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Abstract. In this paper we introduce two new Bézier variants of the generalized Bernstein type operators.
With the help of Ditzian Totik smooth modulus, we discuss a global approximation. Also, we obtain the
rate of convergence of the operators by the second order continuous modulus and Peetre K-functional.
By using the construction of appropriate functions and the methods of Bojanic-Cheng, the approximation
properties of the new defined operators for absolute continuous functions with derivatives equivalent to

bounded variation functions is given. Finally, we provide four graphs to illustrate the approximation effect
of the newly defined operators.

1. Introduction

Very recently, Usta [22] introduced a new family of generalized Bernstein operators as follows:

n

Bvx) = Y W(Spw, xel01lveco] (11)
k=0

where p* (x) = 1 (1’:) (k — nx)2k1(1 — xyr=k1,
In [22], the author studied the approximation properties of the operators 5,(v, x), such as asymptotic

formulas, weighted approximations and convergence rates. In addition, numerical simulations were also
included.

To approximate Lebesgue integrable functions, Senapati et al. [20] introduced the following integral
modification of the operators (1.1):

[<a%
n+1

Nn(v,x):(n+1)z P @) f v(t)dt. 1.2)
k=0 1
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In [20], the paper established the approximation properties of 8,(v, x), such as weighted approximation,
local and global approximation degrees and Voronovskaya type theorem. Finally, the authors provided
some numerical experiments to verify the theoretical results.

Base on the new defined operators (1.1), Kajla [13] and Liu [18] studied the Durrmeyer variant of
B,(v,x) and the blending-type Bernstein-Durrmeyer operators, respectively. Cai [7] dealt with the new
modification of the Bernstein-Beta operators, preserving constant and Korovkin’s other test functions in
limit case. Sofyalioglu [21] defined the parametric generalization of the operators £3,(v, x) according to the
idea of Chen [8].

As is well known, Bézier curves have extensive applications in computer-aided geometric design and
computer graphics. Bézier variant operators play an important role in approximation theory. They can
be used to construct new approximation operators that have better approximation properties on specific
function classes. For example, by introducing Bézier variants, the performance of traditional operators in
approximating bounded variation functions can be improved. The Bézier variant operators can also be used
for numerical integration and differentiation. By utilizing the properties of these operators, more efficient
numerical methods can be designed for calculating the integral and derivative of functions. In addition,
Bézier curves have wide application value in curve and surface design, animation and simulation, signal
and processing, and so on. The research on Bézier type operators has never been interrupted [1,5,11,14-
17,19,23].

In this paper, we introduce the Bézier variant of operators (1.1) and (1.2) in the following way:

Brya(v,X) = Zv(%)@fﬁi(x), x€[0,1], (1.3)
k=0

k+1
n+:

vt x€[0,1], (1.4)
k

Rya(,x) = (n+1) ) O(x)
k=0

where a > 1, 000(x) = [Y,x(0]" = [V (®)]", Yuk®) = Ly p, () and Vo1 (x) = 0.
As everyone knows that for 0 < m,n < 1and a > 1, the inequality |m* —n®| < alm —n| holds. So we have

O} (x) < ap, 4 (x). 1.5)

Obviously for @ = 1, operators (1.3) and (1.4) reduce to operators (1.1) and (1.2), respectively.

The purpose of this article is to establish a direct approximation using the global approximation theorem
of Ditzian-Totik smoothness and second order continuous modulus. In addition, the convergence rate of
absolute continuous functions with derivatives equivalent to bounded variation are also obtained. Finally,
we provide some approximation graph examples of the newly defined operators. We can refer to the
literatures [2-4,12] for research in this area.

2. Some lemmas

The proof of our results are based on the following lemmas.
Lemma 2.1 ([22]) For x € [0, 1], we have

8,(1,x) =1, (2.1)
1-2x

Bt x) =x+ p— (2.2)

(6 -7n)x>+ (5n—6)x+1
2

Ba(t?,x) = 2% + : (2.3)
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1-2
Bt = x,%) = —=,

(6-3n)x>+(Bn—6)x+1

Bu((t = 22, %) = =

= A7 ().

By Lemma 2.1 and Cauchy Schwarz inequality, we get

Bu(t — x,x) < VB.((t— %)%, %) - VBu(1,%) = A().
Lemma 2.2 ([20]) For x € [0, 1], we have

N.(1,x)=1,

3(1 - 2x)

Nn(t,x) =X+ m,

3(5 — 9n)x? + 3(6n — 8)x + 7
N t2 — 2 ,
w(fx) =20+ 31+ 1)2

3(1 —2x)

Nn(t —x,x) = m,

(11 =3mx2 +3Bn —11)x +7
2

Sal(f = 2P 0) = 2 = A2().

By Lemma 2.2 and Cauchy Schwarz inequality, we get

No(lt =], x) < VRL((E=%)2,x) - YRL(1, %) = Ay(x).
Lemma 2.3 Forv € C[0,1], x € [0, 1], we have
(18,0 (v, )| < exlv]

and
IR,a(v, 2| < allvl].

Proof According to the definition of (1.3) and the inequality of (1.5), we get

- k a - k * - *
[NCRTES) V() 1€3) <a) V(=) 1 70) <alvll Y ;) = alvll.
k=0 k=0 k=0

The inequality |IN; . (v, )| < allv]| also follows the same path of proof.

3203

(2.4)

(2.5)

(2.6)

2.7)

2.8)

2.9)

(2.10)

(2.11)

(2.12)
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3. Local Approximation

Lemma 3.1 ([9]) For v(x) € C[0,1] and r > 0, there exists an absolute constant D > 0 such that

Ky (v, r) < Dws(v, \/;)

3204

3.1)

where W2[0,1] = {g € C[0,1] : g” € C[0, 1]}, the Peetre K-functional K,(v,) and the second order modulus

of continuity wy (v, Vr) are defined as follows:

Ka(v,r) = gevivrzl[fo,u{llv =gl +rllg’ll + g I,

ws (v, \r) = sup sup [v(x + 2h) — 2v(x + h) + v(x)).
O<|nl<+fr  xx+hx+2he[0,1]

Theorem 3.1 Forv € C[0,1] and x € [0, 1], we have

; aAﬁ(x)J

8,0 (v, x) = v(x)| < D2 | v, 1

where D is a positive constant.
Proof Letg € W2 By Taylor’s expansion, we can write

9(8) = g + 9/ ()t - ) + f (t - wyg" ()

Applying £, (-, x) to both sides of the above equation, we have

Bia(g,%) = 9(0) + 7' (0)Bya(t = x,X) + By ( f (t = u)g” (u)du, X) .

Noting £, (1, x) = 1, we get

Rua(g, %)~ g0 < 197 [Ru (1t — 21, )] + B( f t(t—u)g"(u)du,x)
< 118w (-0 + 2 Vg, (- 07 2)
< 8o (¢ -0 2)] 7 + g (- 22 )
< Va8 (¢ - 02 2] + o1, (- 0 %)
= Vallg I + a2 a2,

So

Bra( 1) =V < Balv = g, 9] + v = g1+ Balg, 1) — g(0)

< 2 -gll+ VAl 1A +a L A2,

Taking the infimum on the right hand side of above inequality for all g € W?, we obtain

TR W )

(3.2)
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Using Lemma 3.1 we obtain Theorem 3.1 immediately.
By using a completely similar proof method, the following conclusion can be drawn.
Theorem 3.2 Forv € C[0,1] and x € [0, 1], we have

VA an,) , (3.3)

IN,0(v, x) = v(x)| < Dw, 4

where D is a positive constant.
As we know, a function v belongs to the Lipschitz class Lipy(8)(0 < f < 1, M > 0) if the inequality

v(t) — v(x)l < Mt — xIf
holds for all t,x € R. Now we compute the rate of convergence of the operators £, ,(v, x) and N, (v, x) for
the Lipschitz class functions.
Theorem 3.3 For x € [0,1] and v € Lipp(B) (N C[0, 1], we have
[Bra(v, x) = v()| < aM[An())F . (3.4)

Proof Applying the Holder inequality with p = 30= ﬁ and Lemma 2.3, we get

A

[Brav, %) = v(@)| < Bua (V) = ()|, %) < @ By (W(t) = (X)), %) < @ M- By (It - P, x)
a-M-[By((t = 02,9 [Ru(L, 0] = a- M- [A)F.

IA

The last equation is obtained by (2.1) and (2.5).
By applying the same proof method, we can obtain the following conclusion.
Theorem 3.4 For x € [0,1] and v € Lipp(B) (N C[0, 1], we have

[Nna(v,2) = v(@)| < aM A ) (3.5)

4. Global Approximation
Lemma 4.1 ([10]) For ¢(x) = /x(1 —x),s > 0 and v € C[0, 1], there exists a constant E > 0 such that
K.(v,s) < Ew.(v,5). 4.1)

Here W.[0,1] = {g : g € AC[0,1],llcg’|l < oo} means that g is differentiable and absolutely continuous on
the interval [0, 1], the first order Ditzian-Totik modulus of smoothness and corresponding K-functional are
given by

We(r,9) = sup [v(x + ng(x)) —(x— ng(x)) X+ TCZ(") € [0,1]
and
Ke(v,s)= inf [l =gl +slleg (s > 0),
respectively.

Theorem 4.1 Forv € C[0,1], x € (0,1) and ¢(x) = /x(1 — x), we have

18, 0 (v, x) — v(x)| < Ew, (v, %An(x)) , (4.2)

where E is a positive constant.
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Proof Using the representation g(t) = g(x) + fx ' 7' (z)dz and 8, ,(1,x) = 1, we get

t
Ba(9,2) = 900) + B ( | g'(z)dz,x). 43)
For any x,t € (0,1), we can get
t t 1
"(z)dz| < |lcg’ —dz|. 4.4
[ g <t [ 5 z| (@4)

. .. t
Next, we estimate this item fx L iz,

c(@)
"1
‘fx @dZ.

[ el e )
2(1VE= VAl + VI - £~ V-4

1 1
2|t_X|(\/Z+ \/E+ VI-t+ Vl—x)

1 1 )<2\/§|t—x|'

2|t—X|($+ T C(x)

From (4.3),(4.4),(2.5) and the Cauchy Schwarz inequality, we get

IA

2V2llcg llc™ ()R (lt = x], %)
2V2lleg lle™ () (Boa((t - 2%, )
232 V&l lle™ () (Ba((t - 27, )
2V2 Vallcg'lls ™! () Au(x).

IA

|Bn,a(g/ X) - g(x)l

IA

IN

The reciprocal first inequality is obtained from Lemma 2.3.
So

IN

81,0 (v, x) = v(x)| Ba(v = g, 01 + v — gl + By,a(g, %) — g(¥)|

2lv = gll + 2 V2 Valleg'llc™ (1) Au(x).

IN

Taking the infimum on the right hand side of above inequality for all g € W.[0, 1], we obtain

1,0 (v, x) — v(x)| < 2K, (1/, N %An(x)).

Using Lemma 4.1 and the above inequality we get Theorem 4.1 immediately.
By using a completely similar proof method, the following conclusion can be drawn.

Theorem 4.2 Forv e C[0,1], x € (0,1) and ¢c(x) = /x(1 — x), we have

INna(v, X) = v(x)| < Ewg (f, %An(x)) , (4.5)

where E is a positive constant.
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5. Rate of Convergence

In this section, we study the approximation properties of £, ,(v, x) and 8, ,(v, x) for functions with a
derivative of bounded variation on [0, 1].

Let dpy[0,1] denote the class of absolutely continuous functions defined on [0, 1], whose derivatives
have bounded variation on [0, 1]. It is well known that the functions v € dgy[0, 1] possess a representation

v(x) = v(0) + fo ) h(t)dt

where h € BV[0, 1], i.e., h is a function of bounded variation on [0, 1].
Let kernel functions

oW Yknt @ffz(x), 0<t<1;
ato ) = 0, t=0

and
n

O t) = Y (n+ 1O @)xi(h),
k=0

where xx(t) is the characteristic function of the interval [n =y ’n‘ﬂ] with respect to I = [0,1]. An integral

expression form of the operators £, ,(v, x) and N,, ,(v, x) can be given as follows:

By a(v,x) = f v(t)dtca 2 (x, 1), (5.1)
0
1
Noa(v,x) = f V() (x, Bdt. (5.2)
0
Lemma 5.1 (i) For 0 < y < x < 1, we have
@ (x, y) < G ) A (). (5.3)

(ii) For 0 < x < z < 1, we have

1-a(h(x ) < A% (x). (5.4)

(x — )
Proof (i) By the inequality of (1.5) and the expression of (5.1), we get

2
o) < aoliwn=a [ doliwnsa [ y(ﬁ) 42,
< (X y f (t— Zdt(D(l) (x,t) = (x — )2 Ba((t - x)Z,X)
) (x—y)2 R

(i) Using a similar method we can get (5.4) easily.
Using the same proof method as Lemma 5.1, we get
Lemma 5.2 (i) For 0 <y < x < 1, we have

fo oD (x, t)dt<( y)zAi(x). (5.5)
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(ii) For 0 < x < z < 1, we have

1
f (x Hdt < o )zAz(x) (5.6)

Theorem 5.1 Let v € dgy|[0, 1]. Then, for every x € (0, 1), the following inequality

2 X
80 =] < afly G0l + o)A + 220 (X)Zw )+ \ @

k=1 x-¢ —L\F

202 (x)

F e Y Vet Ve

holds, where

0, t=x;

V() -V (x+), x<t<1;
(Px(t) =
V() -v'(x=), 0<t<nx

Proof For v € dgy[0,1], we have v(f) — v(x) = fx ' v’ (u)du. Using Bojanic-Cheng’s decomposition [6], v/ (1)
can be expressed as

Vi) = )+ % [V (x+)+ v (x=)] + % [V (x+) = v'(x=)] sign(u — x)
+6,(u) v () - % W (x+) + v’(x—))], 5.7)
where
s ={ g 437
1, x>0
sign(x) =4 0, x=0;
-1, x<0.

Noting fxt sign(u — x)du = |t — x|, fxt Ox(u)du = 0 and 8, ,(1,x) = 1, we get

t
[Buatt20 =] = (B0 = 70,0 = 81000 [ v, 2

‘v’(x+) +1'(x=)
2
+v’(x+) ; V' (x—)

Bn,a(t - X, x)

t
Bl =10 + Bl [ i)

IA

B f x(u)d, ).

By Lemma 2.3 and (2.6), we get B, ,(If — x|, x) < a8, (|t — x|, x) < aA,(x).
So

(V' e + V(=) B (I — x], %) +

|80 (v, x) = v(x)| < @ (W ()| + [V (x=)]) Au(x) +

t
Bua f s 0)du, )|,

(5.8)

Thus, our task is to estimate the term 13, . ( fx ' @x(u)du, x).
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By the representations of (5.1), we can write

t 1 t
T ( f (px(u)du,x): f ( f P (W)du)d;@( ) (x, 1) = Ty + X, (5.9)

where I = [( f Qu(u)du)d; @) (x, £) and £y = f ( f Qe (u)du)di @) (x, £).
Applying the integration by parts and noticing (D(l) 2(x,0)=0, f @x(u)du = 0, we get

o, x, ) f poludduf, - f 0 (x, Dty

M SR Y
- f o (x, (Bt = —( f + f Yol (x, D (E)dt.
0 0 x—iﬁ

Thus, it follows that

| < T o) (x, t xdtf o) (x, 1) )t
|1|<f0 <x>\/<<p) e v«p)

Vi

X

By 0 < cDE,l,L(x, t) <1and (5.3), we get

gz \/ (Px x o\
|Zl| < OZAz(x)f t)2 t+ % x}/{((PY) (510)
o

By considering t = x — %, we yield
al(x) [V x o\
< — . :
2] < =2 fl vx(wx)du - v () (5.11)
x—% -

According to (5.4) and the same method, we have

x+ 1=
n

_ Vi
5| < & — xf \/ (p,,)du+1\/ﬁx (@x)- (5.12)

By (5.9), (5.11) and (5.12), we get

[Vn] x

B0 (ft (Px(u)durx) < M Z \/((px)+ — \/ (x)

X
k=1 x-% x— ==

1-—x

1-x X+=

" Y, \/(%“% \/ (@), (5.13)

k=1 «x x

Theorem 5.1 now follows from (5.8) and (5.13) immediately.
Using the same proof method as Theorem 5.1, we get
Theorem 5.2 Let v € dpy|0, 1]. Then, for every x € (0, 1), the following inequality

2 X
00 = v < ally @R+ o)A + (X)ZW x)+— v«px)

k=1 x—% x——
ZaAz(x) [Va] e+t —x x+1;‘/,:
(x (9x)
cL Ve g Ve

holds.
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6. Graphical analysis

In this section, we show several graphics to present the convergence of operators £, ,(v, x) and 8,, , (v, x)
to certain functions with different values of n and «.

Example 1 Let f(x) = e sin(32*) + 1, a = 2, and n = 20,30, 50, 100.

Figure 1 shows the convergence of the operators 3, (v, x) to the function f(x).

Obviously, as the random 7 increases, the error of the approximation [,,.(v, x) — v(x)| becomes smaller
and smaller.

1.8 T T T
— f(z) = e @sin(3E) +1
—n =20

1.6 ——n=30 ul
—n =50

1.4 —mn =100

Figure 1: Convergence behaviour of £3, o (v, x).

Example 2 Let f(x)
Figure 2 shows the

=esin(Z)+1,n=>50,anda =1,2,3,4.
convergence of the operators 3, o (v, x) to the function f(x).

1.8 T T T
— f(z) = e @sin(*22) + 1
—a=1
1.6 —a=2 i
a=3
1.4 —a=4

Figure 2: Convergence behaviour of 3, o (v, x).
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Example 3 Let f(x) = sin(10x)e > + 1, a = 2, and n = 20, 30, 50, 100.

Figure 3 shows the convergence of the operators N, (v, x) to the function f(x).

Obviously, as the random n increases, the error of the approximation [N, (v, x) — v(x)| becomes smaller
and smaller.

1.7 T T T
— f(x) = sin(10z)e ™ + 1
1.6 —n=20 |
1.5 —n =230 i
n =50
1.4 —n =100

Figure 3: Convergence behaviour of N, (v, x).

Example 4 Let f(x) = sin(le)e‘3" +1,n=50,anda =1,2,3,4.
Figure 4 shows the convergence of the operators N,, ,(v, x) to the function f(x).

1.7 T T T
— f(x) = sin(10z)e ™% + 1
1.6F —a=1 |
1.5 —a=2 i
a=3
1.4 —a=4

Figure 4: Convergence behaviour of 8, ,(v, x).
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