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Abstract. The main objective of this paper is a study of some new discrete local fractional Hilbert-type
inequalities. We apply our general results to homogeneous kernels. Finally, the best possible constants are
also obtained.

1. Introduction

If f (x), 1(x) ≥ 0, such that 0 <
∫
∞

0 f 2(x)dx < ∞ and 0 <
∫
∞

0 1
2(x)dx < ∞, then we have (see [9]):

∫
∞

0

∫
∞

0

f (x)1(y)
x + y

dxdy ≤ π
(∫

∞

0
f 2(x)dx

∫
∞

0
12(y)dy

) 1
2

, (1)

where the constant π is the best possible. The inequality (1) is well known as Hilbert’s integral inequality,
which is important in mathematical analysis and its applications.

Over the past decade, fractional integral inequalities (FIIs) attracted widespread attention from an
increasing number of scholars at home and abroad since they play a significant role in discussions of
the quantitative and qualitative behavior of solutions to fractional differential equations. Currently, a large
number of FIIs have been obtained, the reader can refer to related references [1–3, 5, 10–13, 21]. For example,
by using one/two fractional parameters, Dahmani et al. [7] established some new generalisations of Grüss-
type inequality for Riemann-Liouville fractional integral operators (RLFIOs). Based on the multiplicative
fractional integral identity and multiplicative RLFIOs, some Hermite–Hadamard type inequalities for
multiplicatively convex functions were established [8]. By using the RLFIOs, Sahoo et al. [15] presented
the Ostrowski–Mercer inequalities and variants of Jensen’s inequality for differentiable convex functions.
By adopting the parametrized integral identity via Atangana–Baleanu FIOs, certain Simpson-like integral
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inequalities were obtained for mappings with (s,P)-convex and (s,P)-concave second-order derivatives in
absolute value [24]. By employing two local fractional integral identities with the first- and second-order
derivatives, Sun [17] considered some new Hermite-Hadamard–type local FIIs with Mittag-Leffler function
(MLF) for generalized h-convex functions. Sarikaya and Budak [16] derived the generalized Ostrowski
inequality and related inequalities using the generalized convex function for local FIOs on fractal sets.
Based on the unified FIOs with an extended generalized MLF and Marichev-Saigo-Maeda FIOs, Yang
[19, 20] studied some weighted Young, Shisha-Mond, Diaz-Metcalf, and Pólya-Szegö-type inequalities,
respectively.

In this paper, motivated by mentioned results above, a new Hilbert-type inequalities are built by using
local FIOs. First, we give basic definitions and results of the local fractional calculus (see [22, 23]). Let
R be real numbers. There exist responding real line numbers on a fractal set E with fractal dimension α
(0 < α ≤ 1), denoted byRα.We define the addition and multiplication operations onRα by aα+bα := (a+b)α

and aα · bα = aαbα := (ab)α, aα, bα ∈ Rα. Obviously, with these two operations, Rα is a field with an additive
identity 0α and a multiplicative identity 1α.

Furthermore, we introduce the local fractional derivative and integral.

Definition 1. A non-differentiable function f (x) is said to be local fractional continuous at x = x0 if for each
ε > 0, there exists for δ > 0 such that | f (x) − f (x0)| < εα holds for 0 < |x − x0| < δ. If a function f is local
continuous on the interval (a, b), we denote f ∈ Cα(a, b).

Definition 2. Let f (x) ∈ Cα[a, b]. The local fractional derivative of the function f (x) at x = x0 is given by

f (α)(x0) = x0 Dα
x f (x) =

dα f (x)
dxα

∣∣∣∣∣
x=x0

= lim
x→x0

Γ(1 + α)( f (x) − f (x0))
(x − x0)α

,

where Γ(1 + α) stands for the classic gamma function. Assume f (α)(x) = Dα
x f (x). If there has f (ϖα)(x) =

ϖ times︷    ︸︸    ︷
Dα

x · · ·D
α
x f (x) for any f ∈ I ⊆ R, then we say that f ∈ Dϖα(I), where ϖ = 1, 2, . . ..

Definition 3. Let f (x) ∈ Cα[a, b] and P = {t0, t1, . . . , tN}, N ∈ N, be a partition of interval [a, b] such that
a = t0 < t1 < · · · < tN−1 < tN = b. Furthermore, for this partition P, let ∆t j = t j+1 − t j, j = 0, . . . ,N − 1, and
∆t = max{∆t1,∆t2, . . . ,∆tN−1}. Then the local FIO of f on the interval [a, b] of order α (denoted by aIαb f (x)) is
defined by

aI(α)
b f (x) =

1
Γ(1 + α)

∫ b

a
f (t)(dt)α =

1
Γ(1 + α)

lim
∆t→0

N−1∑
j=0

f (t j)(∆t j)α.

The above definition implies that aI(α)
b f (x) = 0 if a = b, and aI(α)

b f (x) = −bI(α)
a f (x) if a < b. If for any x ∈ [a, b],

there exists aI(α)
x f (x), then we denote by f (x) ∈ I(α)

x [a, b].

At the end of this summary, we give some usefull formulas:

(a1) dαxkα

dxα =
Γ(1+kα)
Γ(1+(k−1)α) x

(k−1)α, k > 0;

(a2) dαEα((cx)α)
dxα = cαEα((cx)α), where Eα(·) denotes the MLF by Eα(xα) =

∑
∞

k=0
xkα

Γ(1+kα) ;

(a3) If y(x) = ( f ◦ 1)(x), then dαy(x)
dxα = f (α)(1(x))(1′(x))α;

(a4) 1
Γ(1+α)

∫ b

a Eα(xα)(dx)α = Eα(bα) − Eα(aα);

(a5) 1
Γ(1+α)

∫ b

a xkα(dx)α = Γ(1+kα)
Γ(1+(k+1)α) (b

(k+1)α
− a(k+1)α), k > 0;
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(a6) Bα(a, b) = 1
Γ(1+α)

∫
∞

0
xα(b−1)

(1α+xα)a+b (dx)α, where Bα(a, b) denotes local fractional Beta function.

Besides, we introduce the following notation and definition (see [6]).

Definition 4. Let f : I ⊆ R→ Rα. If the following inequality

f (λx1 + (1 − λ)x2) ≤ λα f (x1) + (1 − λ)α f (x2) (2)

holds for any x1, x2 ∈ I and λ ∈ [0, 1], then f is said to be a generalized convex function on I.

In this paper, by using the way of weight functions and the technique of local fractional calculus, a new
Hilbert-type discrete inequality with homogeneous kernel and a best constant is bulilt. As applications, the
equivalent form and some particular cases are obtained.

2. Main results

The starting point in improvements to Hilbert-type inequalities is the well-known Hölder’s inequality.
A fractal version of Hölder’s inequality is given in the following lemma (see also [18]).

Lemma 1. Let 1
p +

1
q = 1, p > 1, and let h, F, G ∈ Cα(R2

+) be non-negative functions. If

0 <
∞∑

m=1

∞∑
n=1

h(m,n)Fp(m,n) < ∞, 0 <
∞∑

m=1

∞∑
n=1

h(m,n)Gq(m,n) < ∞,

then the following inequality holds
∞∑

m=1

∞∑
n=1

h(m,n)F(m,n)G(m,n) ≤
( ∞∑

m=1

∞∑
n=1

h(m,n)Fp(m,n)
) 1

p
( ∞∑

m=1

∞∑
n=1

h(m,n)Gq(m,n)
) 1

p

. (3)

The preceding lemma will help us to prove our main result.

Theorem 1. Let 1
p +

1
q = 1, p > 1, and let (am)m∈N and (bn)n∈N be non-negative real sequences. If φ, ψ ∈ Cα(R+)

and K ∈ Cα(R+)2 is non-negative decreasing function in both variables on R+, then the following inequalities hold
and are equivalent

∞∑
m=1

∞∑
n=1

K(m,n)aαmbαn ≤
( ∞∑

m=1

(φF)p(m)aαp
m

) 1
p
( ∞∑

n=1

(ψG)q(n)bαq
n

) 1
q

, (4)

( ∞∑
n=1

(ψG)−p(n)
( ∞∑

m=1

K(m,n)aαm
)p) 1

p

≤

( ∞∑
m=1

(φF)p(m)aαp
m

) 1
p

, (5)

where

Fp(m) :=
∞∑

n=1

K(m,n)ψ−p(n) and Gq(n) :=
∞∑

m=1

K(m,n)φ−q(m). (6)

Proof. The left-hand side of inequality (4) can be written in the following form
∞∑

m=1

∞∑
n=1

K(m,n)aαmbαn =
∞∑

m=1

∞∑
n=1

K(m,n)aαm
φ(m)
ψ(n)

bαn
ψ(n)
φ(m)

.

Now, applying the fractal Hölder’s inequality (3) to the above identity yields
∞∑

m=1

∞∑
n=1

K(m,n)aαmbαn ≤
( ∞∑

m=1

∞∑
n=1

K(m,n)aαm
φp(m)
ψp(n)

) 1
p
( ∞∑

m=1

∞∑
n=1

K(m,n)bαn
ψq(n)
φq(m)

) 1
q

.
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Finally, using the local fractional Fubini theorem and definitions of functions F and G we obtain (4).
Now, we are going to prove the equivalence of inequalities (4) and (5). For this sake, suppose that

inequality (4) holds. Define the following sequence (bn)n∈N by

bαn = (Gψ)−p(n)
( ∞∑

m=1

K(m,n)aαm
)p−1

and from the inequality (4), we have

∞∑
n=1

(ψG)−p(n)
( ∞∑

m=1

K(m,n)aαm
)p

=

∞∑
m=1

∞∑
n=1

K(m,n)aαmbαn

≤

( ∞∑
m=1

(φF)p(m)aαp
m

) 1
p
( ∞∑

n=1

(ψG)q(n)bαq
n

) 1
q

=
( ∞∑

m=1

(φF)p(m)aαp
m

) 1
p
( ∞∑

n=1

(ψG)−p(n)
( ∞∑

m=1

K(m,n)aαm
)p) 1

q

,

that is, we get (5).
On the other hand, suppose that inequality (5) holds. In that case, another use of the fractal Hölder’s

inequality (3) yields

∞∑
m=1

∞∑
n=1

K(m,n)aαmbαn =
∞∑

n=1

(
(ψG)−1(n)K(m,n)aαp

m

)
(ψG)(n)bαq

n

≤

( ∞∑
n=1

(ψG)−p(n)
( ∞∑

m=1

K(m,n)aαm
)p) 1

p
( ∞∑

n=1

(ψG)q(n)bαq
n

) 1
q

≤

( ∞∑
m=1

(φF)p(m)aαp
m

) 1
p
( ∞∑

n=1

(ψG)q(n)bαq
n

) 1
q

,

which implies (4). Hence, inequalities (4) and (5) are equivalent.

In what follows. we suppose that K ∈ Cα(R2
+) is a non-negative homogeneous function of degree −αs,

s > 0. Furthermore, we define the integral k(·) by

k(η) =
1

Γ(1 + α)

∫
∞

0
K(1, t)t−αη(dt)α, (7)

under assumption k(η) < ∞.
Besides, we study below discrete weight functions involving real differentiable functions. More pre-

cisely, we are introducing the following notation and definition.

Definition 5. Let r > 0. We denote by H(r) the set of all non-negative differentiable functions u : R+ → R
satisfying the following conditions:

(i) u is increasing on R+ and holds 0 < u(1) < ∞;

(ii) lim
x→∞

u(x) = ∞, [u′(x)]α

[u(x)]αr is decreasing and generalized convex function on R+.

By applying local fractional calculus we can easily get the next lemma.
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Lemma 2. Let r > 0 and K(x, y) be decreasing and generalized convex function in both variables onR+. If u, v ∈ H(r),
then

K(u(x), v(y))
[v′(y)]α

[v(y)]αr and K(u(x), v(y))
[u′(x)]α

[u(x)]αr

are decreasing and generalized convex function on R+ for any x ∈ R+ and y ∈ R+, respectively.

Proof. For the sake of proof, we set V(y) := [v′(y)]α

[v(y)]αr , and suppose that x ∈ R+. Then

∂α

∂yα
[K(u(x), v(y))V(y)] =

∂α

∂yα
[K(u(x), v(y))] · V(y) + K(u(x), v(y))

∂α

∂yα
[V(y)] ≤ 0

and similarly

∂2α

∂y2α [K(u(x), v(y))V(y)] =
∂2α

∂y2α [K(u(x), v(y))] · V(y) +
∂α

∂yα
[K(u(x), v(y))]

∂α

∂yα
[V(y)]

+
∂α

∂yα
[K(u(x), v(y))]

∂α

∂yα
[V(y)] + K(u(x), v(y))

∂2α

∂y2α [V(y)] ≥ 0.

In the same way follows proof for the function K(u(x), v(y)) [u′(x)]α

[u(x)]αr .

We need the next technical lemma. (see [18]).

Lemma 3. If f ∈ I(α)
x (R+), f (α)(t) ≤ 0, f (2α)(t) ≥ 0 (t ∈ (1/2,∞)), then we have

1
Γ(1 + α)

∫
∞

1
f (t)(dt)α ≤

1
Γ(1 + α)

∞∑
n=1

f (n) ≤
1

Γ(1 + α)

∫
∞

1
2

f (t)(dt)α. (8)

Now, we will prove the result with a general homogeneous kernel that has some properties.

Theorem 2. Let (am)m∈N, (bn)n∈N be non-negative real sequences and K ∈ Cα(R2
+) be a non-negative homogeneous

function of degree −αs, s > 0. If u ∈ H(pA2), v ∈ H(qA1) and K is decreasing and generalized convex function in
both variables on R+, then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

K(u(m), v(n))aαmbαn ≤ L
( ∞∑

m=1

[u(m)]α(1−s)+αp(A1−A2)[u′(m)]α(1−p)aαp
m

) 1
p

×

( ∞∑
n=1

[v(n)]α(1−s)+αq(A2−A1)[v′(n)]α(1−q)bαq
n

) 1
q

, (9)

( ∞∑
n=1

[v(n)]α(s−1)(p−1)+αp(A1−A2)[v′(n)]α
( ∞∑

m=1

K(u(m), v(n))aαm
)p) 1

p

≤ L
( ∞∑

m=1

[u(m)]α(1−s)+αp(A1−A2)[u′(m)]α(1−p)aαp
m

) 1
p

, (10)

where A1 ∈ (max{(1 − s)/q, 0}, 1/q), A2 ∈ (max{(1 − s)/p, 0}, 1/p) and

L = Γ(1 + α)k(pA2)
1
p k(2 − s − qA1)

1
q . (11)
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Proof. We put the functions (φ ◦ u)(m) = [u(m)]αA1 [u′(m)]−
α
q , (ψ ◦ v)(n) = [v(n)]αA2 [v′(n)]−

α
p in inequality (4).

These substitutions are well defined, since u and v are injective functions. Thus, in this setting we have

∞∑
m=1

∞∑
n=1

K(u(m), v(n))aαmbαn ≤
( ∞∑

m=1

[u(m)]αpA1 [u′(m)]α(1−p)(F ◦ u)(m)aαp
m

) 1
p

×

( ∞∑
n=1

[v(n)]αqA2 [v′(n)]α(1−q)(G ◦ v)(n)bαq
n

) 1
q

, (12)

where

(F ◦ u)(m) =
∞∑

n=1

K(u(m), v(n))[v′(n)]α

[v(n)]αpA2
and (G ◦ v)(n) =

∞∑
m=1

K(u(m), v(n))[u′(m)]α

[u(m)]αqA1
.

Note that v ∈ H(pA2) and K is decreasing and generalized convex function in both variables on R+. Hence,
applying Lemma 2 and Lemma 3, we obtain

(F ◦ u)p(m) ≤ Γ(1 + α)
1

Γ(1 + α)

∫
∞

0

K(u(m), v(y))
[v(y)]αpA2

[v′(y)]α(dy)α. (13)

Furthermore, by using substitution t = v(y)
u(m) and homogeneity of function K, we have

(F ◦ u)p(m) ≤ Γ(1 + α)[u(m)]α−αs−αpA2
1

Γ(1 + α)

∫
∞

0
K(1, t)t−αpA2 (dt)α,

so we get by (7)

(F ◦ u)p(m) ≤ Γ(1 + α)[u(m)]α−αs−αpA2 k(pA2). (14)

By the similar arguments as for function F ◦ u, we get

(G ◦ v)(m) ≤ Γ(1 + α)
1

Γ(1 + α)

∫
∞

0

K(u(x), v(n))
[u(x)]αqA1

[u′(x)]α(dx)α

≤ Γ(1 + α)[v(n)]α−αs−αqA1
1

Γ(1 + α)

∫
∞

0
K(t, 1)t−αqA1 (dt)α

= Γ(1 + α)[v(n)]α−αs−αqA1
1

Γ(1 + α)

∫
∞

0
K(1, t)tαs+αqA1−2α(dt)α

= Γ(1 + α)[v(n)]α−αs−αqA1 k(2 − s − qA1). (15)

Finally, relations (12), (14), and (15) yield the inequality (9).
On the other hand, if we rewrite inequality (5) with the same functions as in the proof of inequality (9),

after using estimates (14) and (15), we easily get (10). That completes the proof.

The main idea in obtaining the best possible constant factor is a reduction of constant L defined by (11)
in the form without exponents. It is natural to install the next condition

pA2 + qA1 = 2 − s (16)

that the relation k(pA2) = k(2 − s − qA1) holds. On that way, the constant L from Theorem 2 becomes

L∗ = Γ(1 + α)k(pA2). (17)

Further, under assumption (16), the inequalities (9) and (10) respectively can be rewritten as
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∞∑
m=1

∞∑
n=1

K(u(m), v(n))aαmbαn ≤ L∗
( ∞∑

m=1

[u(m)]−α+αpqA1 [u′(m)]α(1−p)aαp
m

) 1
p

×

( ∞∑
n=1

[v(n)]−α+αpqA2 [v′(n)]α(1−q)bαq
n

) 1
q

, (18)

( ∞∑
n=1

[v(n)]α(p−1)(1−pqA2)[v′(n)]α
( ∞∑

m=1

K(u(m), v(n))aαm
)p) 1

p

≤ L∗
( ∞∑

m=1

[u(m)]−α+αpqA1 [u′(m)]α(1−p)aαp
m

) 1
p

. (19)

Our main aim is to show that the constants involved in the right-hand sides of inequalities (18) and (19)
are the best possible. That is, we present the content of the following theorem.

Theorem 3. Let s, A1, A2, u, v and K(x, y) be defined as in Theorem 2. If the parameters A1 and A2 satisfy condition
(16), then the constant factor L∗ is the best possible in inequalities (18) and (19).

Proof. It is enough to show that the constant L∗ is the best possible in inequality (18), since (18) and (19) are
equivalent inequalities.

For this purpose, put ãαm = [u(m)]−αqA1−
αε
p [u′(m)]α and b̃αn = [v(n)]−αpA2−

αε
q s[v′(n)]α,where 0 < εq < 1−pA2.

Let us suppose that the inequality (18) holds if we put the sequences (̃am) and (̃bn). By using Lemma 3 (see
also [18]), we have

1
εα[u(1)]αΓ(1 + α)

=
1

Γ(1 + α)

∫
∞

1
[u(x)]−α−ε[u′(x)]α(dx)α ≤

1
Γ(1 + α)

∞∑
m=1

[u(m)]−α−αε[u′(m)]α

=
1

Γ(1 + α)

∞∑
m=1

[u(m)]−α+αpqA1 [u′(m)]α(1−p)ãαp
m

≤
1

Γ(1 + α)

∫ 1

1
2

[u(x)]−α−αε[u′(x)]α(dx)α +
1

Γ(1 + α)

∫
∞

1
[u(x)]−α−αε[u′(x)]α(dx)α.

Hence, we obtain

1
Γ(1 + α)

∞∑
m=1

[u(m)]−α+αpqA1 [u′(m)]α(1−p)ãαp
m =

1
εα[u(1)]αΓ(1 + α)

+O(1), (20)

and similarly

1
Γ(1 + α)

∞∑
n=1

[v(n)]−α+αpqA2 [v′(n)]α(1−q)̃bαq
n =

1
εα[v(1)]αΓ(1 + α)

+O(1). (21)

Now, let us suppose that there exists a positive constant M < L∗ such that the inequality (18) is still
valid, if we replace L∗ with M. Without loss of generality, we suppose that u(1) ≤ v(1). Hence, if we insert
relations (20) and (21) in inequality (18), with the constant M instead of L∗, we obtain

∞∑
m=1

∞∑
n=1

K(u(m), v(n))̃aαmb̃αn ≤
1

εα[v(1)]αΓ(1 + α)
(M + o(1)). (22)

On the other hand, we estimate the left-hand side of inequality (18). If we insert the above defined
sequences (̃am)m∈N and (̃bn)n∈N in the left-hand side of (18), we get the inequality

Jε :=
1

Γ2(1 + α)

∞∑
m=1

∞∑
n=1

K(u(m), v(n))̃aαmb̃αn ≥
1

Γ(1 + α)

∫
∞

1
[u(x)]−αqA1−

αε
p [u′(x)]α
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×

(
1

Γ(1 + α)

∫
∞

1
K(u(x), v(y))[v(y)]−αpA2−

αε
q [v′(y)]α(dy)α

)
(dx)α, (23)

where we use Lemma 2 and Lemma 3. By using the substitution t = v(y)/u(x) we have

Jε ≥
1

Γ(1 + α)

∫
∞

1
[u(x)]−α−αε[u′(x)]α

∫ ∞

v(1)
u(x)

K(1, t)t−αpA2−
αε
q (dt)α

 (dx)α. (24)

Furthermore, since the kernel K is strictly decreasing in both arguments, it follows that K(1, 0) > K(1, t),
for t > 0, so we have

1
Γ(1 + α)

∫
∞

v(1)
u(x)

K(1, t)t−αpA2−
αε
q (dt)α

≥
1

Γ(1 + α)

∫
∞

0
K(1, t)t−αpA2−

αε
q (dt)α −

K(1, 0)
Γ(1 + α)

∫ v(1)
u(x)

0
t−αpA2−

αε
q (dt)α

= k
(
pA2 +

ε
q

)
−

K(1, 0)
Γ(1 + α)(1 − pA2 −

ε
q )α

(u(x)
v(1)

)αpA2+
αε
q −α

,

and consequently

Jε ≥
k
(
pA2 +

ε
q

)
εα[u(1)]αΓ(1 + α)

+
K(1, 0)

Γ2(1 + α)[v(1)]αpA2+
αε
q −α

1(
1 − pA2 −

ε
q

)α(
1 − pA2 +

ε
p

)α . (25)

In other words, relations (23), (24) and (25) yield the estimate for the left-hand side of inequality (18):

∞∑
m=1

∞∑
n=1

K(u(m), v(n))̃aαmb̃αn ≥
1

εα[u(1)]αε
(L∗ + o(1)). (26)

Finally, by comparing relations (22) and (26), and by letting ε → 0+, we conclude that L∗ ≤ M, which
contradicts with the assumption that the constant M is smaller than L∗. That means that L∗ is the best
possible constant in inequality (18).

The equivalence of the inequalities (18) and (19) means that the constant L∗ is the best possible in the
inequality (19). The proof is completed now.

We proceed with some special homogeneous functions. First, we prove that the kernel K1(x, y) =
(xα + yα)−s, s > 0, is decreasing and generalized convex function in both variables on R+. By using local
fractional calculus, we have

∂α

∂xα
1

(m + x)αs = −
Γ(1 + sα)

Γ(1 + (s − 1)α)
1

(m + x)α(s+1)
< 0, x > 0,

∂2α

∂x2α

1
(m + x)αs =

Γ(1 + (s + 1)α)
Γ(1 + (s − 1)α)

1
(m + x)α(s+2)

> 0, x > 0.

Since the function K1 is homogeneous of degree −αs, by using Lemma 2 and Theorem 3 we obtain the
following result.

Corollary 1. Let s, A1, A2, u(x), v(y) and (am)m∈N, (bn)n∈N be defined as in Theorem 2. Suppose that the parameters
A1, A2 satsify condition (16). Then the following inequalities hold and are equivalent

∞∑
m=1

∞∑
n=1

aαmbαn
(u(m) + v(n))αs ≤M

( ∞∑
m=1

[u(m)]−α+αpqA1 [u′(m)]α(1−p)aαp
m

) 1
p
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×

( ∞∑
n=1

[v(n)]−α+αpqA2 [v′(n)]α(1−q)bαq
n

) 1
q

, (27)( ∞∑
n=1

[v(n)]α(p−1)(1−pqA2)[v′(n)]α
( ∞∑

m=1

am

(u(m) + v(n))αs

)p) 1
p

≤M
( ∞∑

m=1

[u(m)]−α+αpqA1 [u′(m)]α(1−p)aαp
m

) 1
p

, (28)

where the constant M = Γ(1 + α)Bα(1 − pA2, 1 − qA1) is the best possible.

In what follows, we suppose that

A1 =
2 − s

2q
, A2 =

2 − s
2p

. (29)

Moreover, setting u(x) = Axc, v(y) = Byd, A,B, c, d > 0 and the parameters defined by (29), we obtain the
following result.

Corollary 2. Let 0 < s < 2, 0 < c, d < 2/s, A,B > 0. Then the following inequalities hold and are equivalent
∞∑

m=1

∞∑
n=1

aαmbαn
(Amc + Bnd)αs

≤M1

( ∞∑
m=1

mαp−α+ αcps
2 aαp

m

) 1
p
( ∞∑

n=1

nαq−α+ αdqs
2 bαq

n

) 1
q

, (30)( ∞∑
n=1

n
αcps

2 +αd−α
( ∞∑

m=1

aαm
(Amc + Bnd)αs

)p) 1
p

≤M1

( ∞∑
m=1

mαp−α+ αcps
2 aαp

m

) 1
p

, (31)

where the constant

M1 = A−
αs
2 B−

αs
2 c−

α
q d−

α
q Γ(1 + α)Bα

( s
2
,

s
2

)
is the best possible.

Remark 1. If we put u(x) = v(x) = x + µ, µ > 0, A1 = A2 = (2 − s)/(pq), 0 < s < 2, in Corollary 1, then the
inequalities (27) and (28) become

∞∑
m=1

∞∑
n=1

aαmbαn
(m + n + 2µ)αs ≤M2

( ∞∑
m=1

(m + µ)α−αsaαp
m

) 1
p
( ∞∑

n=1

(n + µ)α−αsbαq
n

) 1
q

,( ∞∑
n=1

(n + µ)α(p−1)(s−1)
( ∞∑

m=1

aαm
(m + n + 2µ)αs

)p) 1
p

≤M2

( ∞∑
m=1

(m + µ)α−αsaαp
m

) 1
p

,

where the constant

M2 = Γ(1 + α)Bα
(1

p
+

s − 1
q
,

1
q
+

s − 1
p

)
is the best possible. Here we obtain a case with non-homogeneous kernel in Corollary 2. For s = 1, we get
non-weighted case with the best possible constant M2 = Γ(1 + α)Bα(1/p, 1/q).

If we put u(x) = κv(x) + µ, κ, µ > 0 in Corollary 1, then the inequalities (27) and (28) become

∞∑
m=1

∞∑
n=1

aαmbαn
(κv(m) + v(n) + µ)αs ≤M3

( ∞∑
m=1

[κv(m) + µ]−α+αpqA1 [v′(m)]α(1−p)aαp
m

) 1
p

×

( ∞∑
n=1

[v(n)]−α+αpqA2 [v′(n)]α(1−q)bαq
n

) 1
q

,( ∞∑
n=1

[v(n)]α(p−1)(1−pqA2)[v′(n)]α
( ∞∑

m=1

am

(κv(m) + v(n) + µ)αs

)p) 1
p

≤ M3

( ∞∑
m=1

[κv(m) + µ]−α+αpqA1 [v′(m)]α(1−p)aαp
m

) 1
p

,

where the constant M3 = Γ(1 + α)κ−
α
q Bα(1 − pA2, 1 − qA1) is the best possible.
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3. Conclusion

Based on the fractal Hölder’s inequality, we have obtained some new discrete local fractional Hilbert-
type inequalities. As applications, some special homogeneous functions have been used as the kernel
functions. We have also proved that the constant factors in the desired inequalities are the best possible.
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