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Abstract. Let Gbe a k-uniform hypergraph and A,(G) = aD(G)+(1-a)A(G) the convex linear combination
of its degree diagonal tensor (&) and its adjacency tensor A(G), where k > 3and 0 < a@ < 1. The a-spectral
radius of G is the largest modulus of all the eigenvalues of A,(G). Let B(n, k) be the set of the connected
k-uniform bicyclic hypergraphs, where k > 3. The number of the edges of the hypergraphs in 8B(n, k) is
denoted by m = 1. We develop a new p,-normal labeling method for calculating the a-spectral radius
of k-uniform hypergraphs. By using some transformations and the new p,-normal labeling methods, we

characterize the hypergraphs with the first and the second largest a-spectral radii among B(n, k), where
k>4and m = > 20.

1. Introduction

Let G = (V(G), E(G)) be a hypergraph, where V(G) = {v1,...,v,} and E(G) = {ey, ..., ey} are respectively
the sets of the vertices and the edges of G. For each edge e € E(G), if |e| = k, then G is a k-uniform hypergraph,
where k > 2. In G, a path of length p from v; to v,,1 is an alternating sequence v1e10; . .. Vye,Up41 Of Vertices
and edges such that v;,vi1 C e fori =1,...,p. A hypergraph is connected if there is a path connecting
any two vertices of G. For a k-uniform hypergraph G, let w(G) and (@) be its numbers of components
and cyclomatics, respectively. A k-uniform hypergraph G is called r(G)-cyclic if m(k — 1) — n + w(G) = 1(G)
holds [4]. If w(G) = 1, then G is a connected hypergraph. If r(G) = 0, 1,2, then G is respectively a supertree,
a k-uniform unicyclic hypergraph and a k-uniform bicyclic hypergraph. Thus, for a k-uniform bicyclic
hypergraph G, we have m = Z%% For a vertex v € V(G), the degree of v, denoted by d,, is the number of the
edges of G which are incident with v. A vertex of degree one is called a core vertex. A vertex of degree at
least two is referred to as an intersection vertex (abbreviated as IV). A pendent edge means that it has only
one IV. A non-pendent edge has at least two IVs.

A real tensor A = (aj,4,-) € R " of order k and dimension n over the real field R is a multi-
dimensional array with nk entries, where Aiyiyiy, € Rwith iy,1p,---, i € [n] ={1,2,---,n}. In 2005, Qi [18]
and Lim [11] independently introduced the concept of tensor eigenvalues and the spectra of tensors as
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follows. Let x = (x1,Xy,...,x,)" € C" be an n-dimensional complex column vector, where C is the set of
complex numbers. Let I = (&, 2%, .- x5)T, where k is a positive integer. By using the product of tensors

defined by Shao [21], Ax*~! is simplified as Ax. Then Ax is a vector in C" whose i-th component is given

by

n

(ALY = (Ax); = Z iy, Xiy * + + X;,, for each i € [n]. 1)
inik=1
We have
n
xT(ﬂx) = Z ailiz.‘.ikxil e xik' (2)

i1,i2,.., k=1

If there exist a number A € C and a nonzero eigenvector x € C" such that Ax*! = Ax*!, namely
(Ax*1); = Ax¥ for any i € [n], then x is an eigenvector of A corresponding to the eigenvalue A.

Let G be a k-uniform hypergraph with n vertices. In 2012, Cooper and Dutle [2] defined that the
adjacency tensor of G is the k-ordered and n-dimensional tensor A(G) = (4i,i,.-i,), where a;,..;, = ﬁ if
vy, v, ...,vi) € E(G) and a;,;,..;, = 0 otherwise. Let D(G) = (d,,;,..;,) be the degree diagonal tensor of order
k and dimension n for G, where d;;, ;, = dyp, ifi1 =i = ... =iy =i withv; € V(G)andi=1,---,n, and
diyiy..i, = 0 otherwise with iy, iy, ..., i € [n]. In 2017, Nikiforov [15] proposed to merge the spectral properties
of the adjacency matrix and the signless Laplacian matrix of a graph. Let A,(G) = aD(G) + (1 — a)A(G)
be the convex linear combination of (&) and A(G), where 0 < a < 1. The a-spectral radius of G,
denoted by p,(G), is defined to be the largest modulus of all the eigenvalues of A,(G), ie., p.(G) =
max{|A|| A is an eigenvalue of A,(G)}. Inspired by the work of Nikiforov [15], Lin et al. [12] and Guo and
Zhou [6] proposed to study Aa(G) and pa(G). Obviously, po(G) and p1(G) are respectively the spectral
radius of G and the signless Laplacian spectral radius of G.

Let x be a vector of dimension # and U a subset in [11]. We write x = [],., x; for short. For a k-uniform
hypergraph G, by the definition of A,(G), (1) and (2), we get

(ALG)x)y = adox™ + (1 - ) Z M for each v € V(G), 3)
T AG) = Y dxb+(1-a) ) k. (4)
veV(G) e€E(G)

Since the studies on the a-spectral radius of hypergraphs are of practical significance, they have attracted
many attentions from researchers. The hypergraphs with the extremal a-spectral radii have been obtained.
Among the k-uniform supertrees, You et al. [27] obtained the supertrees with the first to the third largest
a-spectral radii, and they proposed a conjecture on the supertrees with the fourth to the eighth largest a-
spectral radii. Wang et al. [24] solved this conjecture and the supertrees with the fourth to the eighth largest
a-spectral radii among the k-uniform supertrees were obtained. Among the k-uniform non-caterpillar
hypergraphs with a given diameter, Wang et al. [22] deduced the supertrees with the first and the second
largest a-spectral radii. Among hypergraphs with a given number of pendent edges and among the unicyclic
hypergraphs, Lin and Zhou [13] obtained the hypergraphs with the largest a-spectral radii. Among the k-
uniform unicyclic hypergraphs with a fixed diameter and among the k-uniform unicyclic hypergraphs with
a given number of pendent edges, Kang et al. [8] characterized the hypergraphs with the largest a-spectral
radii. For the upper bounds of the a-spectral radius for hypergraphs, one can refer to Refs. [3, 6, 7, 12, 13].

In studying the spectral radius of the k-uniform hypergraphs, one of the powerful methods is the
a-normal labeling method, which was first developed by Lu and Man [14]. For example, Ouyang et
al. [16] used it to determine the first five hypergraphs with larger spectral radii among the k-uniform
unicyclic hypergraphs and the first three hypergraphs with larger spectral radii among the k-uniform
bicyclic hypergraphs. Researchers also extended the a-normal labeling method to study the upper bound
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of the a-spectral radius of hypergraphs [23] and the p-spectral radius of hypergraphs [10]. For more details
about the a-normal labeling method, one can refer to Refs. [1, 16, 20].

Let B(n, k) be the set of the connected k-uniform bicyclic hypergraphs, where k > 3. Motivated by the
above-mentioned results, in this article, we will study the hypergraphs with the larger a-spectral radii
among B(n, k), where k > 3.

This article is organized as follows. In Section 2, we introduce some necessary lemmas which are useful
for subsequent proofs. In Section 3, we propose a useful and new p,-normal labeling method for studying
the a-spectral radius of k-uniform hypergraphs. In Section 4, by using the p,-normal labeling method
proposed in Section 3, we compare the a-spectral radii of some hypergraphs among 8(n, k). With the aid of
some transformations and the results obtained in Section 4, we obtain the k-uniform hypergraphs with the
first and the second largest a-spectral radii among B(n, k) in Section 5, where k > 4 and m = & > 20.

2. Preliminaries
In this section, some definitions and necessary lemmas are introduced.

Definition 2.1. [26] Let A = (ajj,..;,) be a nonnegative tensor of order k and dimension n. For any nonempty proper
index subset I C [n], if there is at least an entry a; ;,..;, > 0, where iy € I and at least an i; € [n]\ I for j =2,3,...,k,
then A is called a nonnegative weakly irreducible tensor.

Let R” = {x = (x1,%2, -, %) € R" | x; > 0,Vi € [n]} and R", = {x = (x1,x2,--- ,x,)' € R" | x; > 0,Vi €

[n]}.

Lemma 2.2. [5, 25] (The Perron—Frobenius theorem for nonnegative tensors) Let A be a nonnegative tensor of order
k and dimension n, where k > 2. Then we have the following statements.

(i). p(A) is an eigenvalue of A with a nonnegative eigenvector x € RY} corresponding to it.

(ii). If A is weakly irreducible, then p(A) is the unique eigenvalue of A with the positive eigenvector x € RY,,
up to a positive scaling coefficient.

Lemma 2.3. [17] A k-uniform hypergraph G is connected if and only if A(G) is weakly irreducible.

From Lemmas 2.2 and 2.3, if G is a connected k-uniform hypergraph, then there exists the unique vector
x € R}, corresponding to p,(G). This vector x is referred to as the a-Perron vector of G, where ||x||’]: =1.

Lemma 2.4. [19] Let A be a nonnegative symmetric tensor of order k and dimension n. We have
p(A) = max {xT(ﬂx) |x e R}, ||x||i = 1}'

Furthermore, x € R’} with ||x||’,§ = 1 is an optimal solution of the above optimization problem if and only if it is an
eigenvector of A corresponding to the eigenvalue p(A).

From Lemma 2.4, p(A,) can be expressed as follows:

xT(Ax)

(A,) = max
g { B

,xeR’l,xiO}. )

The edge-removing operation, which is a useful method for studying the a-spectral radius, is shown in
Definition 2.5.

Definition 2.5. [9] Let G = (V(G), E(G)) be a hypergraph with v € V(G) and ey, ...,e, € E(G) such that v ¢ e;
fori e [r] ={1,2,---,r}, where v > 1. Suppose that u; € e;, where i € [r] and the vertices uy, uy,---u, are
not necessarily distinct. Let ] = (e;\{u;}) U {0}, where i € [r]. Let G’ = (V(G'), E(G")) be the hypergraph with
E(G') = (E(G)\le1,...,e}) Uley, ..., er}. Then we say that G’ is obtained from G by removing the edges (e1, - . ., €;)
from (uy, ..., u,) tov.



L.]. Yu, W. H. Wang / Filomat 39:9 (2025), 28612880 2864

Lemma 2.6. [6] Let G be a connected k-uniform hypergraph, and G’ the hypergraph obtained from G by removing
edges (e1,...,er) from (uy,...,u,) tov, wherer > 1. Let x be the a-Perron vector of G. If x, > max{x,,, ..., x,,}, then

pa(G') > pa(G).

Lemma 2.7. [16] Let G be a simple connected r-cyclic k-uniform hypergraph with n vertices. Let G’ be a connected
subhypergraph of G. If G’ is r'-cyclic, then we have ' < .

3. A new p,-normal labeling method for the a-spectral radius of k-uniform hypergraphs

In this section, we will propose a useful p,-normal labeling method for the a-spectral radius of the
k-uniform hypergraphs, which generalizes the a-normal labeling method developed by Lu and Man [14]
for the spectral radius of the k-uniform hypergraphs. The definitions of p,-normal, p,-subnormal and
pa-supernormal for the a-spectral radius of the k-uniform hypergraphs are introduced, which are shown
in Definitions 3.1-3.6, respectively. Then, we give the relationship between the p,-normal labeling and the
a-spectral radius of k-uniform hypergraphs, which are shown in Lemmas 3.3-3.7.

Definition 3.1. Let k > 2 and 0 < a < 1. A connected k-uniform hypergraph G is called p,-normal if there exists a
weighted incidence matrix B satisfying
@. Y. (B(v, e) + oz) = pq, for any v € V(G).

(ii).e:zﬁ B(v,e) = (1 — a)k, for any e € E(G).

Moreover, the incidence matrix B is called consistent if for any cycle voe1v1...v; (vg = v;) of G, we have

I
i:Hl —Blzz(,vfe) y = 1. In this case, we call G consistently p,-normal.

Remark 3.2. For any supertree T, since T~ does not contain cycles, T satisfies the consistent condition naturally.

Lemma 3.3. Let G be a connected k-uniform hypergraph, where k > 2. The a-spectral radius of G is p, if and only
if G is consistently p,-normal, where 0 < o < 1.

Proof. Let V(G) = {v1,v2,- -+, 0}

(1). The proof of necessity.

We suppose that the a-spectral radius of G is p,. We will prove that G is consistently p,-normal. Let
x = (x1,%, - ,%,)' be the a-Perror eigenvector of the a-spectral radius of G. We define the weighted
incidence matrix B as follows. Let

(-ap
B(v,e):{OX§ » HUEe

, otherwise.

(1.1). For any v € V(G), we have

_ (1 - a)xe _ advxlz(; + (1 - CY) Ze:vee x°
é(B(U,E)+a) = ;@(—x’z‘, +al= = . (6)
By the eigenequation (3) of G at v, we get
PaXs = adyxt + (1 - a) Z x°. (7)

evee
Therefore, by substituting (7) into (6), we get . (B(v, e) + a) = pn- Namely, we have Definition 3.1 (i).

e:vee

(1.2). For any ¢ € E(G), we get

— € e\k
[T~ [958 -2 oot .

v:vEe v:vEe v

v:vee
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where the third equality in (8) holds since [] x¥ = (x°)k. By (8), we have Definition 3.1 (ii).
vvee
Next, we prove that B is consistent. For any cycle vpe 01 ...v; (v; = vg) of G, we obtain

(1- a)x‘z

I Ik k

B(vl/el xUz—l _ xv(] _ 1 (9)
| | (1- a)m - | | kT ok T

B(Uz Le) 44 = Load

1

By (9), we get that G is consistently p,-normal.

(2). The proof of sufficiency.

Suppose that G is consistently p,-normal. We will prove that the a-spectral radius of G is p,. Let
x=(x1,...,%,)T bean arbitrary nonzero vector in IR’

For any e € E(G), if [] B(v,e) = (1 — @), then we have

-0 Y, = [[Goptw=0-a ¥ k. (10)
e€E(G) vivee e€E(G)

By the Arithmetic Mean—Geometry Mean inequality, we get

1 e v ekB v, e xlzi
2 k[]B@eotx) < Lect() Lowee KB, )1y 11)
k
ecE(G) vwvee

Obviously, we have

a Z doxk = Z Zax’{,. (12)

veV(G) veV(G) e:vee

By (4), (10)-(12) and Condition (i) in Definition 3.1, we have

A (A(G)Y) = Z dox + (1 - @) Z kx?

veV(G) e€E(G)
< ), Y (a+B@AK =pa Y *E=pallxlf. (13)
veV(G) evee veV(G)

Therefore, by (13) and the arbitrariness of x, we obtain p,(G) < p., with the equality if and only if G is
po-normal and the equality in (11) holds. Namely, there is a nonzero solution {x;} for the system of the
following homogeneous linear equations:

B(0i,, €)txo, = B0y, )i xy, = ... = B(y,)fxy, , Ve = {0y, ..., v} € EG). (14)

Let vy be an arbitrary vertex in V(G). For any u € V(G), since G is connected, there exists a path
1

B(vi-1,6i)
B(vi,e;)

voe101€202 ... 0y (v = u) connecting vy and u. Let x;, = 1. For u € V(G), we define x; = (H

The consistent condition guarantees that x;, is 1ndependent of the choice of the path. We can check that
(x}, x5, ,x,) is a solution of (14). Thus, we have p,(G) =

Definition 3.4. Letk >2and 0 < a < 1. A connected k-uniform hypergraph G is called p,-subnormal if there exists
a weighted incidence matrix B satisfying
0. Y (B(v, e) + 0() < Pa, for any v € V(G).

e:vee
(ii). TI B(v,e) > (1 - a), for any e € E(G).
vvee
Moreover, G is called strictly po-subnormal if it is p,-subnormal but not p,-normal.
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Lemma 3.5. Let G be a connected k-uniform hypergraph, where k > 2. If G is pa-subnormal, then p.(G) < pa,
where 0 < a < 1. Moreover, if G is strictly po-subnormal, then po(G) < pa.

Proof. Letx = (x1,...,x,)" be an arbitrary nonzero vector in R”?. For any e € E(G), if [] B(v,e) > (1 — a),
vvee

then we have

1-a ), % [T(B@e x)=0-a) ) ke (15)

ecE(G) vivee ecE(G)

By (4), (11), (12), (15), and Condition (i) in Definition 3.4, we have

T AGW) = Y doxb+(1-0a) ) k¢

veV(G) ecE(G)
k _ k
< Y Y. (a+B@e)t<pa Y H=pallxlf. (16)
veV(G) e:vee veV(G)

Therefore, by (16) and the arbitrariness of x, we obtain p,(G) < p,. If G is strictly p,-subnormal, then the
inequality in (15) or the second inequality in (16) holds. Thus, we get p,(G) < pq. O

Definition 3.6. Let k > 2 and 0 < @ < 1. A connected k-uniform hypergraph G is called p,-supernormal if there
exists a weighted incidence matrix B satisfying

0. Y, (B(v, e) + a) > pq, for any v € V(G).

(ii).e:vﬁ B(v,e) < (1 — a)k, for any e € E(G).

Moreover, G is called strictly po-supernormal if it is p,-supernormal but not p,-normal.

Lemma 3.7. Let G be a connected k-uniform hypergraph, where k > 2. If G is consistently p,-supernormal, then
Pa(G) = pa, where 0 < a < 1. Moreover, if G is strictly consistently p,-supernormal, then po(G) > pa.

Proof. From the consistent condition of G and the proof of sufficiency of Lemma 3.3, there exists an
eigenvector x = (x1,xp,- - ,xn)T € R} such that (14) holds. We have

Y [1(ee.otx)= Y, Desfeon a7)
ecE(G) vivee ecE(G)

For any e € E(G), if [] B(v,e) < (1 — @)k, then we obtain

v:vEL

a1 -a) Z H((B(v e)ix,) < (1-a) Z k. (18)

ecE(G) v vee e€E(G)

By (4), (12), (17), (18), and Condition (i) in Definition 3.6, we get

X (ALG)x) = a 2 dox + (1 — @) Z kx?

veV(G) ecE(G)
> Y Y (a+B@e)tzp. Y H=pallxlf. (19)
veV(G) evee veV(G)

Therefore, by (19), we obtain p,(G) > L) pa- If G is strictly consistently p,-supernormal, then the

k
BT

inequality in (18) or the second inequality in (19) holds. Thus, we get p.(G) > ps. O
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4. Comparing the a-spectral radii of some hypergraphs among 8B(n, k)

In this section, we will use the p,-normal labeling method proposed in Section 3 to compare the a-spectral
radii of some hypergraphs among B(1, k).
Some definitions of hypergraphs in B(n, k) are introduced firstly. Let ej, €3, e3, and e4 be four edges with k

vertices, wherek > 3. Lete; = {uy, up, u3, wy,, ... w;,_,}, e = {uq, 1y, ug,w,’.l,...w’. },e3 = {uq, uy, u3,w;l’, . wl’k’ 1},

k-3
and ey = {uq, up, us, wl’.l”, ... wl’.k’;}. Let A, B, C, D, and F be the five hyperkgi‘aphs as shown in Fig. 2. In
A, up and u, are simultaneously incident with e, e, and ez and dx(v) = 1 for v € V(A)\{u1,u2}. In B,
dg(u1) = dg(uz) = dg(us) = 2 and dg(v) = 1 for v € V(B)\{u1,up, us}. In C, de(ur) = 4, de(ua) = de(uz) = 2
and de(v) = 1 for v € V(C)\{u1, up, uz}. D is obtained from e;, e, €3, and e4 by identifying 1 of e, e3, and ey
together, identifying u; of e;, e3, and e, together, and identifying u3 of e; and e, together. ¥ is obtained from
e1, €2, and e3 by identifying u; of e;, e;, and ez together, identifying u, of e; and e, together, and identifying
u3 of e; and e3 together.

A hyperstar with a edges, denoted by S, (2 > 1), is a k-uniform supertee such that it has only one vertex
(denoted by ug) of degree a and all the other vertices have degree 1. Namely, in S,, all the edges of S, are
incident with the common vertex 1. We refer to uj as the center vertex of S,. For a hypergraph H and
v € V(H), if we identify v of H with uy of a hyperstar S,, then we say that the resulting hypergraph is
obtained from H by attaching S, at v.

Let m = 11 > 5. We assume that 4, b and ¢ are nonnegative integers.

Let A, x(a, b) be the hypergraph obtained from A by attaching hyperstars S, and S; at u; and u; of A,
respectively, wherea > b > 0and a+b+c = m — 3. A,x(a,b) is shown in Fig. 1. Let A, x(a,b,c) be the
hypergraph obtained from A, (a, b) by attaching a hyperstar S, at a core vertex (denoted by u3) in e;, where
a>b>0,c>1anda+b+c=m-3. Let ﬂ;/k(a, b, c) be the hypergraph obtained from A, (a+1, b) by attaching
a hyperstar S at a core vertex (denoted by u3) in an edge of S,, wherea, b > 0,c > landa+b+c =m—4. Let
Bui(a,b,c), Corlab,c), D,ia,b,c), and F,i(a, b, c) be the hypergraphs obtained respectively from 8B, C, D,
and ¥ by attaching hyperstars S,, Sy and S; at 11, up and u3. It is noted thata + b +c =m—2 for B,,x(a, b, ¢),
a+b+c=m—4forCyi(a b,c),anda+b+c=m-3for D,(a,b,c)and F,x(a,b,c). For example, A',,x(a,b,c),
A;rk(a, b,c), Bui(a,b,c), Cuila,b,c), Dyia,b,c), and F,x(a, b, c) are shown in Fig. 3.

For simplicity, let A, x(m —3,0) = A} withm > 4, A, x(m—4,1) = AL, withm > 5, A’ ,(0,0,m=3) = A°)
with m > 4, B,,,(m —2,0,0) = BY) withm > 3, B, x(m —3,1,0) = B with m > 4, C,x(m — 4,0,0) = C,.c with
m >5,and F(m—3,0,0) = F,, withm > 4. Let BSZ be the hypergraph obtained from 8 by attaching a
hyperstar S,,—; at a core vertex (denoted by uy) in e;, where m > 3. Bff])c is shown in Fig. 4.

For a hypergraph H € B(n, k), if we repeatedly delete the pendent edges of H, then we get a resulting
hypergraph such that it has no pendent edges. We denote the resulting hypergraph by H and call H the

base hypergraph of H. Since H is a connected 2-cyclic hypergraph, the number of IVs in H is at least two.
According to the numbers of the IVs in H, we have B(n, k) = U?ﬂ Bi(n, k), where B;(n, k) is the subset of
B(n, k) in which each hypergraph has exactly i IVs, where i > 2. Obviously, if i = 2, since H is a bicyclic

hypergraph, the two IVs of H must be incident with three common edges, namely H = A. Furthermore,
if H € By(n, k), when m = % >4, we get H = Ap(a,b). If H € Bs(n, k), since H is a bicyclic hypergraph,

bearing Lemma 2.7 in mind, we get H = {A, B,C, D, ¥ }. Thus, we have
B?) (nl k) = {ﬂ/n,k(a/ br C)r A;,k(ar b/ C)/ Bn,k(ar b/ C)/ Cn,k(ar b/ C)I Dn,k(ﬂ, br C)r ﬂ,k(ar bl C)} (20)

Ouyang et al. [16] obtained the hypergraphs with the first, the second, and the third largest spectral
radii among B(n, k), which are shown in Lemma 4.1.

Lemma 4.1. [16] Let H € B(n, k) \ {.?(SI)(,BSI)C, ﬂf;{}, wherek > 4and m = % > 5. We have p(?[fqll)() = p(BSl)() >
p(AT) > p(H).
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Figure 1: Bicyclic hypergraphs with two IVs: A, i(a, b)

€2 € €3

m» €1 L) Us € —— o & o —

e3 (5] €4
(a) A (b) B (© C
e3 €4 e
T ED D e
Uy V' up T
e \|J e , 21 ”
J 113 e €3
(d) D (e) ¥

Figure 2: The base hypergraphs of bicyclic hypergraphs with three IVs

To obtain the hypergraphs with the larger a-spectral radii among B(n, k), we introduce Lemmas 4.2-5.8
firstly.

Lemma4.2. Letk > 4 and m = ’,%% > 20. We have pa(ﬂs?{) > pa(BSJ)() > max{pa(Cn,k), pa(ﬂ,k)} with the
equality if and only if « = 0.
Proof. Letk >4 and m = % > 20.

In B,,k(a, b, c) (as shown in Fig. 3(c)), leta = m -3 and b = ¢ = 0. Namely, we get BS;( Let v; and v, be the
two core vertices among BSI)( which are respectively incident with e; and a pendent edge incident with u;,
where v and v, of Bf};{ are shown in Fig. 3(c). Let p§ = pa(Bf},})() and x = (x1,...,x,)' € R", be the a-Perron

vector of p4. We suppose that qull)( is consistently p4-normal. By the eigenequations (3) of BS;{ at vy, vp, Uy,
and u, and bearing the symmetry of the entries in x in mind, we get

pﬁx’z‘,l’1 = ax'{,l’l +(1- a)xlgl"‘xl,lxﬁz, (21)
pﬁx’éz‘l = ax'{,z‘l +(1- a)xlgz‘zxul, (22)
pﬁx’;l‘l = max’f,l‘l +(m-2)(1- oz)x’;;1 +2(1 - a)x’ffxiz, (23)
pﬁx’fgl = 2ax§;l +2(1- a)x’;1’3xulxu2. (24)

From (21), we have p5 — a > 0 when x € R"?, and 0 < & < 1. For simplicity, let

1_
Ay = —¢

= m/ Ar = (ph — a)Aj. (25)

Thus we have Ag > 0 and A; > 0 since p} —a > 0and 0 < & < 1. Furthermore, it follows from (21), (22) and
(25) that

2 \1
x?]1 = (onulxuz 3/ xZJz = AOxu1' (26)
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(d) Cuila,b,c)

NHAAL
SRS

() Dyila,b,c) ®) Fuxlab,c)

Figure 3: Bicyclic hypergraphs with three IVs.
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By combining (24) with (26), we get
ph >2a, (since0<a<landxeRR.,), (27)

S L Gl (28)
(2 —20)F (po — )" *

U

For simplicity, let

A )2 A

B, = ((pp;_—;;)zAl, B, = : — 20;A1. (29)
By substituting (25), (26), (28), and (29) into (23), we obtain

ph = ma + (m — 2)A; + 8By. (30)

From (29), we get By > B, > 0 since A; > 0 and pg —a > pﬁ —2a > 0 (by (27)). Since A1, B; > 0and 0 < a < 1,
by (30), when m > 20, we obtain

ph = 3a = (m - 3)a + (m — 2)A; + 8B; > 0. (31)

(1.1). The proof of pa(A%) > pa(B'}) for k > 4 and m = 12 > 20.
In A, x(a,b) (as shown in Fig. 1), leta = m — 3 and b = 0 and we get .?(S;(. The vertices u1, uy, v1, v2, and

v3 of ﬂi};{ and the edges ¢1, e; and e3 of ﬂf};{ are shown in Fig. 1. Let ey, €5, -+ , €, be the m — 3 pendent edges

1)
n,k

where v is an arbitrary core vertex in V(&’lg;{) and ¢; (1 < i < m) is the edge incident with v. Furthermore, let

of &7{,(111){ attached at u;. We construct a weighted incidence matrix B for A’ as follows. Let B(v, ;) = pﬁ -a,

A _
3(py — @) "

B(ullel) = B(ul/eZ) = B(ulle3) = A
pa — 3a

1,
B(u1,e;)) = A1, whered <i<m,

1
B(uy, e1) = B(uz, e2) = Bz, €3) = gpﬁ -a.

When m > 20, since A; > 0 and p} —a > p4 —3a > 0 (by (31)), we have B(v,e) > 0, where v is an
arbitrary vertex in Jﬂg;{ and e is the edge incident with v in ﬂf};{. We can check [] B(v,e) = (1 — a)X, where

vivee
e = ¢ (1 £ i < m)is an arbitrary edge in E(ﬂgl){). For any core vertex v € V(ﬂg;{) and v = u,, we have
Y (B(v,e) + a) = ph.
e:vee
Next, we compare Y, (B(ul,e) + a) with p4. Since p} —a > p) —3a > 0 and A; > 0, we obtain

e:uy €e

pf—_“Al > A;. Considering (p4 —2a)? > (p5 —a)(p3 —3a) > 0and A; > 0, we have paa Al > (py—00® Ay =B

2—3a pa-3a (ph—2a)?
(by (29)). Therefore, by (30), we get
pﬁ — Z (B(ul,e) + a) = pﬁ - <3B(u1,el) + (m —3)B(uy, eq4) + ma)
e:ui€e
9(p2 -
= Ay + 8B — th <0. (32)
pa — 3

It is noted that the third equality in (32) holds if and only if & = 0. Therefore, if 0 < a0 < 1, ﬂ;lz is strictly
paA—supernormal. Next, we verify that B is consistent. For the three cycles uieiuzeou1, uieiuzesur, and
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B(ug,er) Bui,e2) _ 1 Bluger) Bluies) _ 1
B(uy,e1) B(ug,ea) — 7 B(uyer) Bluges) — ~7
3.7, we obtain pa<ff7lfqlll)() > ph = pa(BSJ)c) for0 <a < 1. Ifa =0, from Lemma 4.1, we have p*ﬂf}() = pa(B(l))

nk
fork>4and m = % > 5.

(1.2). The proof of pa<qul’}){) > pa(Cn,k) fork>4and m = % > 20.

In C, x(a, b, c) (as shown in Fig. 3(d)), leta = m -4 and b = ¢ = 0 and we get C,,x. The vertices u, u,, u3 of
Cyx and the edges ey, e;, €3, and e4 of C,, x are shown in Fig. 3(d). Letes, s, - - , e, be the m — 4 pendent edges
of C,x attached at 11. We construct a weighted incidence matrix B for C,, as follows. Let B(v,¢;) = p[% -a,

B(up,ez) B(ui,e3) _ .
d Faren Bamey = 1 respectively. By Lemma

. 1
UrerUseslly in fﬂfq ), we have

where v is an arbitrary core vertex in V(Cn,k) and e; (1 <i < m) is the edge incident with v. Furthermore, let

B(uy,e1) = B(ui,e3) = B(uy, e2) = B(u1,e4) = 2By,
B(u1,e)) = A1, where5<i<m,

1
B(uz, e1) = B(ua, e2) = Blus, e3) = B(us, 1) = 5 — .

Since A1, B, > 0 and p4 —2a > 0 (by (27)), we get B(v, e) > 0 for any vertex v and any edge e incident with v
in C,,x. We can check [] B(v,e) = (1 —a)f, wheree =¢; (1 <i < m)isan arbitrary edge in E(Cn,k). For any

v.vee

core vertex v € V(Cn,k), v =1u and v = uz, we have Y, (B(v, e) + a) = pﬁ.
e:vee

Next, we compare Y. (B(ul, e) + a) with p4. By (30), we get

ey €e
pa = ), (Bn, &) +a) = p ~[4B(ny,e0) + (m ~ HB(us, e5) + ma]
e:u€e

=2A; +8B; — 8B, > 0. (33)

Itis noted that (33) is deduced from A; > 0 and B; > B, > 0 (by (29)). Therefore, C,, is strictly p4-subnormal.
By Lemma 3.5, we obtain p5 = pa(BSI)() > pa(Cn,k) fork>4and m = % > 20.

(1.3). The proof of pa<BS}) > pa(ﬂ,k) fork>4and m = % > 20.

In %, k(a, b, c) (as shown in Fig. 3(f)), leta = m—3 and b = ¢ = 0 and we get 7, . The vertices uj, up, and u3
of F,,x and the edges ¢;, e; and e3 of 7, are shown in Fig. 3(f). Letey,es,--- , e, be the m — 3 pendent edges
of ¥, x attached at u;. We construct a weighted incidence matrix B for ¥, as follows. Let B(v,¢;) = paA -a,

where v is an arbitrary core vertex in V(ﬂ/k) and e; (1 <7 < m)is the edge incident with v. Furthermore, let

B(uy,e1) = 4By, B(ui,e2) = B(uy,e3) = 2B,
B(u1,e;)) = A1, whered4 <i<m,

1
B(uz, e1) = B(ua, e2) = B(us, e1) = B(us, e3) = 5‘02 -a.

Since A1, B1, B, > 0 and p} — 2a > 0 (by (27)), we can check that B(v,e) > 0 for any vertex v and any edge e

incident with v in ;. It can be verified that [] B(v,e) = (1 — a)f, where e = ¢; (1 < i < m) is an arbitrary
V:vEe

edge in E(ﬂ,k). For any core vertex v € V(ﬂ,k), v =1u and v = uz, we have Y, (B(v, e)+ a) = pﬁ.

e:vee

Next, we compare ), (B(ul, e) + a) with p4. By (30), we get

ey €e

pﬁ - Z (B(ul,e) + a) = pﬁ - (B(ul,el) + 2B(uq,e3) + (m — 3)B(uy, e4) + moz)

e:up e
=A;+4B; — 4B, > 0. (34)
It is noted that (34) follows from By > B, > 0 (by (29)) and A; > 0. By (34), we obtain that ¥, is strictly

p4-subnormal. By Lemma 3.5, we get p5 = pa(qulrl)c) > pa(ﬂ,k) fork>4andm =11 >20. 0
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1 2 2 3 3
Lemmad4.3. Letk>4and m = ’,%% > 20. We have pa(qu’}){) > pa<.?lf1,,)() > max{ Pa(qu,i)()r Pa(ﬂi})/ pa(B;J)()}.

Proof. In A, (4, b) (as shown in Fig. 1), leta = m—4 and b = 1 and we get ﬂ(z) The vertices u1, uy, v1, v, and

v3 of 5‘(( ) and the edges e1, e; and e3 of ﬂ( ) are shown in Fig. 1, where v; , v; and v3 are three core vertices
which are respectively incident with ey, a pendent edge incident with u; and the pendent edge incident
with u; of ﬂ;’k. Let ey, e5,- -+ , e,y be the m — 3 pendent edges of ﬂn,k attached at u;. Let pj, = pa(ﬂ;,k) and
x = (x1,...,x,)T € R%, be the a-Perron vector of p3. We suppose that ﬂf})c is consistently p5-normal. By the

eigenequations (3) of .?Iff;( at vy, v, U3, U1, and up and bearing the symmetry of the entries in x in mind, we
get

Pox 1;11 = ax ty@a- oz)x 3% Xy, (35)
Pox ';21 = ax ty@a- oz)x X0, (36)
pors ! = axt + (1 - a)xk;%x,,, (37)
Pox ’;ll (m— 1)zxxk‘ +(m—-4)(1- a)x +3(1 - oz)xv1 Xuy, (38)
Pox ’;21 40zxu2 +(1 —a)xv3 +3(1 —oz)xvl Xy, - (39)

From (35), we have p;, —a > 0 when x € R}, and 0 < @ < 1. Furthermore, it follows from (35)—(37) that,
respectively,

l-a 1-«a l1-a
Xo, = 5 Xy Xuyy  Xoy = —5 Xuyr  Xog = 5 Xty - (40)
Pa— Pa— Pa—

By combining (39) with (40), we get
(1-a)

p§—4a—m>0, (since 0<a<1, p°—a>0 and x€RL,), (41)
31 -«
Yy = ° (1Ea)k ) 1_7 Xy« (42)
(pa —4a — (p;—a)k 1) (pa - CY)
For simplicity, let
(1-a) Pa—Q (5 — @)
Ay = —————, =—— A, Ci=—"—"A,,
P T pi—da— A T (pr 207
Cr=fa 4, =20y, 43)
Pa — 20 Pa —3a
By (41) and (43), we have
Po—a > po —2a > py—3a>p; —4a—A; >0. (44)
From (43) and (44), we get
C1>C4ZC32A2>0, C22A2>0. (45)
By substituting (40), (42) and (43) into (38), we obtain
=(m—-1a+ (m-4)A; +9C;. (46)

When m > 20, it follows from A,,C; > 0,0 < a < 1 and (46) that
=(m—-1a+ (m—4)A; +9C; = 19a + 16A; + 9C;. 47)
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(1.1). The proof of pa<8(1)) > pa(ﬂa)) fork > 4 and m = 1 > 20.
It is noted that B( ) is shown in Fig. 3(c) witha = m — 2 and b=c=0 In B(l) let ez, eq, - , e, be the
m — 2 pendent edges attached at u;. We construct a weighted incidence matrix B for BS;{ as follows. Let

B(v,e;) = p; — @, where v is an arbitrary core vertex in V(qull)() and e; (1 <i < m) is the edge incident with v.
Furthermore, let

B(uy,e1) = B(uy,e3) =4C,, B(uy,e)) =A;, where3 <i<m,
1,
B(uy, e1) = B(uz, e2) = B(us, e1) = B(us, e2) = 5Pa

Since A, C; > 0 and p;, — 2a > 0 (by (44)), we get B(v, ¢) > 0 for any vertex v and any edge e incident with v
in B(l We have [] B(v,e) = (1 — a) for an arbitrary edge e = ¢; (1 <i < m) in E(BSI)(). For any core vertex

v:vee

vE V(ﬂﬁk), v = up and v = u3, we have Y, (B(v, e) + oz) = pg.

e:vee

Next, we compare 7}, (B(ul, e) + a) with p;,. By (46), we get

e:ug €e

p2= Y (Blur,e) +a) = p — (2B(us,e1) + (m — 2)B(un, ) + ma)

e:uy €e

=—-a+9C; —8C, —2A,
=—a+ Dl[ — (p2)2(p2 — 19a — 10A,) — a2(40pS — 28a — 16A,) — 24Azap;],

Ap
(pa—4a—Az)(p5—2a)* "

From (47), we have p5, — }, (B(ul,e) + a) < 0. Next, we verify that B is consistent. In BS;{, for the

ey €e

where D; = Since A, > 0 and p;, — 2a > p; — 4a — A, > 0 (by (44)), we get D; > 0.

B(ug,e1) B(ui,e2) _ B(us,e1) B(ui,e2) _
three cycles ujeiuzeruq, urequzerus, and uzeiuzeruz, we can check Bure)) Bine) = 1, Boire) Bine) = 1, and
B(uz,e1) B(uz,e2)

Bluse)) Baeey) = 1 Tespectively. Therefore, B(l) is strictly and consistently p;-supernormal. By Lemma 3.7,
we obtain Pa(BS,})c) > pS = pa(ﬂ(2 ) fork >4 and m = =l > 20.

(1.2). The proof of p“(ﬂ:lzrl)() > pa(szl)() fork >4 and m =11 > 20.

In 8B, x(a,b,c) (as shown in Fig. 3(c)), leta =m —3,b =1 and ¢ = 0 and we get Bf,)( In 81(12,1)(, let v; and v,
be the two core vertices which are respectively incident with e; and a pendent edge incident with u;, where
the vertices vy, vy, U1, U, and usz of B( and the edges e; and e, of Be ;( are shown in Fig. 3(c). In B( ) let
e3,e4, -+ ,ey-1 be the m — 3 pendent edges incident with u#; and e, be the pendent edge incident w1th Us.
We construct a weighted incidence matrix B for Bf;{ as follows. Let B(v, ¢;) = p;, — @, where v is an arbitrary

core vertex in V(quzl)c) and ¢; (1 <i < m) is the edge incident with v. Furthermore, let

4(p° — 2u
B(uy,e1) = B(uy,e2) = o({_)oé—a{_iz ) B(u1,e;)) = Ay, where3<i<m-1,
1
B(uy, e1) = B(uz, €2) = §(p3 —3a - Ay), B(uz, en) = Az,

1
B(us, e1) = B(us, e2) = E(PZ - 2a).

Since Ay, C; > 0 and p;, —2a > p5, —3a— Ay > p;, —4a — Az > 0 (by (44)), we have B(v, ) > 0 for any vertex v

and any edge e incident with v in B(z) We get [ B(v,e) = (1 — a)f, where e = ¢; (1 < i < m) is an arbitrary
vvee
edge in E(ZBE1 ) For any core vertex v € V(BQ)) v = up and v = u3, we have }, (B(v e) + a) P

e:vee
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Next, we compare ), (B(ul, e) + a) with p},. By (46), we have

e:uy €e

Pa — Z (B(lee) + 04) =py — [23(141,61) + (m —3)B(uy,e3) + (m— 1)a]

e e
8(pa — 20)
= - A
9Cy a4 Cr—Ap
= Dy(Ara + 2a%) + D33 + Ay), (48)
8(pa—m)Az

where D, = P2 (i=50=72) (5 —da—Ay) and D3 = ﬁ. Owingto A, > 0and p5,—a > p;,—2a > ps,—3a—A; 2

po —4a — Ay > 0 (by (44)), we get D, D3 > 0. Therefore, it follows from A;,D;,D3 > 0,0 < a < 1 and

(48) that pj, — ). (B(ul,e) + a) > 0. Hence, Bffl)c is strictly p;-subnormal. By Lemma 3.5, we obtain
e:uj€e 4

pa(AZ) = p2 > pa(B%) for k > 4and m = £ > 20,

(1.3). The proof of pa(\‘ﬂf])c) > pa(ﬂf}() fork > 4and m = 4 > 20.

In A’ (a,b,c) (as shown in Fig. 3(a)), leta = b = 0 and ¢ = m — 3 and we get ﬂf’}){. The vertices uy, us
and uz of ﬂf’;{ and the edges e, e; and e3 of .?(,(732{ are shown in Fig. 3(a). In ?If’;{, let eq, 65, , e, be the
m — 3 pendent edges incident with u3. For ‘7(5131)« we construct a weighted incidence matrix B as follows. Let
B(v, e;) = p; — @, where v is an arbitrary core vertex in V(ﬂf;{) and e; (1 <7 < m) is the edge incident with v.
Furthermore, let

B(u1,e1) = ps —3a—6Cs, B(ui,e2) = B(uy,e3) = 3Cy,
1.
B(uz, e1) = B(ua, e2) = B(ug, €3) = g(Pa - 3a),

3(py —
B(u3,€1)=p (py —a)

m% B(us,e)) = Ay where 4 <i<m.

Ay > B2 Ay = Cy > 0. Tt follows from (47) and C; > Cy that

From (43), we obtain C; = p;f)ii;fl T

pS = 3a—6Cy > p —3a — 6C; > 16a + 164, +3C; > 0. (49)

Since C4 > 0, p; —3a > 0 (by (44)) and p;, — 3a — 6C4 > 0, we obtain B(v, e) > 0 for any vertex v and any edge
e incident with v in .?IS’,)(. It is easy to check ] B(v,e) = (1 - a) for an arbitrary edgee = ¢; (1 <i < m) in
4 vivee

E(ﬂf}() For any core vertex v € V(ﬂf}() and v = uq, upy, we have Y, (B(U, e) + a) = po.

e:vee

Next, we compare }, (B(M3, e) + a) with p,. By (46), we have

e:uzee

Pa — Z (B(us,e) + a) =p5 - [B(ug,e‘l) + (m — 3)B(us, ex) + (m — 2)a]

e:zee

Ca49C - —WPaz® o,
YT e —sa-6C, t?
3(pa — @)
8Cy— ——2 50
> o Pa —3a —6Cy 4 0)
5C, 21 48
= " (e ZZa— 220
p;—sa—6c4(p“ 50~ 5C3)

It is noted that (50) follows from C; > Cy4 (by (43)) and C; > A, (by (45)). Since Ay, C; > 0, from (47), we
have p — 19« > 0. Therefore, 2A, — C4 = ﬁ(pz —7a) > 0. Namely, 2A, > Cy. Therefore, by (47), we
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have p§, > 19a + 16A; + 9C1 > 19a + 16A; + 9C4 > 25—10¢ + 48 =C4. Furthermore, since C; > 0 (by (45)) and
p5 —3a —6Cy > 0 (by (49)), we have pg, > (B(u3, e)+ oz). Thus, &7{:’3])( is strictly p;-subnormal. By Lemma

e:z€e

3.5, we obtain pa(ﬂ( )) Py > pa(ﬂ(s)) fork > 4and m = 21 > 20.
(1.4). The proof of pa<ﬂ(2)) > pa(B(S)) fork>4andm = 1% >
In qu ])(, the vertices uy, 1y, uz, and u4 and the edges e; and e; are shown in Fig. 3(c). In Bf])c, letes,eq, -« ,em

be them ;2 pendent edges incident with 4. For 8513,1)« we construct a weighted incidence me;trix B as follows.

Let B(v, e;) = p, — a, where v is an arbitrary core vertex in V(BS;{) and e; (1 < i < m)is the edge incident with

v. Furthermore, let

B(ullel) = P; - 20— 4C2/ B(ulrEZ) = 4C2/

1
B(uz, e1) = B(ua, e2) = B(us, 1) = B(us, e2) = E(PZ - 2a),

4(p, —a)

B(uy, = Co, Bl(ug,e) =A,, h 3<i<m.
(ua,€1) 0% — 20— 4G, > (ug,€;) = Ay, where i<m

Since0 <a <1,pS, —a>0and Ay >0, we get (o3 — 2a)* > (p3 — a)(p3 — 4a — Az). Therefore, we obtain

PZ‘“ As > (Pa_“)z

_ 1
R iy S T T .
Thus, by (47), we have
Po —2a —4Cy > p;, — 200 —4Cq 2 17a + 16A, + 5C1 > 0. (52)

Since Ay, C > 0, p5, — a, p5, — 2a > 0 (by (44)) and p;, — 2a — 4C, > 0, we have B(v, €) > 0 for any vertex v and
any edge e incident with v in 8(3). We can check [] B(v,e) = (1—a) foranye =¢; (1 <i <m)in E(BS;{).

v:vee

For any core vertex v € V(8(3)) and v = uy,up, uz, we have Y (B(v e) + a) Pa-
e:vee

Next, we compare }, (B(u4, e) + a) with p;,. By (46), we obtain

e:ug€e

Po— Z (B(u4,e) + a)

e:g€e

= Pa— [B(u4, e1) + (m — 2)B(uy, e3) + (m — 1)(1]

4(ps —
-9C, - %cz — 24,
6(p, —
>9C; - % 2 (53)
- F);_;T(:’Z_%(p; ~da - 12G,). (54)
Itis noted that (53) follows from Cy > C, (by (51) and =49 -Cy = -8 4, > Ay, Since C; > 0,
by (47), we get
gAz -G = T Azza)z ( paps —8a) + Saz) > 0.

Namely, 24, > C,. It follows from C; > C; (by (51)), 34> > C; and (47) that p, —4a —12C, > 15a+ 2 A, > 0.
Furthermore, since C; > 0 and p;, —2a —4C, > 0 (by (52)), by (54), we get p5, > Y. (B(u4, e) + a). Thus, Bf;{
e:use€e 4

is strictly ps-subnormal. By Lemma 3.5, we obtain pa( (2)) po > pa( (3)) fork>4andm =11 >20. 0
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5. The hypergraphs with the first and the second largest a-spectral radii among B(n, k)

In this section, we will characterize the hypergraphs with the first and the second largest a-spectral radii
among B(n, k). To obtain our results, Lemmas 5.1-5.8 are needed.

Lemma 5.1. We have p[X(ﬂ,,,k(a +1,b— 1)) > pa(ﬂn,k(a, b)), wherek >3, a>b>1landa+b=m-3.

Proof. Let x = (x1,...,x,)! be the a-Perron vector of pa(ﬂnlk(a, b)). If x,, > x,,, in A, x(a,b), by removing
one pendent edge from u, to u;, we get A, x(a +1,b — 1). By Lemma 2.6, we get Lemma 5.1. If x,,, > x,,, in
A, x(a,b), by removing a — b + 1 pendent edges from u; to u,, we obtain A, x(a+1,b —1). By Lemma 2.6, we
also have Lemma 5.1. O

Corollary 5.2. We have pa(ﬂsl)() > pa(ﬂff,)() > pa(,‘ﬂn,k(a, b)) with the equality if and only if A, x(a,b) = &Zlff,)(,
wherek >3, a>b>1anda+b=m-3.

grzoof. By repeatedly using Lemma 5.1 and bearing the definitions of ﬂ;li and ﬂffl)( in mind, we get Corollary
2.0
By the methods similar to those for Lemma 5.1, we have Lemma 5.3 as follows.

Lemma 5.3. We have pa(Bn,k(a +1,b-1, 0)) > pa(i‘}n,k(a, b, 0)), wherek>4,a>b>1anda+b=m-2.
By the methods similar to those for Corollary 5.2, we obtain Corollary 5.4.

Corollary 5.4. We have pa<Bf11,)<) > pa(Bffk

wherek>4,a>b>1anda+b=m-2.

) > pa(Bn,k(a, b, 0)) with the equality if and only if B, x(a,b,0) = Bf}(,

Lemma 5.5. Let H € Bs(n, k) \ {qull)(,Cn,k,ﬂ,k}, where k > 4 and m = % > 20. We have Pa(BSZ) >

max{pa(ﬂf}(), pa(Cn,k), pa<5’:n,k)} > pa(H), where 0 < a < 1.

Proof. Letk >4 and m = % > 20. Six cases are considered as follows.

Case (1). H = A’ x(a,b,0).

By the definition of A’, x(a,b,c), we havec > 1. Leta > b. Ifa =b =0, then H = ﬂffl)( By Lemma 4.3,
we have pa(B(l)) > pa(ﬂ(z)) > pa(ﬂ(?’)) Namely, Lemma 5.5 holds when a = b = 0. Next, leta > 1. In
A x(a, b, c), if xy, > x,,, then by removing all the edges incident with u3 from u3 to u,, we get A, i(a,b + ¢),
wherea > 1 and b + ¢ > 1. By Lemma 2.6, we have pa( wk(a, b+ c)) > pa( "uka, b, c)). In A", k(a,b,c), if
Xy, < Xy,, then by removing all the edges incident with u;, (except for e;) from u; to us, we get A, i(a,b + ¢),
wherea > 1 and b + ¢ > 1. By Lemma 2.6, we obtain pa(ﬂn,k(a,b + c)) > pa(ﬂ’n,k(a, b, c)). Sincea > 1 and
b+c > 1, by Corollary 5.2, we obtain pa(ﬂ(Z)) > pa( wi(a, b+c)) By Lemma 4.3, we have pa(BSJ)() > pa(ﬂfj;{).
Thus, we get pa(ﬂ( )) > pa( ) > pa(ﬂ'n (a, b, c)) witha > 1.

Case (2). H = A, (a,b,0).

By the definition of ﬂ;,k(a, b,c), we have ¢ > 1. In ﬂ;,k(a, b,c), if x,, > x,,, then by removing all the
pendent edges incident with u3z from u3 to u,, we get Anx(a+1,b+c), wherea > 0and b +c > 1. By Lemma
2.6, we obtain pa(ﬂn Wa+1,b+ c)) > pa(ﬂ" k(a b, c)) In A (a b,¢), if x,, < xy;, by removing all the edges
incident with u, (except for e;) from u, to uz, we also obtam ?{,, k(@a+1,b+c), wherea>0andb+c>1. By
Lemma 2.6, we get pa( ax@+1,b+ c)) > pa< n,k(a, b, c)). Furthermore, by the methods similar to those for
the proofs of Case (1), we get Lemma 5.5.

Case (3). H = B, x(a,b,c) and H # BS}(.

In B,,k(a,b,c), without loss of generality, leta > b > c. Since H # BS}(, at least two of 4, b and ¢ are
nonzero. Two subcases are considered as follows.
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Subcase (3.1). ¢ = 0.

Since ‘H # BS,}){, we have b > 1. If b = 1and ¢ = 0, then H = Bff}){ By Lemma 4.3, we have
pa(BS,;)() > pa(B’(f;() Namely, Lemma 5.5 holds when b = 1and ¢ = 0. Let b > 2. Sincea > b, we have a > 2.
In B, x(a, b, c), by the symmetry, without loss of generality, let x,, > x,,. We remove the b — 1 pendent edges
incident with u, from u, to 17 and get 3512])( By Lemma 2.6, we have p, (Bf])() > Pa (Bn,k(a, b, C)). Furthermore,
it follows from Lemma 4.3 that Pa<B£,1,;)<) > pa(ﬂf[){) > pa(Bf’,)c) > pa<Bn,k(a, b, c)) when 8B,,,(a,b,c) # B:}J){, Bfl
and ¢ = 0.

Subcase (3.2). ¢ > 1.

In this subcase, we havea > b > ¢ > 1. In B,x(a, b, c), by the symmetry, without loss of generality, we
assume x,,, > x,,. We remove the c pendent edges incident with u3 from us to u; and get 8, x(a+c, b, 0), where

a+c>2andb > 1. By Lemma 2.6, we have Pa(Bn,k(ﬂ +c,b, 0)) > pa(Bn,k(u, b, c)) Furthermore, it follows
from Lemma 4.3 and Corollary 5.4 that pa(ﬂsl){) > pa<ﬂ;2,)c) > ,Oa(quz,)c) > pa(Bn,k(a +c,b, 0)) > pa(ﬂnlk(a, b, c)).

Case (4). H = Cyx(a,b,c) and H # Cyy.

In Cpx(a, b, c), we assume b > c. Since H # C,,x, we have b > 1.

InCyx(a,b,c), if x,, > x,,, by removing all the edges incident with u3 (except for e3) from u3 to uy, we get
Anr(@+1,b+c), wherea > 0and b + ¢ > 1. By Lemma 2.6, we have pa(ﬂn,k(a +1,b+ C)) > pa(Cn,k(ﬂ, b, c)).
Similarly, if x,, < x,,, we also get pa(ﬂn,k(a +1,b+ c)) > pa(C,,,k(a, b, c)). Sincea +1,b + ¢ > 1, by Corollary
5.2, we have pLY(.?(fqzl)() > pa<ﬂnlk(a +1,b+ c)). By Lemma 4.3, we obtain Pa(Bf}])() > pa<ﬂfqzl)c). Thus, we get
pa(BSJ)C) > pa(ﬂf/;() > pa(Cn,k(a, b, c)).

Case (5). H = D, x(a, b, ).

In D, xa,b,c), if x,, > x,,, by removing e, from u, to u;, we obtain C,(a,b,c). By Lemma 2.6, we
get pa(Cn,k(a, b, c)) > pa(Dn,k(a, b, c)). Similarly, if x,, < x,,, by removing e; from u; to u;, we obtain
pa(Cn,k(b, a, c)) > pa<2)n,k(a, b, c)). If Cux(a,b,c) = Cp or Cyi(b,a,c) = Cpg, then by Lemma 4.2, we have
pa(8%) > pa(Cux). Thus, we get pa(B')) > pa(Cuk) > pa(Duk(@, b,0)). I Ci(a, b, c), Cri(b,a,c) # Cy, then
by the proofs of Case (4), we obtain pa(BSI)C) > pa(ﬂf}){) > pa(i),,,k(a, b, c)).

Case (6). H = Fx(a,b,c) and H # Fyyx.

In this case, since H = F,x(a,b,c) and H + F,,x, we have b > 1 or ¢ > 1. Two subcases are considered as
follows.

Subcase (6.1). b > 1.

In Foi(a, b,c), if x,, > x,,, we remove all the b pendent edges incident with u; from u, to u; and get
Fui(a+b,0,0), wherea+b > 1and ¢ > 0. By Lemma 2.6, we have pa(Fyi(a +b,0,¢)) > po(Fur(a,b,c)). In
Fuxa,b,c),ifx,, <x,, weremove all the edges incident with 1 (except for e; and e;) from u; to u, and obtain
Fux@+b,0,c), wherea+b > 1and ¢ > 0. It follows from Lemma 2.6 that pa(ﬂ,k(a +b,0, c)) > Pa (ﬂ/k(a, b, c)).

If c = 0, then Fyi(a + b,0,c) = Fur. By Lemma 4.2, we get Pa(B,(ql,)c) > Pa(ﬂ,k)- Thus, we have
Pa(BS,;)() > pa(ﬁ,k) > pa<(}",,,k(a, b, c)). Namely, Lemma 5.5 holds when H = F,,x(a,b,c) withb > 1 and ¢ = 0.

Letc > 1. In F,(a + b,0,¢), if x,, > x,,, we remove all the ¢ pendent edges incident with u3 from u3
to u; and get F,x. By Lemma 2.6, we get pa(ﬂlk) > pa(?-'n,k(a +b,0, c)). In Fui(a+b,0,0), if x,, < Xy,
we remove all the edges incident with u; (except for e; and e3) from u; to u3 and obtain ¥, x. By Lemma
2.6, we have Pa(ﬂ,k) > pa<9f,,,k(a +b,0, c)). By Lemma 4.2, we get pa(qulll)() > pa<7-',,,k). Thus, we have
pa(8)) > pa(Fuk) > pa(Fur@+b,0,¢)) > pa(Fui(a, b,c)) with b > 1 and ¢ > 1. Namely, Lemma 5.5 holds
when H = F,(a, b, c) with b,c > 1.

Subcase (6.2). b = 0.

In this subcase, we have c > 1. By the methods similar to those for the proofs of Subcase (6.1), we get

pa(BY)) > pa(Fuk) > pa(Fur(a,b,c)) with b = 0and ¢ > 1.
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By combining the proofs of Cases (1)-(6), we get Lemma 5.5. O

Lemma 5.6. Let H € Bi(n, k), wherei >4,k > 4 and m = 21 > 5. Suppose that all the IVs of H are incident with
one edge f in E(H). Then, in H, there exist two IVs, denoted by uy, and uy, (1 < ki < ky < i), except for f, such that
there does not exist another edge satisfying that uy, and uy, are incident with this edge simultaneously.

Proof. We suppose that Lemma 5.6 do not hold. Namely, for any two IVs u;, and u;, in H, there exists
another edge (denoted by ¢*, e¢* # f) such that u;,u;, € e’, where 1 < i < i, < i. Since i > 4, H contains a
3-cyclic hypergraph as its subhypergraph. By Lemma 2.7, the number of cyclomatics of H is not less than
3. This contradicts the fact that H is a 2-cyclic hypergraph. O

Lemma 5.7. Let H € By(n, k), where k > 4 and m = % > 20. We have max{pa(ﬂifl)(), pa<Cn,k), pa(ﬂ,k)} >
pa(w)-

Proof. Two cases are considered as follows.

Case (1). H has exactly two non-pendent edges (denoted by e; and e,).

Since H is a bicyclic hypergraph, we have |e; () ea| = 3. Let ey () ex = {u1, up, us}. Since H € By(n, k), H
has four IVs. Thus, in H, there exists another IV (denoted by u4) such that uy is incident with e; or ey, say
e1. Obviously, H is a hypergraph obtained from 8, (4, b, ¢) by attaching d pendent edges at 114, whered > 1.
Without loss of generality, we supposea > b > c.

Ifa=0,thenb =c =0. Namely, H = Bff;{ By Lemma 4.3, we obtain pa<ff7lfq2/,)() > pa(Bfil){).

Next, leta > 1. In'H, if x,,, > x,,, then by removing all the d pendent edges incident with 14 from 14 to u,
we obtain B, x(a,b +d,c), where b +d > 1 and ¢ > 0. By Lemma 2.6, we have pa(B,,,k(a, b+d, c)) > po(H). In
‘H, if x,, < x,,, by removing all the edges incident with u, (except for ;) from u, to us, we get B, x(a,b+4d, c),
where b +d > 1 and ¢ > 0. By Lemma 2.6, we also have pa(Bn,k(a, b+d, c)) > pa(H). Since a,b+d = 1, by
Corollary 5.4, we have pa(Bf’,)c) > pa(Bn,k(a, b+d, c)). By Lemma 4.3, we get pa(ﬂf’i) > pa(BfJ)(). Thus, we
obtain pe(A%)) > pa(B2)) 2 pa(Buk(a, b +d,c)) > pa(H).

Case (2). H has at least three non-pendent edges.

Subcase (2.1). All the IVs of H are incident with one edge (denoted by f).

By Lemma 5.6, in H, there exist two IVs (denoted by v; and v;) such that there does not exist an edge in
E(H)\ f satisfying thatv; and v, are incident with this edge simultaneously. Suppose x,, > x,,. By movingall
the edges incident with v, (except for f) from v, to v1, we obtain a hypergraph (denoted by H’). Obviously,
H' € Bs(n, k). By Lemma 2.6, we get po(H’) > po(H). It is noted that V(H) = V(H’), g (v2) = 1 < dyy(v2),
dgp(v1) > dg(v1), and dgp (1) = dgg(u) for u € V(H’) \ {v1,v2}. In H’, since f has three IVs and f is a non-
pendent edge, H’ and H have the same number of non-pendent edges. Namely, H’ has at least three non-
pendent edges. Obviously, H’ # BSI)( since BSI)( has only two non-pendent edges. By Lemma 5.5, we have

max{p“(ﬂfﬁ), pa(Cn,k), pa(ﬂ,k)} > pa(H’). Thus, we get max{pa(ﬂf}), pa(Cn,k), pa(ﬂ,k)} > pa(H') > pa(H).

Subcase (2.2). In H, there does not exist an edge such that it is incident with all the IVs of H.

In this case, in H, there exist two IVs, denoted by u; and u,, such that they are not incident with a
common edge. Otherwise, in H, if any two IVs are incident with a common edge, then H contains a
3-cyclic hypergraph as its subhypergraph. This is a contradiction. Let P = uje; ---esu, be the shortest
path connecting 17 and u,, where s > 2. In ‘H, if x,, > x,,, let H° be the k-uniform hypergraph obtained
from H by removing all the edges incident with u; (except for e;) from u; to uy. Since dg-(u1) = 1, we
have H° € B3(n,k). By Lemma 2.6, we have p,(H°) > po(H). In H, if x,, < xy,, let H” be the k-uniform
hypergraph obtained from H by removing all the edges incident with u, (except for e;) from u, to u.
Since dga(u2) = 1, we have H” € Bs(n, k). By Lemma 2.6, we have p,(H?) > p(H). Next, we prove H°,
HA # B,

nk

In H, if at least one of u; and u; is incident with pendent edges, then by the definition of H°, there

exists a pendent edge incident with u, in H°. Thus, in H°, the shortest path connecting u; and an arbitrary
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pendent vertex incident with a pendent edge attached at u; is at least of length 3. This implies that H® # BS;{

since the diameter of BSI)( is 2. Similarly, we have H” # BS;{.

Next, In H, we suppose that both of 17 and u, are not incident with pendent edges. Since 11 and u;
are two IVs, 1 is incident with a non-pendent edge (denoted by fi, fi # e1) and uy is incident with a
non-pendent edge (denoted by f,, fi # e;). By the definition of H°, in H°, there are three non-pendent
edges, namely (f1 \ {u1}) U{uz}, f» and ;. Thus, we get H® # BS’;{ since BSI)( has only two non-pendent edges.
Similarly, we have H” # BS}){.

By the above proofs, we have H°, H” € Bs(n, k) and H°, H” # BS;{. Thus, by Lemma 5.5, we have

max{p, (ﬂfi), pa(C,,,k), Pa (7",,,;{)} > max{pa(H®), pa(H?)}. Therefore, we have max{p, (.?(1(12,)(), Pa (C n,k), Pa (ﬂ,k)} >
pa(H). O

Lemma 5.8. Let H € Bi(n, k), wherei >4,k > 4and m = % > 20. We have max{pa(ﬂfl)(), pa<Cn,k), pa(ﬁ,k)} >
pa(H).

Proof. Let U = {u1, 1, -+, u;} be the set of all the IVs of H, where i > 4. We prove Claim (1) firstly.

Claim (1): For H € Bi(n, k) with i > 4 and k > 4, there exists a hypergraph H* € B;_1(n, k) such that
Pa(H?) > po(H), where 0 < a < 1.

To obtain Claim (1), two cases are considered as follows.

Case (1). In H, there exists an edge (denoted by f) such that U C f.

By Lemma 5.6, in H, there exist two IVs, denoted by uy, and uy, (1 < ky < kp < i), except for f, such
that there does not exist another edge satisfying that u;, and uy, are incident with this edge simultaneously.
Without loss of generality, we suppose x,, > xy,,. Let H” be the hypergraph obtained from H by removing
all the edges incident with uy, (except for f) from uy, to u,. Obviously, H” € Bi_1(n, k). By Lemma 2.6, we
get pu(H*) > pa(H).

Case (2). In H, there does not exist an edge such that all the vertices in U are incident with it.

In this case, in H, we claim that there exist two vertices u, and uy, (1 < k; < kp < 9) in U in such a
way that there does not exist an edge satisfying that u, and u, are incident with this edge simultaneously.
Otherwise, we suppose that, in U, for any two vertices u;, and u;, (1 < iy < ip < i), there exists an edge
(denoted by e) satisfying that u;,, u;, € ¢, where e € E(H). Since i > 4, H contains a 3-cyclic hypergraph as
its subhypergraph. Since H € B;i(n, k), where k > 4 and i > 4, by Lemma 2.7, the number of cyclomatics of
H is not less than 3. This contradicts the fact that H is a 2-cyclic hypergraph. Since H is connected, there
exists one shortest path connecting uy, and uy,. We denote this path by vie1v; .. .e,vp41, where h > 2, v1 = uy,
and v+1 = ug,. Without loss of generality, we suppose x,, > x,, . Let H* be the hypergraph obtained from
H by removing all the edges incident with uy, (except for ;) from uy, to 1y, . Obviously, H* € B;_1(n, k). By
Lemma 2.6, we get po(H™) > po(H).

By the proofs of Cases (1) and (2), we obtain Claim (1).

If H € Bu(n, k), by Lemma 5.7, we get Lemma 5.8. If H € B;(n, k) with i > 5, by Claim (1), there exists a
hypergraph H" € B4(n, k) such that p,(H") > p.(H). Furthermore, by Lemma 5.7, we obtain Lemma 5.8.
Thus, Lemma 5.8 holds. O

In Theorem 5.9, we get the hypergraphs with the first and the second largest a-spectral radii among
B(n, k).

Theorem 5.9. Let H € B(n, k)\{ﬂg;{, BS;{}, wherek > 4and m = ’%} > 20.

(i). pa<ﬂ$}() = pa(BSJ)() > pa(H) for a = 0.

(ii). pa(AD) > pa(B)) > pa(H) for 0 < < 1.
Proof. Let0<a<1,k>4andm = Z%% > 20.
>

By Lemma 4.2, we have p, (.?ISI)() pa(BSl)() with the equality if and only if & = 0.
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If H € B,(n,k), then H = A, i(a,b). By Lemma 4.3 and Corollary 5.2, we get pa<B’(11,)() > pa(ﬂf;{) >
Pa (ﬂn,k(a, b)) with the equality if and only ifa > b > 1 and a+ b = m — 3. If H € B3(n, k), then H is one of the
hypergraphs as shown in (20). By Lemma 5.5, we have 94(81(1111) > max{pa (?If]){), Pa (C ,,,k), Pa (ﬂ,k)} > po(H),
where H € Bs3(n, k) \ {B(l) Cuj Fupl. It H € Bi(n, k) with i > 4, then by Lemmas 5.5 and 5.8, we obtain

nk’

pa(Bff}{) > max{pa(ﬂff,)(), pa<cn,k)/ pa(ﬂ,k)} > pa(H).
By combining the above proofs, we get Theorem 5.9(i) and (ii). O

Remark 5.10. Among B(n, k) with k = 3 and m = =1 > 20, by the methods similar to those for Theorem 5.9, we

obtain the conclusion that the hypergraph with the largest spectral radius is 3{:’1])(

Remark 5.11. By the proofs of Theorem 5.9, we get that the hypergraph with the third largest spectral radius among

B(n, k) must be one among {ﬂ(z) Cux, Fuil, wherek > 4 and m = % > 20. The task will be studied in the future.

n,k’
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