
5 1 5\
e — —’dtz — [1 - 2(—)
Of' 8 3-26, 8

This ends the proof. O

3163
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Theorem 3.4. Let f:1C R* — Rbeamultiplicative differentiable mapping on [u, v]withu < vand (Inf)7, (In £*)7
are multiplicative p—convex on [u, v] and ;1; + [11 = 1. Then the following identity hold

po?(v u)“ﬂ’
Mi(u, v) < (7 (u) £ (v))
(1-p0) v u?>~Po

(@ W) T

((sy(r)) HDE) D) %)

((w 0)" +(€(Bo) " +(€Bom) )

where

1
(B0, 1) = [ = 2| dt, €(Boy1) = t”gzm__|m
0
1
(o) = [ -3t 2,0 = [l dt
0 0

D(r) =f1|t— |"dt, D fjt— |"at.
0

Proof. Continuing from inequality (26) in the proof of Theorem 3.3 and using Holder’s inequality, we have

1
P

Mi(u, v)
_ S
In (f* (—3 3 tu + év))

o S [ ([
0
g ar )

p{ 2.33-2 f ‘ 8' dt

0

X(j: ln(f**(fiT—le_ év))sdt)l}
{—[ﬂJ I
ol 5 il
(v

0

_ \1the 1 .

ol | e

cen{ A [l
0

ddl}

1

sdgs}

2—t 1+t
ln(F(—3 u+—;_ V))
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{fllestezsf] )

By using the P—convexity of (In£')* and (In£*)*, we acquire

1 s
3-t t
In(f(2u+ =

fo “( ( 3 ’”3"))

1
Sf In (f () + In(f' (v))* dt = In(f' (w))’ + In (f* (v))*.
0

dt

Similarly,
1
L[(3—t
foln(f ( 3 u+3v))
[ e (5t 124)
0 3 3
fl ln(f**(z—_tu+ uv))
0 3 3
[ In(e (5t 224)
0 3 3

1
1-t 2+t
l(f“(— —))
fon a2

dt < In(f* (v)’ + In (f* (v))°,

dt < In(f (w)* + In (£ (v))°,

dt < In(f” (w)’ + In(f* (v))°,

dt <In(f (w)° + In(f (v))°,

and

dt < In (£ (w)° + In (£7 (V))°.

If we apply the inequalities from (28)-(33) into the inequality (27), then we obtain

cenfI 0 [ -3 ] oy
0

‘EIRT(U, V)

1
(1=Bo) (v—u)* "
x ex’]{ 2.33V—2ﬁo [f
0

Xexp{ﬁvz(vg—“)%[ﬂt_ %‘rdt]r(ln(f* (@) +In(F (v)) )}

0

1
(1 - o) (v—u) P
X exP{ 2.33-2, [ f

0

1
200 N1+, '
Xexp{ﬁo <v9u) [ﬂt_g‘ )

t
0

(ln (F (w))° + In (F (v))° )}

P2 — %'rdf]r (1" @)+ 1" 0y )}

3165

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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X exp{ (1-B)(v—u’P [fl‘tz_zﬁ“ _ g'rdtJy (ln ey ) }
0

2.3 %

By the use of A* + B* < (A + B)® for A > 0,B > 0 with s > 1, we have that

1
Bo* (v—w't ﬂ _3
< exp{ 9 t 3
0

S e o] o)

0

Bo* (v —u)' P | ’t 1
X exp{—9 f -5
0

ol B [l (nirr o)
0

1

X {ﬁoz(V— )P f’t—§

expi————g—— 5
0

x exp{ (1= Bo) (v—w* [ fl ‘tz—zm - g'rdtJr (1n (£ (1)) + In (£ (v)) )}
0

‘imf(u, V) rdt]r (1n (F (1)) + In (F (v) )}

rdtJy (n@ @)+ ) )}

1

at] (i @)+ e o) )

t

2.33-2%

1 1

+ 1 % 1 T 1 T
W[[I If—%l'dt] +(f It—%l'dt] +[f If—%l'dt] ]<ln<f”(u>>+ln<f”(v)>)
0 0 0

<e

0

ol b b }
W[( ﬂtz’zf’"—%rdt) +( Dﬂ?*zﬁ”—%rdt) +[ 0f|t2*2/‘0—§|ydt] ](ln(f**(u))+ln(f**(v)))
Xe

Bttt [[f et +{fleara] <[ |f-z|'m]r]
S (fx-x- (u) f>(->(- (V)) 0 0 0

1 1 1
—Bo 1 T 1 T 1 T
Gotaf e [(ﬂt“ﬁw—;rdt) lem-ara] of fle-srad }
X (fx—:e (u) f*:e (V)) 0 0 0 .

The proof is completed. [

4. Applications

4.1. Special means

The following notations will be used for special means of two nonnegative numbers u, v with v > u:
1. The arithmetic mean

u+v
2 s

u:= u(a,b) =
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2. The geometric mean
G:=G(a,b)= Vab, a,b>0
3. The p-logaritmic mean

1
yPHI_gp+l \p
L, = Ly(a,b) = { ()’ u#vpeRU-100 g
u, u=v

Proposition 4.1. IfV u, v € [0, o) in a way that v > u > 0, then the subsequent inequality holds
ex {é(A(—u V(A Vin@) +ln(ln(2))))}
p 72 4 4
< exp{(A(u, V) = Li(u, V))ln(Z)}
25
< —exp{ﬁ(A(—u, (A, Vin(2) + ln(ln(Z))))}

Proof. One can use Theorem 3.3 in order to show the result that is obtained for considering 8, = 1 and replacing f(»)
by 2* and §*(») by 2*In(2). O

Example 4.2. The Graph 4.3 describes the viability of Proposition 4.1 for various values of uand v .

2.8
V' 26

2.0

04
0.2
f(u,v)o.0
-0.2

1.0
H Right Term
H Middle Term
Ll Left Term 20

Figure 4.3: Graphical description for u € [1,1.99] and v € [2,2.8].

4.2. Modified Bessel function
Think about the modified Bessel function of type-1 J, [38].

0 (%)p+2n

\Sp(}t) = nZ:O m, Y xeR. (34)
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Let f, : [0, 00) — [0, o) be defined as given in the following for p > 2.

fo(36) = %" 3p(%). (35)
fo(3) = %" Jp1(20). (36)
Fo(00) = #7731 (20) + HPJpoa(20). (37)
o () = 3%* 7' Jpa(20) + %" Jp-a(x0). (38)
Fh(%) = 3" 230 (%) + 6371 3y25(20) + HPTp_a(30). (39)

Asfp(%) >0,V p>Tand x > 0.
It suggests the convexity of f, (%), Y« € [0, co[. It is obvious that exp{f, (x)} is multiplicatively P—convex.

Proposition 4.3. IfV u, v € [0, o) in a way that v > u > 0 and p > 2, then the subsequent inequality holds

or {u_vﬁ (u)+§(2u+v)"@ (21,z+v)+§(u+2v)pw (u+2v)
Plg W gl—3 "\ T3 s\ 73 "\ 73

[ - vl

vP
+ =3 +
3 Jp(V) v—u

< exp{%(upqu(u) + V’°3p—1(V))}
(40)

Proof. One can use Theorem 3.3 in order to show the result obtained when considering 88, = 1 and replacing () by
exp{fp(20)} and 7" (%) by expf{f,(>0)}. O

Example 4.4. The following graph 4.4 describes the viability of Proposition 4.3 for various values of u, v and p.

Hl Right Term
B Middle Term
Ll Left Term 1.400

Figure 4.4: Graphical description for p =2,u € [1,1.3] and v € [1.4,1.6].
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5. Conclusion

This study delves into fractional calculus, a field rich with applications in modeling various natural
processes. It highlights the need to continually expand our mathematical tools and frameworks, particularly
in the context of fractional integral operators. The paper presents new developments in the theory of P-
convex functions by introducing a set of H.H; type inequalities. These inequalities are generalized using
Py operators, expanding the scope of traditional calculus. The introduction of Lemma 3.1 is significant
for deriving new bounds and error estimates related to Newton’s type inequalities, providing a deeper
understanding of P-convex functions.The implications of this research extend to various fields that utilize
fractional calculus and convex analysis. The new inequalities and theoretical tools developed can be
applied in diverse scientific and engineering contexts, providing valuable information on the properties
and behaviors of P-convex functions. This study also suggests potential practical applications, particularly
in the analysis of special means and type-1 modified Bessel functions. Future research could build on these
findings by exploring similar inequalities for other classes of convex functions. There is also a potential to
refine the established inequalities, improving the precision and applicability of these mathematical tools.
Furthermore, applying these results to practical scenarios across different fields such as physics, biology,
and economics could yield further valuable insights and advances. This research contributes significantly
to the theoretical landscape of fractional calculus and convex analysis. By introducing new mathematical
frameworks and extending existing theories, the study lays the foundations for future explorations and
applications. The findings are expected to inspire further research and provide a robust foundation for
ongoing developments in these dynamic areas of mathematics. The study’s insights are particularly
valuable for both theoretical and applied mathematicians interested in the evolving applications of fractional
calculus.
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