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Abstract. An r-uniform supertree is a connected and acyclic hypergraph of which each edge has r vertices,
where r ≥ 3. We propose the concept of matching energy for an r-uniform hypergraph, which is defined
as the sum of the absolute value of all the eigenvalues of its matching polynomial. With the aid of the
matching polynomial of an r-uniform supertree, three pairs of r-uniform supertrees with the same spectral
radius and the same matching energy are constructed, and two infinite families of r-uniform supertrees
with the same spectral radius and the same matching energy are characterized. Some known results about
the graphs with the same spectra regarding to their adjacency matrices can be naturally deduced from our
new results.

1. Introduction

Let C and R be the sets of complex and real numbers, respectively. Let r and s be two positive integers
not less than 2 and [s] = {1, . . . , s}. We denote byA = (ai1i2···ir ) a real tensor (or hypermatrix) of order r and
dimension s, which is a multi-dimensional array with entries ai1i2···ir ∈ R, where i1, i2, · · · , ir ∈ [s] and r ≥ 2. If
r = 2, thenA is a matrix. If ai1i2···ir = 1 when i1 = i2 = · · · = ir and ai1i2···ir = 0 otherwise, thenA is the identity
tensor. Let x = (x1, x2, . . . , xs)T

∈ Cs be an s-dimensional complex column vector and x[r] = (xr
1, x

r
2, · · · , x

r
s)T.

ThenAx is a vector in Cs whose i-th component is given by

(Ax)i =

s∑
i2,...,ir=1

aii2···ir xi2 · · · xir , for each i ∈ [s]. (1)

Furthermore, we have

xT(Ax) =
s∑

i1,i2,...,ir=1

ai1i2...ir xi1 · · · xir . (2)
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The concept of tensor eigenvalues and the spectra of tensors was introduced by Qi [21] and Lim
[19] in 2005 independently as follows. If there exist a number λ ∈ C and a nonzero vector x ∈ Cs

satisfying Ax = λx[r−1], namely, (Ax)i = λxr−1
i for any i ∈ [s], then λ is called an eigenvalue of A and x

an eigenvector of A corresponding to λ. The resultant of the s element homogeneous equations Ax = 0
is called the determinant ofA and is denoted by det(A). The characteristic polynomial ofA is defined as
Φ(A, x) = det (xI −A), where I is the identity tensor of order r and dimension s. The eigenvalues of A
are the roots of Φ(A, x) [26]. The (multi)-set of all the roots of Φ(A, x) (counting multiplicities), denoted by
SpecA, is called the spectra ofA.

A hypergraph H is an ordered pair (V(H),E(H)), where V(H) = [s] is the set of vertices of H and
E(H) ⊆ P([s]) the set of edges ofH with P([s]) being the power set of [s]. If each edge e of E(H) has r vertices
(r ≥ 2), thenH is an r-uniform hypergraph. If r = 2, thenH reduces to an ordinary graph and we denote
it by H. A hypergraph H is called linear if any two edges of H intersect on at most one common vertex.
IfH does not contain cycles, thenH is acyclic or a superforest. IfH is connected and acyclic, thenH is a
supertree [18]. In this paper, we consider r-uniform supertrees.

Let H = (V(H),E(H)) be an r-uniform hypergraph on s vertices. The adjacency tensor of H is the
r-ordered and s-dimensional tensor A(H) =

(
ai1i2···ir

)
, where ai1i2···ir =

1
(r−1)! if {i1, i2, . . . , ir} ∈ E(H) and 0

otherwise [5]. The spectral radius of H , denoted by ρ(H), is defined as the maximum modulus of all the
eigenvalues of the characteristic polynomial Φ(A(H), x).

Let M be a matrix. It may stand for the adjacency matrix, the Laplacian matrix, the signless Laplacian
matrix, and the distance matrix, etc. Two graphs are said to be M-cospectral if they have the same M-spectra,
where M-spectra of a graph is the (multi)-set of all the eigenvalues of its corresponding M matrix. Similarly,
two hypergraphs are said to be adjacency cospectral, if their adjacency tensors have the same characteristic
polynomial. A graph G (a hypergraphG, respectively) is determined by its M-spectra (spectra, respectively)
if there does not exist other non-isomorphic graph H (hypergraph H , respectively) such that H and G (H
and G, respectively) are M-cospectral (cospectral, respectively).

Which graphs are determined by their spectra? Günthard and Primas [14] posed this fundamental
problem in 1956 in the context of Hückel’s theory in chemistry. Constructions of cospectral non-isomorphic
graphs have implications on the complexity of the graph isomorphism problem and reveal which graph
properties cannot be deduced from the spectra of graphs. Therefore, it can help researchers understand the
above question. The construction of cospectral graphs attracted many researcher’s attention and has been
studied extensively.

When M is an adjacency matrix, many results about the M-cospectral graphs have been obtained. In
the 1960s, Van Lint and Seidel [30] introduced the Seidel switching for constructing families of cospectral
graphs. By using the Seidel switching, recently Seress [25] constructed an infinite family of cospectral eight
regular graphs. Godsil and McKay [12] further developed this concept and introduced the Godsil–McKay
switching. Blázsik et al. [3] used the Godsil–McKay switching to construct two cospectral regular graphs
such that one has a perfect matching while the other does not have any perfect matching. Langberg and
Vilenchik [17] presented a new method which was based on bipartite graph product to construct an infinite
family of cospectral graphs. Qiu et al. [23] constructed an infinite family of cospectral graphs by using new
methods. For oriented graphs and signed graphs, Belardo et al. [2] extended the Godsil–McKay switching
to signed graphs, and built pairs of cospectral switching nonisomorphic signed graphs and Stanić [28]
obtained infinite families of cospectral regular signed graphs and cospectral bipartite regular oriented
graphs.

When M is a Laplacian matrix and a distance matrix, for the construction of M-cospectral graphs, the
readers can refer to Refs. [1, 16, 33].

To the authors’ best knowledge, the result on the construction of E-cospectral hypergraphs is as follows.
Let A be a tensor of order r ≥ 2 and dimension s ≥ 2. If there exist a number λ ∈ C and a nonzero vector
x ∈ Cs such that Ax = λx and x⊤x = 1, then λ is called an E-eigenvalue of A. The E-eigenvalues of A are
the roots of the E-characteristic polynomial ϕA(λ) ofA (see [22] for the definition of ϕA(λ)). Recently, Bu et
al. [4] deduced a method of constructing E-cospectral hypergraphs and obtained some hypergraphs which
are determined by their spectra. However, as we know, the calculation of the characteristic polynomial
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of the adjacency tensor of hypergraph is NP-hard in any field [13]. Therefore, it is difficult for us to use
the characteristic polynomial of hypergraph to study the cospectral hypergraph. Since the spectral radius
of hypergraph is of practical significance [20], the characterization of the r-uniform hypergraph with the
extremal spectral radius is interesting, and a lot of results have been obtained. The interested readers can
refer to Refs. [18, 32, 35].

LetH be an r-uniform hypergraph. The number of k-matchings inH , denoted by m(H , k), is the number
of selections of k independent edges in H , where k ≥ 0. For the sake of consistence, let m(H , 0) = 1. The
matching number ν(H) of H is the maximum cardinality of a matching in H . The matching polynomial
of H , denoted by φ(H , x) =

∑ν(H)
k=0 (−1)km(H , k)x(ν(H)−k)r, was first introduced by Zhang et al. [38] when

they studied the spectra of r-uniform supertrees. In order to guarantee that the matching polynomials of
the r-uniform hypergraphs with n vertices have the same degree, φ(H , x) is redefined by Su et al. [29] as
φ(H , x) =

∑
k≥0(−1)km(H , k)xn−kr. It is noted that when r = 2, H is an ordinary graph (denoted by H) and

φ(H, x) is the matching polynomial of H.
The matching energy of an ordinary graph H, denoted by ME(H), was proposed by Gutman and Wagner

[15] and it was defined as the sum of the absolute value of all the eigenvalues ofφ(H, x). Gutman and Wagner
[15] pointed out that ME(H) is a quantity which has a close relationship with chemical applications and
it can be traced back to the 1970s. For more details about the matching energy, one can refer to [15]. In
this paper, we extend the definition of the matching energy of a graph H to an r-uniform hypergraph H
as follows. Similarly, we define the matching energy of H as the sum of the absolute value of all the
eigenvalues of φ(H , x), and denote by ME(H) the matching energy of H . We expect that ME(H) can be
applied in chemistry as ME(H) does.

Motivated by the above-mentioned results, in this paper, we will study the r-uniform supertrees with the
same spectral radius of their adjacency tensors and the same matching energy. Hereinafter, for simplicity,
the r-uniform supertrees with the same spectral radius and the same matching energy is abbreviated to the
r-uniform supertrees with the same SR and ME, where SR and ME stand for the spectral radius and the
matching energy, respectively. The mail tool used is the matching polynomial of the r-uniform supertrees.

This paper is organized as follows. In Section 2, some basic definitions and necessary lemmas are
introduced. In Sections 3 and 4, the first and the second pairs of r-uniform supertrees with the same SR
and ME are characterized (as shown in Theorems 3.2 and 4.2, respectively) and two infinite families of
r-uniform supertrees with the same SR and ME are constructed (as shown in Theorems 3.3 and 4.2). Three
pairs of graphs which are M-cospectral are deduced (as shown in Theorems 3.5, 3.6 and 4.3) in Sections 3
and 4, where M is the adjacency matrix. In Section 5, we characterize the third pair of r-uniform supertrees
with the same SR and ME (as shown in Theorem 5.2) and get a graph which is not determined by its spectra
of its adjacency matrix (as shown in Theorem 5.3).

2. Preliminary

In this section, some notations and necessary lemmas are introduced.
LetH be a hypergraph and v be a vertex ofH . Let EH (v) be the set of the edges ofH which are incident

with v and dH (v) the degree of v. Namely, dH (v) = |EH (v)|. For e = {u1, . . . ,ur} ∈ E(H), if dH (u1) ≥ 2 and
dH (ui) = 1 for 2 ≤ i ≤ r, then we say that e is a pendent edge at u1 ofH . If dH (v) = 1 and v is incident with a
pendent edge ofH , then v is said to be a pendent vertex.

Let H − v be the hypergraph obtained from H by deleting v together with all the edges in EH (v). For
e ∈ E(H) and V(e) = {u1, · · · ,ur},H −V(e) is the hypergraph obtained fromH by deleting all the vertices in
V(e). For a subset E′ ⊆ E(H) inH ,H\E′ is the hypergraph obtained fromH by deleting all the edges in E′.
Namely, H\E′ = (V(H),E(H) \ E′). If E′ = {e}, then we write H\E′ as H\e. Let Nk be the set of k isolated
vertices, where k ≥ 1. Let G∪H be the union of G andH , where G andH are two disjoint hypergraphs. If
V′ ⊆ V(H) and E′ ⊆ E(H), thenH ′ = (V′,E′) is a partial hypergraph of H . Furthermore, if H ′ , H , then
H
′ is a proper partial hypergraph ofH .
Let G be a graph. We denote by ϕ(G, x) and φ(G, x) the characteristic polynomial and the matching

polynomial of G, respectively.
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Lemma 2.1. ([11]) If G is a forest, then ϕ(G, x) = φ(G, x).

Friedland et al. [10] defined the nonnegative weakly irreducible tensor and Yang et al. [37] restated it as
follows.

Definition 2.2. [37] LetA = (ai1i2···ir ) be a nonnegative tensor of order r and dimension s. If for any nonempty proper
index subset I ⊂ [s], there is at least an entry ai1i2···ir > 0, where i1 ∈ I and at least an i j ∈ [s] \ I for j = 2, 3, . . . , r,
thenA is called a nonnegative weakly irreducible tensor.

It was proved that an r-uniform hypergraphH is connected if and only if its adjacency tensorA(H) is
weakly irreducible (see [10] and [37]).

Lemma 2.3. [10, 36] Let A be a nonnegative tensor of order r and dimension s, where r ≥ 2. Then we have the
following statements.

(i). ρ(A) is an eigenvalue ofA with a nonnegative eigenvector x ∈ Rs
+ = {x ∈ Rs

| x ≥ 0} corresponding to it.
(ii). IfA is weakly irreducible, then ρ(A) is the only eigenvalue ofA with a positive eigenvector x ∈ Rs

++ = {x ∈
Rs
| x > 0}, up to a positive scaling coefficient.

Lemma 2.4. ([5, 9]) Suppose thatH is a uniform hypergraph, andH ′ is a partial hypergraph ofH . Then ρ (H ′) ≤
ρ(H). Furthermore, ifH is connected andH ′ is a proper partial hypergraph, we have ρ (H ′) < ρ(H).

Lemma 2.5. ([5]) LetH be an r-uniform hypergraph that is the disjoint union of hypergraphsH1 andH2. Then as
sets, Spec(H) = Spec (H1)∪ Spec (H2). Considered as multisets, an eigenvalue λ with multiplicity m in Spec (H1)
contributes λ to Spec(H) with multiplicity m(r − 1)|H2|.

A totally nonzero eigenvalue of hypergraph H is a nonzero eigenvalue and all the entries of the
eigenvectors corresponding to it are nonzero.

Lemma 2.6. ([29, 38]) λ is a totally nonzero eigenvalue of an r-uniform supertreeH with n ≥ 3 vertices if and only
if it is a root of the matching polynomial

φ(H , x) =
∑
k≥0

(−1)km(H , k)xn−kr.

Lemma 2.7. ([29]) Let G andH be two r-uniform hypergraphs. Then the following statements hold.
(a) φ(G ∪H , x) = φ(G, x)φ(H , x).
(b) If u ∈ V(G) and I =

{
i | ei ∈ EG(u)

}
, then for any J ⊆ I, we have

φ(G, x) = φ (G\ {ei : i ∈ J} , x) −
∑
i∈J

φ (G − V (ei) , x) ,

φ(G, x) = xφ(G − u, x) −
∑

e∈EG(u)

φ(G − V(e), x).

Lemma 2.8. Let H be an r-uniform hypergraph with n ≥ 3 vertices. Then ρ(H) is the largest root of φ(H , x) =∑
k≥0

(−1)km(H , k)xn−kr.

Proof. By Lemma 2.3, ρ(H) is a totally nonzero eigenvalue of H . The set of totally nonzero eigenvalues
of H is denoted by M = {λ1, λ2, · · · , λl, ρ(H)}, where l is a positive integer. Without loss of generally, we
suppose |λ1| ≤ |λ2| ≤ · · · ≤ |λl| ≤ ρ(H). Let N = {µ1, µ2, · · · , µl′ } be the set of the nonzero roots of φ(H , x),
where |µ1| ≤ |µ2| ≤ · · · ≤ |µl′ | and l′ is a positive integer. It follows from Lemma 2.6 that ρ(H) = µl′ . □
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3. The first pair of r-uniform supertrees with the same spectral radius and matching energy

In this section, we first characterize the first pair of r-uniform supertrees with the same SR and ME in
Theorem 3.2. Then, from Theorem 3.2, we obtain an infinite family of r-uniform supertrees with the same
SR and ME in Theorem 3.3. Furthermore, an example in Theorem 3.4 is given to show how to use Theorem
3.2 to determine whether two r-uniform supertrees have the same SR and ME or not. Finally, from our new
results, a known pair of graphs and a known infinite family of graphs which are M-cospectral are naturally
deduced (as shown in Theorems 3.5 and 3.6, respectively), where M is the adjacency matrix.

Let G and H be two r-uniform supertrees whose vertex sets are disjoint with u ∈ V(G) and v ∈ V(H),
where r ≥ 2. We denote by G(u, v)H the supertree obtained from G and H by identifying u with v. To
obtain our results, we introduce Lemma 3.1 as follows.

Lemma 3.1. Let G, H , and Γ be three r-uniform supertrees, where G and H have the same number of vertices and
r ≥ 2. Let u ∈ V(G) and v ∈ V(H). If φ(G, x) = φ(H , x) and φ(G− u, x) = φ(H − v, x), then for any w ∈ V(Γ), we
have φ(G(u,w)Γ, x) = φ(H(v,w)Γ, x).

Proof. In G(u,w)Γ, let q be the vertex u of G (namely w of Γ). For simplicity, let G(u,w)Γ = G · Γ and
H(v,w)Γ = H · Γ. By Lemma 2.7(b), we get

φ(G · Γ, x) = xφ(G · Γ − q, x) −
∑

e∈EG·Γ(q)

φ(G · Γ − V(e), x). (3)

Since G · Γ − q � (G − u) ∪ (Γ − w) and EG·Γ(q) = EG(u) ∪ EΓ(w), by Lemma 2.7(a), we get

φ(G · Γ, x) = xφ(G − u, x)φ(Γ − w, x)

−

∑
e∈EG(u)

φ(G − V(e), x)φ(Γ − w, x) −
∑

e∈EΓ(w)

φ(Γ − V(e), x)φ(G − u, x). (4)

Furthermore, by Lemma 2.7(b), we obtain

φ(G · Γ, x) = xφ(G − u, x)φ(Γ − w, x)
+
[
φ(G, x) − xφ(G − u, x)

]
φ(Γ − w, x) +

[
φ(Γ, x) − xφ(Γ − w, x)

]
φ(G − u, x). (5)

Therefore, by simplification, we get

φ(G · Γ, x) = φ(G, x)φ(Γ − w, x) + φ(G − u, x)φ(Γ, x) − xφ(G − u, x)φ(Γ − w, x). (6)

Similarly, we get

φ(H · Γ, x) = φ(H , x)φ(Γ − w, x) + φ(H − v, x)φ(Γ, x) − xφ(H − v, x)φ(Γ − w, x). (7)

If φ(G, x) = φ(H , x) and φ(G − u, x) = φ(H − v, x) hold, then by comparing (6) and (7), we get φ(G · Γ, x) =
φ(H · Γ, x). □

By Lemmas 2.8 and 3.1, we can directly get Theorem 3.2.

Theorem 3.2. Let G,H and Γ be three r-uniform supertrees, where G andH have the same number of vertices and
r ≥ 3. Let u ∈ V(G) and v ∈ V(H). If φ(G, x) = φ(H , x) and φ(G− u, x) = φ(H − v, x), then for any w ∈ V(Γ), we
have ρ(G(u,w)Γ) = ρ(H(v,w)Γ) and ME(G(u,w)Γ) =ME(H(v,w)Γ).

LetG,H and Γ be three r-uniform supertrees, where r ≥ 2. Let u ∈ V(G), v ∈ V(H), and w ∈ V(Γ). Let m,
n, a, and b be four positive integers. For simplicity, we denote G ∪ · · · ∪ G︸       ︷︷       ︸

m

by mG. Let Gm
u be the hypergraph

obtained from mG by coalescing u such that the m copies of G share a common vertex u. Similarly, Hn
v is

defined as that of Gm
u . We denote by Gm

u · H
n
v the hypergraph obtained from Gm

u and Hn
v by identifying

u of Gm
u with v of Hn

v . In particular, G1
u � Gu. Let Ga+b

u = Ga
u · G

b
u and H a+b

v = H a
v · H

b
v . The hypergraph

G(u, v)H(v,w)Γ is obtained from G,H and Γ by identifying u, v and w. If r = 2, we write Gm
u and Gm

u · H
n
v as

Gm
u and Gm

u ·Hn
v , respectively. Obviously, both of them are graphs. In particular, G1

u � Gu. Let Ga+b
u = Ga

u ·Gb
u

and Ha+b
v = Ha

v ·Hb
v.
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v1 v2 va+1

a︷          ︸︸          ︷
va+b va+b+1

b︷          ︸︸          ︷
T (a, b)

v1 v2 va+1

a︷          ︸︸          ︷
va+b+1

b︷   ︸︸   ︷
va+b+c va+b+c+1

c︷         ︸︸         ︷
Q(a, b, c)

v1 v2 va+1

a︷          ︸︸          ︷
va+b+1

b︷   ︸︸   ︷
va+b+c+1

c︷     ︸︸     ︷
va+b+c+d va+b+c+d+1

d︷         ︸︸         ︷
R(a, b, c, d)

Figure 1: T (a, b), Q(a, b, c) and R(a, b, c, d)

Theorem 3.3. Let G and H be two r-uniform supertrees with the same number of vertices, where r ≥ 3. Let
u ∈ V(G), v ∈ V(H) and m be a positive integer. If φ(G, x) = φ(H , x) and φ(G − u, x) = φ(H − v, x), then we have
(i). ρ(Hm

v ) = ρ(Hm−1
v · Gu) = ρ(Hm−2

v · G
2
u) = · · · = ρ(Hv · G

m−1
u ) = ρ(Gm

u ); (ii). ME(Hm
v ) = ME(Hm−1

v · Gu) =
ME(Hm−2

v · G
2
u) = · · · =ME(Hv · G

m−1
u ) =ME(Gm

u ).

Proof. Since Hm
v = H

m−1
v · Hv, if φ(G, x) = φ(H , x) and φ(G − u, x) = φ(H − v, x), then by Lemma

3.1, we have φ(Hm
v ) = φ(Hm−1

v · Gu). Furthermore, by Lemma 2.8, we have ρ(Hm
v ) = ρ(Hm−1

v · Gu).
Similarly, we obtain φ(Hv · G

m−1
u ) = φ(Gm

u ) and ρ(Hv · G
m−1
u ) = ρ(Gm

u ). Next, we only need to prove
φ(Hm−k

v · G
k
u, x) = φ(Hm−k−1

v · G
k+1
u , x), where k = 1, · · · ,m − 2.

Let k = 1, · · · ,m − 2. Let Γ = Hm−k−1
v · G

k
u and w of Γ be u of Gk (namely v of Hm−k−1). Obviously,

H
m−k
v · G

k
u = Hv · Γw and Hm−k−1

v · G
k+1
u = Gu · Γw. Since φ(G, x) = φ(H , x) and φ(G − u, x) = φ(H − v, x),

by Lemma 3.1, we obtain φ(Hm−k
v · G

k
u, x) = φ(Hm−k−1

v · G
k+1
u , x). Furthermore, by Lemma 2.8, we get

ρ(Hm−k
v · G

k
u, x) = ρ(Hm−k−1

v · G
k+1
u , x). Therefore, we get Theorem 3.3(i). By the definition of the matching

energy of an r-uniform hypergraph, we obtain Theorem 3.3(ii). □
For two given r-uniform supertrees, Theorem 3.3 can provide us with a simple method to investigate

whether their SR and ME are the same or not. Next, we give an example to show how to apply Lemmas
2.8 and 3.1 to determine that the SR and ME of two r-uniform supertrees are the same, which is shown in
Theorem 3.4.

Let H be an ordinary graph. The r-th power of H, denoted byH r, is obtained from H by adding (r − 2)
new vertices into each edge of H, where r ≥ 3. Let Pt be a path of length t and Pr

t be its r-th power, where
t ≥ 0. When t = 0, P0 is a vertex. We call Pr

t a loose path of length t. Let Pr
t = v1e1v2e2v3 · · · vtetvt+1, where

r ≥ 2, t ≥ 1 and ei = {vi,ui,1, · · · ,ui,r−2, vi+1} with i = 1, 2, · · · , t. Let T (a, b), Q(a, b, c) and R(a, b, c, d) be three
hypergraphs defined as follows, where a, b and c are three positive integers. T (a, b) is obtained fromPr

a+b by
attaching one pendent edge at vertex va+1 ofPr

a+b,Q(a, b, c) is obtained fromPr
a+b+c by attaching one pendent

edge at vertices va+1 and va+b+1 of Pr
a+b+c, and R(a, b, c, d) is obtained from Pr

a+b+c+d by attaching one pendent
edge at vertices va+1, va+b+1 and va+b+c+1 of Pr

a+b+c+d. T (a, b), Q(a, b, c) and R(a, b, c, d) are shown in Fig. 1. In
particular, in Pr

t , if r = 2, then Pr
t is the path Pt. Furthermore, when r = 2, T (a, b), Q(a, b, c) and R(a, b, c, d)

are graphs and are written as T(a, b), Q(a, b, c) and R(a, b, c, d), respectively.

Theorem 3.4. Let Γ be an r-uniform supertree with w ∈ V(Γ), where r ≥ 3. We have ρ(R(1, 1, 2, 4)u · Γw) =
ρ(R(1, 3, 1, 3)v · Γw) and ME(R(1, 1, 2, 4)u · Γw) = ME(R(1, 3, 1, 3)v · Γw), where u of R(1, 1, 2, 4) (respectively, v of
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Γ
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R(1, 1, 2, 4)u · Γw
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v
w
Γ

v7 v8 v9

R(1, 3, 1, 3)v · Γw

Figure 2: R(1, 1, 2, 4)u · Γw and R(1, 3, 1, 3)v · Γw

R(1, 3, 1, 3)) is a pendent vertex of the pendent edge attached at v3 of Pr
8 of R(1, 1, 2, 4) (respectively, v6 of Pr

8 of
R(1, 3, 1, 3)). R(1, 1, 2, 4)u · Γw and R(1, 3, 1, 3)v · Γw are shown in Fig. 2.

Proof. For simplicity, let R(1, 1, 2, 4) = G′ and R(1, 3, 1, 3) = H ′. We have

φ(G′, x) = xφ(G′ − u, x) −
∑

e∈EG(u)

φ(G′ − V(e), x) (8)

= xφ [Q(1, 3, 4) ∪Nr−2, x] − φ
[
P

r
2 ∪ T (1, 4) ∪N2(r−2), x

]
(9)

= xr−1φ(Q(1, 3, 4), x) − x2(r−2)φ(Pr
2, x)φ(T (1, 4), x). (10)

It is noted that (8) follows from Lemma 2.7(b), (9) is derived from G′ − u � Q(1, 3, 4) ∪Nr−2 and G′ − V(e) �
P

r
2 ∪ T (1, 4) ∪ N2(r−2), and (10) is deduced from Lemma 2.7(a). Similarly, we obtain that the expression of
φ(H ′, x) is the same as the right-hand side of (10). Namely, we obtain φ(G′, x) = φ(H ′, x). Obviously, we
can check that G′ − u � H ′ − v. Thus, by Lemma 3.1, we get φ(R(1, 1, 2, 4)u · Γw) = φ(R(1, 3, 1, 3)v · Γw).
Furthermore, by Lemma 2.8, we obtain ρ(R(1, 1, 2, 4)u · Γw) = ρ(R(1, 3, 1, 3)v · Γw). By the definition of the
matching energy of an r-uniform hypergraph, we obtain ME(R(1, 1, 2, 4)u · Γw) =ME(R(1, 3, 1, 3)v · Γw). □

From Theorem 3.4, we know that the problem of determining whether two r-uniform supertrees have
the same SR and ME can be converted into the problem of investigating the properties of their subgraphs.

For graphs, by Lemmas 2.1 and 3.1, we have Theorem 3.5 as follows. It should be noted that Theorem
3.5(i) is a natural generalization of Lemma 3.1 when r = 2 and it can be found on Page 159 in Ref. [6].

Theorem 3.5. Let G, H and Γ be three trees, where G and H have the same number of vertices. Let u ∈ V(G)
and v ∈ V(H). If ϕ(G, x) = ϕ(H, x) and ϕ(G − u, x) = ϕ(H − v, x), then for any w ∈ V(Γ), we have (i).
ϕ(G(u,w)Γ, x) = ϕ(H(v,w)Γ, x). Namely, G(u,w)Γ and H(v,w)Γ are M-cospectral, where M is the adjacency
matrix. (ii). ME(G(u,w)Γ, x) =ME(H(v,w)Γ, x).

By Theorem 3.5 and the methods similar to those for Theorem 3.2, we get Theorem 3.6 as follows. It is
noted that Theorem 3.6(i) can be found on Page 158 in Ref. [24].

Theorem 3.6. Let G and H be two trees with the same number of vertices. Let u ∈ V(G), v ∈ V(H) and m be a positive
integer. Ifϕ(G, x) = ϕ(H, x) andϕ(G−u, x) = ϕ(H−v, x), then we have (i). ϕ(Hm

v ) = ϕ(Hm−1
v ·Gu) = ϕ(Hm−2

v ·G2
u) =

· · · = ϕ(Hv ·Gm−1
u ) = ϕ(Gm

u ); (ii). ME(Hm
v ) =ME(Hm−1

v ·Gu) =ME(Hm−2
v ·G2

u) = · · · =ME(Hv ·Gm−1
u ) =ME(Gm

u ).

4. The second pair of r-uniform supertrees with the same spectral radius and matching energy

In this section, we construct the second pair of r-uniform supertrees with the same SR and ME, which is
shown in Theorem 4.2, where r ≥ 3. In Theorem 4.2, since m is a variable, an infinite families of r-uniform
supertrees with the same SR and ME are also deduced. To obtain our results, Lemma 4.1 is introduced
first. It is pointed out that Lemma 4.1 generalizes many known results in the previous literatures. A pair
of graphs which is M-cospectral is deduced from Lemma 4.1 (as shown in Theorem 4.3), where M is the
adjacency matrix.
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(Hv ·mGu) ∪ (m − 1)H

Figure 3: (Gu ·mHv) ∪ (m − 1)G and (Hv ·mGu) ∪ (m − 1)H

Let G andH be two r-uniform supertrees with u ∈ V(G) and v ∈ V(H), where r ≥ 2. Let m be a positive
integer and ei = {vi,1, · · · , vi,r}, where i = 1, · · · ,m. Let Gu · mHv be the hypergraph obtained from G, mH
and e1, · · · , em by identifying vi,1 (i = 1, · · · ,m) with u of G and identifying vi,r (i = 1, · · · ,m) with v of each
H of mH such that Gu ·mHv is also an r-uniform supertree. Gu ·mHv ∪ (m− 1)G and (Hv ·mGu)∪ (m− 1)H
are shown in Fig. 3. Obviously, when m = 1, Gu · mHv ∪ (m − 1)G � (Hv · mGu) ∪ (m − 1)H . When r = 2,
Gu · mHv ∪ (m − 1)G and (Hv · mGu) ∪ (m − 1)H are graphs and are written as Gu · mHv ∪ (m − 1)G and
(Hv ·mGu) ∪ (m − 1)H, respectively.

Lemma 4.1. Let G and H be two r-uniform hypergraphs with u ∈ V(G) and v ∈ V(H), where r ≥ 2. We have
φ [(Gu ·mHv) ∪ (m − 1)G, x] = φ [(Hv ·mGu) ∪ (m − 1)H , x], where m is a positive integer.

Proof. Since Gu ·mHv − u � (G − u) ∪mH ∪Nm(r−2) and EGu·mHv (u) = EG(u) ∪ {e1, · · · , em}, by Lemma 2.7(b),
we obtain

φ(Gu ·mHv, x) = xφ [(Gu ·mHv) − u, x] −
∑

e∈EGu ·mHv (u)

φ [(Gu ·mHv) − V(e), x] (11)

= xφ
[
(G − u) ∪mH ∪Nm(r−2), x

]
−

∑
e∈EG(u)

φ
[
(G − V(e)) ∪mH ∪Nm(r−2), x

]
−mφ

[
(G − u) ∪ (H − v) ∪ (m − 1)H ∪N(m−1)(r−2), x

]
. (12)

By Lemma 2.7(a) and extracting the common factors xm(r−2) and φ(mH , x) = φm(H , x) from the first and the
second terms on the right-hand side of (12), we obtain

φ(Gu ·mHv, x), x) = xm(r−2)φm(H , x)[xφ(G − u, x) −
∑

e∈EG(u)

φ (G − V(e), x)]

−mx(m−1)(r−2)φ(G − u, x)φ(H − v, x)φm−1(H , x). (13)

By replacing xφ(G − u, x) −
∑

e∈EG(u) φ(G − V(e), x) by φ(G, x) (by Lemma 2.7(b)) in (13) and extracting the
common factors x(m−1)(r−2) and φm−1(H , x) from the first and the second terms on the right-hand side of (13),
we get

φ(Gu ·mHv, x)

= x(m−1)(r−2)φm−1(H , x)
[
xr−2φ(G, x)φ(H , x) −mφ(G − u, x)φ(H − v, x)

]
. (14)
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v1 v2 vn−2

n − 4︷       ︸︸       ︷
vn−1

Wn = Q(1,n − 4, 1)

v1 v2 vn−1

n − 2︷             ︸︸             ︷
vn

Zn = T (1,n − 2)

Figure 4: Wn = Q(1,n − 4, 1) andZn = T (1,n − 2)

Therefore, by Lemma 2.7(a) and (14), we have

φ [(Gu ·mHv, x) ∪ (m − 1)G, x] = φ(Gu ·mHv, x), x)φm−1(G, x)

= x(m−1)(r−2)[φ(G, x)φ(H , x)
]m−1
[
xr−2φ(G, x)φ(H , x) −mφ(G − u, x)φ(H − v, x)

]
. (15)

Similarly, we obtain

φ [(Hv ·mGu) ∪ (m − 1)H , x] = φ(Hv ·mGu, x)φm−1(H , x)

= x(m−1)(r−2)[φ(G, x)φ(H , x)
]m−1
[
xr−2φ(G, x)φ(H , x) −mφ(G − u, x)φ(H − v, x)

]
. (16)

Since the right-hand sides of (15) and (16) are the same, it follows from (15) and (16) that Theorem 4.1 holds.
□

It should be noted that Lemma 4.1 generalizes many known results, for example, Equation (2a) derived
by Cvetković et al. [8], Corollay 2.9 deduced by Shen et al. [27], and Lemma 3.5(2) obtained by Wang et al.
[31]. The three results mentioned here are special cases of Lemma 4.1.

By Lemmas 2.8 and 4.1, we obtain Theorem 4.2.

Theorem 4.2. Let m be a positive integer. Suppose that G andH are two r-uniform supertrees with u ∈ V(G) and
v ∈ V(H), where r ≥ 3. We have (i). ρ ((Gu ·mHv) ∪ (m − 1)G) = ρ ((Hv ·mGu) ∪ (m − 1)H) and ρ (Gu ·mHv) =
ρ (Hv ·mGu); (ii). MG((Gu ·mHv) ∪ (m − 1)G) =MG((Hv ·mGu) ∪ (m − 1)H).

Proof. Obviously, ρ ((Gu ·mHv) ∪ (m − 1)G) = ρ ((Hv ·mGu) ∪ (m − 1)H) follows from Lemmas 2.8 and 4.1.
Since G and H are respectively the proper subgraphs of Gu · mHv and Hv · mGu, by Lemma 2.4, we get
ρ (G) < ρ (Gu ·mHv) and ρ (H) < ρ (Hv ·mGu). It follows from Lemma 2.5 that ρ ((Gu ·mHv) ∪ (m − 1)G) =
max{ρ (Gu ·mHv) , ρ (G)} = ρ (Gu ·mHv). Similarly, we haveρ ((Hv ·mGu) ∪ (m − 1)H) = ρ (Hv ·mGu). Thus,
we obtain ρ (Gu ·mHv) = ρ (Hv ·mGu). Therefore, we have Theorem 4.2(i). By the definition of the matching
energy of an r-uniform hypergraph and Lemma 4.1, we obtain Theorem 4.2(ii). □

By Lemmas 2.1 and 4.1, we can directly get Theorem 3.2(ii) in Ref. [34] which was obtained by Wu et al.
The result is shown in Theorem 4.3.

Theorem 4.3. Let m be a positive integer. Suppose that G and H are two trees with u ∈ V(G) and v ∈ V(H). Then
ϕ [(Gu ·mHv) ∪ (m − 1)G, x] = ϕ [(Hv ·mGu) ∪ (m − 1)H, x]. Namely, (Gu · mHv) ∪ (m − 1)G and (Hv · mGu) ∪
(m − 1)H are M-cospectral, where M is the adjacency matrix.

5. The third pair of r-uniform supertrees with the same spectral radius and matching energy

In this section, we characterize the third pair of r-uniform supertrees with the same SR and ME, and
get a graph which is not determined by its spectra of its adjacency matrix. The two results are shown in
Theorems 5.2 and 5.3. To obtain our results, Lemma 5.1 is introduced first.

LetWn = Q(1,n− 4, 1) with n ≥ 5 andZn = T (1,n− 2) with n ≥ 2. Wn andZn are shown in Fig. 4. The
loose path inWn is denoted by Pr

n−2 = v1e1v2e2v3 · · · vn−2en−2vn−1, where n ≥ 5.

Lemma 5.1. We have φ(Pr
m−5 ∪Wn−1, x) = φ(Pr

n−5 ∪Wm−1, x), where m,n ≥ 6 and r ≥ 2.
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Proof. (1). The proof of Lemma 5.1 when m = 6 and n ≥ 6.
When m = 6 and n ≥ 6, we prove

φ(Pr
1 ∪Wn−1, x) = φ(Pr

n−5 ∪W5, x) (17)

by induction on n.
(i). When n = 6, obviously, φ(Pr

1 ∪W5, x) = φ(Pr
1 ∪W5, x).

When n = 7, by Lemma 2.6, we get φ(Pr
1, x) = xr

− 1, φ(W6, x) = φ(Q(1, 2, 1), x) = x6r−5
− 6x5r−5 + 8x4r−5,

φ(Pr
2, x) = x2r−1

− 2xr−1, and φ(W5, x) = φ(Q(1, 1, 1), x) = x5r−4
− 5x4r−4 + 4x3r−4. Thus, we get

φ(Pr
1 ∪W6, x) = φ(Pr

2 ∪W5, x) = x7r−5
− 7x6r−5 + 14x5r−5

− 8x4r−5.

(ii). When n = k with k ≥ 7, we suppose that (17) hold. Namely, φ(Pr
1 ∪Wk−1, x) = φ(Pr

k−5 ∪W5, x).
(iii). When n = k + 1 with k ≥ 7, we prove that (17) hold.
We have

φ(Wn, x) = xφ(Wn − vn−1, x) −
∑

e∈EWn (vn−1)

φ(Wn − V(e), x) (18)

= xφ(Zn−1 ∪Nr−2, x) − φ(Zn−3 ∪Nr−1 ∪Nr−2, x) (19)

= xr−1[φ(Zn−1, x) − xr−2φ(Zn−3, x)], (20)

where (18) follows from Lemma 2.7(b), (19) holds sinceWn − vn−1 � Zn−1 ∪ Nr−2 and EWn (vn−1) = {en−2},
and (20) is derived from Lemma 2.7(a). Similarly, we get

φ(Wn−1, x) = xr−1[φ(Zn−2, x) − xr−2φ(Zn−4, x)], (21)

φ(Wn−2, x) = xr−1[φ(Zn−3, x) − xr−2φ(Zn−5, x)]. (22)

Let the loose path ofZn−1 be Pr
n−2 = v′1e′1v′2e′2v′3 · · · v

′

n−2e′n−2v′n−1. We obtain

φ(Zn−1, x) = xφ(Zn−1 − v′n−1, x) −
∑

e∈EZn−1 (v′n−1)

φ(Zn−1 − V(e), x)

= xφ(Zn−2 ∪Nr−2, x) − φ(Zn−3 ∪Nr−2, x)

= xr−2 [xφ(Zn−2, x) − φ(Zn−3, x)
]

(23)

Similarly, we have

φ(Zn−3, x) = xr−2 [xφ(Zn−4, x) − φ(Zn−5, x)
]
. (24)

Thus, by substituting (23) and (24) into (20), we obtain

φ(Wn, x) = xr−1[φ(Zn−1, x) − xr−2φ(Zn−3, x)]

= xr−1
[
xr−2 [xφ(Zn−2, x) − φ(Zn−3, x)

]
− xr−2

[
xr−2 [xφ(Zn−4, x) − φ(Zn−5, x)

]]]
(25)

= xr−2
[
xr[φ(Zn−2, x) − xr−2φ(Zn−4, x)] − xr−1[φ(Zn−3, x) − xr−2φ(Zn−5, x)]

]
= xr−2[xφ(Wn−1, x) − φ(Wn−2, x)]. (26)

It is noted that (26) is derived from (21) and (22). Let k ≥ 7. Thus, we obtain

φ(Pr
1 ∪Wk, x) = φ(Pr

1, x)φ(Wk, x) (27)

= φ(Pr
1, x)xr−2 [xφ(Wk−1, x) − φ(Wk−2, x)

]
(28)

= xr−2
[
xφ(Pr

1 ∪Wk−1, x) − φ(Pr
1 ∪Wk−2, x)

]
(29)

= xr−2
[
xφ(Pr

k−5 ∪W5, x) − φ(Pr
k−6 ∪W5, x)

]
(30)

= xr−2φ(W5, x)
[
xφ(Pr

k−5, x) − φ(Pr
k−6, x)

]
. (31)
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It is noted that (27) follows from Lemma 2.7(a), (28) is obtained by substituting (26) into (27), (29) is derived
from Lemma 2.7(a), (30) follows fromφ(Pr

1∪Wk−2, x) = φ(Pr
k−6∪W5, x) andφ(Pr

1∪Wk−1, x) = φ(Pr
k−5∪W5, x)

(by the inductive hypothesis), and (31) is deduced from Lemma 2.7(a). Furthermore, we get

φ(Pr
k−4, x) = xr−2

[
xφ(Pr

k−5, x) − φ(Pr
k−6, x)

]
. (32)

By substituting (32) into (31), we have

φ(Pr
1 ∪Wk, x) = φ(W5, x)φ(Pr

k−4, x) = φ(Pr
k−4 ∪W5, x). (33)

Therefore, by the method of inductive hypothesis, when m = 6 and n ≥ 6, we obtain (17).
(2). The proof of Lemma 5.1 when m ≥ 7 and n ≥ 6.
Let m ≥ 7 and n ≥ 6. By (17) and Lemma 2.7(a), we haveφ(Pr

1∪Wn−1∪P
r
m−5, x) = φ(Pr

n−5∪W5∪P
r
m−5, x) =

φ(Pr
n−5 ∪Wm−1 ∪ P

r
1, x). Therefore, by Lemma 2.7(a), we get φ(Pr

m−5 ∪Wn−1, x) = φ(Pr
n−5 ∪Wm−1, x).

By combining the proofs of (1) and (2), we get Lemma 5.1. □
By Lemmas 2.8 and 5.1, in Theorem 5.2, we obtain the third pair of r-uniform supertrees with the same

SR and ME, where r ≥ 3.

Theorem 5.2. Let m,n ≥ 6 and r ≥ 3. We have ρ(Pr
m−5 ∪Wn−1) = ρ(Pr

n−5 ∪Wm−1) and ME(Pr
m−5 ∪Wn−1) =

ME(Pr
n−5 ∪Wm−1).

In the following, all mentioned results are related with the spectra of adjacency matrix. Let Wn =
Q(1,n − 4, 1) with n ≥ 5 and Zn = T(1,n − 2) with n ≥ 2. Shen et al. [27] deduced that Pn−1 ∪ Zn+1 (n ≥ 1) is
not determined by their spectra while Zn+1 (n ≥ 1) and Zn1+1 ∪ · · · ∪ Znk+1 (n1,n2, . . . ,nk ≥ 2) are determined
by their spectra. Wang et al. [31] obtained that P0 ∪ Pn−1 is determined by their spectra if and only if n = 2k
with k ≥ 1. Cvetković and Jovanović [7] derived that Zn+1 ∪ P0 (n ≥ 9) is determined by their spectra.
Inspired by all the above-mentioned results, in Theorem 5.3, we get that Wn−1 ∪ Pm−5 (n,m ≥ 6 and n , m)
is not determined by its spectra.

Theorem 5.3. Let m,n ≥ 6. We have ϕ(Pm−5 ∪ Wn−1, x) = ϕ(Pn−5 ∪ Wm−1, x). Namely, Pm−5 ∪ Wn−1 and
Pn−5 ∪Wm−1 are M-cospectral and ME(Pm−5 ∪Wn−1) =ME(Pn−5 ∪Wm−1), where M is the adjacency matrix.

Proof. Let m,n ≥ 6. By Lemma 5.1, when r = 2, we get φ(Pm−5 ∪Wn−1, x) = φ(Pn−5 ∪Wm−1, x). Furthermore,
by Lemma 2.1 and the definition of the matching energy of a graph, we get Theorem 5.3. □
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