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Study on CR-submanifolds of Lorentzian para-Kenmotsu manifolds
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Abstract. In this research paper, our investigation focuses on exploring outcomes related to pseudo
parallel paracontact CR-submanifolds, considering both Chaki’s and Deszcz’s definitions. We specifically
consider the influence of Levi-Civita connection and semisymmetric metric connection within Lorentzian
para-Kenmotsu manifolds.

1. Introduction

The study of the differential geometry of contact CR-submanifolds, which extends the notions of in-
variant and anti-invariant submanifolds within an almost contact metric manifold, was inaugurated by A.
Bejancu [4]. Following this pioneering work, researchers have explored this subject in diverse contexts,
as demonstrated in publications like those authored by [10], and [2]. CR-submanifolds refer to a class
of submanifolds that are endowed with a distinguished complex structure, which have been extensively
studied in differential geometry and complex analysis due to their rich geometric properties and their close
connections to various mathematical fields such as algebraic geometry, partial differential equations, and
mathematical physics.

The term ”CR” stands for Cauchy-Riemann, which reflects the presence of certain geometric conditions
that resemble those found in the theory of holomorphic functions. Specifically, CR-submanifolds are
equipped with a complex distribution, known as the CR-structure, which captures the complex tangential
behavior of these submanifolds.

The study of CR-submanifolds is motivated by their relevance in several areas of mathematics and
physics. In complex analysis, they serve as natural objects for the investigation of holomorphic and anti-
holomorphic functions on submanifolds, leading to deep connections with the theory of several complex
variables. Additionally, CR-submanifolds have found applications in the study of geometric flows, minimal
surfaces, and the classification of geometric structures on manifolds. Many significant results are written
and published by many authors in relation with CR-submanifolds [7], [1], [6].

By applying the theory of CR-submanifolds to these areas, researchers are able to gain a deeper under-
standing of the underlying mathematical structures influencing the system’s behavior. In 2018, a class of
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Lorentzian manifolds called Lorentzian almost paracontact metric manifolds, known as Lorentzian para-
Kenmotsu manifolds, was introduced by [8]. The study of invariant submanifolds of these manifolds was
further explored by M. Atceken in 2022, where he provided the necessary and sufficient conditions for a
Lorentzian para-Kenmotsu manifold to be totally geodesic [2].

This introduction aims to provide a brief overview of CR-submanifolds, highlighting their importance
and relevance in the field of differential geometry. In section 2, we will explore some aspects of CR-
submanifolds, including definitions and fundamental properties of CR-submanifolds and Lorentzian para-
Kenmotsu manifolds. In section 3, we study result on Chaki-pseudo parallel CR-submanifold of Lorentzian
para-Kenmotsu manifold. In section 4, we have established findings regarding Chaki-pseudo parallel CR-
submanifolds within Lorentzian para-Kenmotsu manifolds concerning a semisymmetric metric connection.
Moreover, we will delve into the associated geometric structures and the intricate interplay between totally
geodesic and Lorentzian para-Kenmotsu manifolds in the context of CR-submanifolds. By delving into
the fascinating world of CR-submanifolds, we hope to gain insights into the deep connections between
complex analysis, differential geometry, and various other mathematical disciplines.

2. Preliminaries

Let M be the odd-dimensional Lorentzian metric manifold. To say M is Lorentzian almost contact
manifold it should have the structure (ϕ, ξ, η, 1), where ϕ, ξ, η, 1 denotes the (1, 1) tensor, vector field, 1-form
and Lorentz metric respectively satisfying

ϕ2Ω1 = Ω1 + η(Ω1)ξ, ϕξ = 0, (1)
1(ϕΩ1, ϕΩ2) = 1(Ω1,Ω2) + η(Ω1)η(Ω2), (2)

η(ξ) = −1, (3)
η(Ω1) = 1(Ω1, ξ). (4)

A Lorentzian almost paracontact manifold
⋆

Mn(ϕ, ξ, η, 1) is treated as a Lorentzian para-Kenmotsu
manifold(LPKM) if the below defined conditions is satisfied for all Ω1 and Ω2 in the set of differentiable

vector fields Γ(T
⋆

Mn). Here, ∇̄ denotes the Levi-Civita connection(LCC):

(∇̄Ω1ϕ)Ω2 = −1(ϕΩ1,Ω2)ξ − η(Ω2)ϕΩ1 (5)

Moreover, when ξ represents the Killing vector field, the contact structure is termed a K-contact (or para-
contact) structure. In this case, the following relationship holds:

∇Ω1ξ = ϕΩ1 (6)

In condition to the above condition for the LPKM
⋆

Mn(ϕ, ξ, η, 1), also possesses these conditions,

∇̄Ω1ξ = −ϕ
2Ω1 = −Ω1 − η(Ω1)ξ, (7)

(∇̄Ω1η)Ω2 = −1(Ω1,Ω2) − η(Ω1)η(Ω2) (8)

Let R̄ be Riemannian curvature tensor and S be Ricci tensor of LPKM
⋆

Mn(ϕ, ξ, η, 1), then we have

R(Ω1,Ω2)ξ = η(Ω2)Ω1 − η(Ω1)Ω2, (9)
R̄(ξ,Ω1)Ω2 = 1(Ω1,Ω2)ξ − η(Ω2)Ω1, (10)

S(ξ,Ω1) = (n − 1)η(Ω1) (11)

For the immersed submanifold M ofLPKM
⋆

Mn, we denote the tangent and normal subspace by Γ(TM)
and Γ(T⊥M). Then the Gauss and Weigarten formulas are as follows,

∇̄Ω1Ω2 = ∇Ω1Ω2 + π(Ω1,Ω2) (12)
∇̄Ω1 V = −AVΩ1 + ∇

⊥

Ω1
V (13)
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for allΩ1,Ω2 ∈ Γ(TM). Let V ∈ Γ(T⊥M), where ∇, and ∇⊥ are the connections on M. π and A are the second
fundamental form(SFF ) and shape operator of M, respectively. They are interconnected by the following
relation,

1(AVΩ1,Ω2) = 1(π(Ω1,Ω2),V) (14)

for any Ω1,Ω2 ∈ Γ(TM) and V ∈ Γ(T⊥M), where 1 denotes the Riemannian metric on
⋆

Mn and also on M.
For any submanifold M of a Riemannian manifold, the Gauss equation is expressed as follows,

R̄(Ω1,Ω2)Ω3 = R(Ω1,Ω2)Ω3 + Aπ(Ω1,Ω2)Ω2 − Aπ(Ω2,Ω3)Ω1

+(∇̄Ω1π)(Ω2,Ω3) − (∇̄Ω2π)(Ω1,Ω3) (15)

The covariant derivative of π is expressed as follows:

(∇̄Ω1π)(Ω2,Ω3) = ∇⊥Ω1
π(Ω2,Ω3) − π(∇Ω1Ω2,Ω3) − π(Ω2,∇Ω1Ω3) (16)

for allΩ1,Ω2,Ω3 ∈ Γ(TM), here R̄ and R denotes the Riemannian curvature tensors of M̄ and M respectively.
If ∇̄π = 0, then the submanifold M is considered to have its SFF [9].

The normal part (R̄(Ω1,Ω2)Ω3)⊥ of (R̄(Ω1,Ω2)Ω3) from (15) is given by

(R̄(Ω1,Ω2)Ω3)⊥ = (∇̄Ω1π)(Ω2,Ω3) − (∇̄Ω2π)(Ω1,Ω3). (17)

This equation is commonly referred to as the Codazzi equation. In particular, if (R̄(Ω1,Ω2)Ω3)⊥ = 0, then

M is referred to as a curvature-invariant submanifold of
⋆
M.

Alternatively, as M is tangent to ξ, we have

AVξ = π(Ω1, ξ) = 0. (18)

By using above equation (18), we have from (7) and (12) i.e.,

∇Ω1ξ = ∇̄Ω1ξ = Ω1 − η(Ω1)ξ. (19)

In view of (18), we have from (15) and (10) that,

R(Ω1,Ω2)ξ = R̄(Ω1,Ω2)ξ = η(Ω1)Ω2 − η(Ω2)Ω1. (20)

In almost contact metric manifolds, the categorization of invariant and anti-innvariant submanifolds
relies on the properties of almost contact metric structure ϕ. A submanifolds M in an almost contact metric
manifold is termed invariant if the structure vector field ξ is tangent to M at every point and ϕΩ1 is tangent
to M for any vector fieldΩ1 that is tangent to M. This condition can be represented as ϕ(TM) ⊂ TM at every
point in M. Now, for invariant submanifolds of a LPKM, the manifold is said to be totally geodesic(TG)
if π is identically zero (as stated in reference [5]):

π(Ω1, ξ) = 0. (21)

A linear connection on aLPKM
⋆

Mn is termed a semisymmetric connection if its torsion tensor τ of the
connection ¯̃

∇ is structured in the following manner:

τ(Ω1,Ω2) = ¯̃
∇Ω1Ω2 −

¯̃
∇Ω2Ω1 − [Ω1,Ω2] (22)

satisfies,

τ(Ω1,Ω2) = η(Ω2)Ω1 − η(Ω1)Ω2, (23)
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wher η is a 1-form. Moreover, if the semisymmetrc connection ¯̃
∇ satisfies the condition

( ¯̃
∇Ω11)(Ω1,Ω2) = 0. (24)

for all Ω1,Ω2,Ω3 ∈ χ(
⋆

Mn), where χ(
⋆

Mn) represents the lie algebra of vector fields on the manifold
⋆

Mn, then
¯̃
∇ is said to be a semisymmetric metric connection (SSMC).

Let
⋆

Mn be an n-dimensional LPKM and SSMC ¯̃
∇ in a LPKM then we have

¯̃
∇Ω1Ω2 = ∇̄Ω1Ω2 + η(Ω2)Ω1 − 1(Ω1,Ω2)ξ. (25)

Definition 2.1. A submanifold M of a LPKM
⋆

Mn with respect to ∇̄ is called pseudo parallel(PP) if its SFF π
satisfies,

(∇̄Ω1π)(Ω2,Ω3) = 2α(Ω1)π(Ω2,Ω3) + α(Ω2)π(Ω1,Ω3) + α(Ω3)π(Ω1,Ω2) (26)

for all Ω1,Ω2,Ω3 on M, where α is a nowhere vanishing 1-form.

Specifically, if α is a non-vanishing 1-form, then if α(Ω1) = 0, π is denoted as parallel, and M is termed a

parallel submanifold of
⋆

Mn. We proceed to establish the following:

In particular, if α(Ω1) = 0 then π is said to be parallel and M is said to be parallel submanifold of
⋆

Mn.
We now prove the following:

3. Chaki-pseudo parallel CR-submanifold of Lorentzian para-Kenmotsu manifold(LPKM)

Theorem 3.1. Let M the a CR-submanifold of a LPKM
⋆

Mn. Then M is TG if and only if M is Chaki-pseudo
parallel with α(ξ) , 1.

Proof. Let us take M as Chaki-pseudo parallel CR-submanifold of
⋆

Mn. Then by considering equations (16) and (26)

∇
⊥

Ω1
(π(Ω2,Ω3)) − π(∇Ω1Ω2,Ω3) − π(Ω2,∇Ω1Ω3) (27)

= 2α(Ω1)π(Ω2,Ω3) + α(Ω2)π(Ω1,Ω3) + α(Ω3)π(Ω1,Ω2), (28)

Substituting Ω3 = ξ in above eqaution and using (21) we compute

−π(Ω2,∇Ω1ξ) = α(ξ)π(Ω1,Ω2). (29)

In view of (7), (15) and (29) we get

[1 − α(ξ)]π(Ω1,Ω2) = 0. (30)

Here we can see that π(Ω1,Ω2) = 0 for all Ω1,Ω2 on M as α(ξ) , 1. Therfore M is TG submanifold. Converse part
is also trivial. Hence the proof.

Corollary 3.2. [3] Let M be a CR-submanifold of a LPKM
⋆

Mn. Then M is TG if and only if M is parallel.

By taking the reference of the definition of Ricci pseudosymmetric manifold with respect to the Deszcz,
we can define the following:
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Definition 3.3. A submanifold M of LPKM
⋆

Mn is said to be pseudo parallel(PP) with respect to Deszcz if its
SFF π satisfies

R̄(Ω1,Ω2).π = (∇̄Ω1∇̄Ω2 − ∇̄Ω2∇̄Ω1 − ∇̄[Ω1,Ω2])π (31)
=L1Q(1, π)

for all vector fields Ω1,Ω2 tangent to M, where R̄ is the curvature tensor of M̄. If L1 = 0 then M is said to be
semiparallel(SP).

We now prove the following:

Theorem 3.4. Let M be a CR-submanifold of a LPKM
⋆

Mn. Then M is TG if and only if M is PP with respect to
Deszcz (L1 , −1).

Proof. Let M be a contact CR-submanifold of a LPKM
⋆

Mn.
If M is PP with respect to the Deszcz. Then from the relation (31) we have

(R̄(Ω1,Ω2).π)(Ω3,Ω4) = L1Q(1, π)(Ω3,Ω4;Ω1,Ω2). (32)

By using the formula of tensor algebra we have that

(R̄(Ω1,Ω2).π)(Ω3,Ω4) = R⊥(Ω1,Ω2)π(Ω3,Ω4) − π(R(Ω1,Ω2)Ω3,Ω4) − π(Ω3,R(Ω1,Ω2)Ω4) (33)

for all vector fields Ω1,Ω2,Ω3 and Ω4, where

R⊥(Ω1,Ω2) = [∇⊥Ω1
,∇⊥Ω2

] − ∇⊥[Ω1,Ω2]. (34)

Taking the account of equation (1.3), we have

Q(1, π)(Ω3,Ω4;Ω1,Ω2) =1(Ω2,Ω3)π(Ω1,Ω4) − 1(Ω1,Ω3)π(Ω2,Ω4) (35)
+ 1(Ω2,Ω4)π(Ω1,Ω4) − 1(Ω1,Ω4)π(Ω2,Ω4). (36)

In view of (33) and (35) and also using (32), we have that

R⊥(Ω1,Ω2)π(Ω3,Ω4) − π(R(Ω1,Ω2)Ω3,Ω4) − π(Ω3,R(Ω1,Ω2)Ω4)
= L1[1(Ω2,Ω3)π(Ω1,Ω4) − 1(Ω1,Ω3)π(Ω2,Ω4) + 1(Ω2,Ω4)π(Ω1,Ω3) − 1(Ω1,Ω4)π(Ω2,Ω3)]. (37)

Replacing ξ in Ω1 and Ω4 place and using (12) we get,

π(Ω3,R(ξ,Ω2)ξ) = L1π(Ω2,Ω3) (38)

Putting value of equation (20) in (38) and using (18) we get (L1+1)π(Ω2,Ω3) = 0, which implies that π(Ω2,Ω3) = 0
for all Ω2,Ω3 on M, which implies that M is TG, since L1 , −1. The converse part is also holds trivial. Hence the
proof.

Corollary 3.5. Let M be a CR-submanifold of a LPKM
⋆

Mn. Then M to be TG if and only if M is SP.

From Corollary (3.2),(3.5) and Theorem (3.1), (3.4) we can state the following:

Theorem 3.6. Let M be a CR-submanifold of a LPKM
⋆

Mn. Then the following statements are equivalent:

1. M is parallel,
2. M is TG,
3. M is SP,
4. M is PP with respect to Chaki with α(ξ) , 1.
5. M is PP with respect to Deszcz with L1 , −1.
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4. Chaki-pseudo parallel CR- submanifold of Lorentzian para-Kenmotsu manifold(LPKM) with re-
spect to semisymmetric metric connection(SSMC)

Let us consider M as a CR-submanifod of a LPKM
⋆

Mn with respect to LCC ∇̄ and SSMC ¯̃
∇. Let ∇

be the induced connection on M from the connection ∇̄ and ∇̃ be the induced connection on M from the
connection ¯̃

∇. The fundamental form with respect to LCC and SSMC are denoted by π and π̃ respectivey,
then we have

¯̃
∇Ω1Ω2 = ∇̃Ω1Ω2 + π̃(Ω1,Ω2). (39)

By using the equation (12) and (25), we have from (39) that

∇̃Ω1Ω2 + π̃(Ω1,Ω2) =∇̄Ω1Ω2 + η(Ω2)Ω1 − 1(Ω1,Ω2)ξ (40)
=∇Ω1Ω2 + π(Ω1,Ω2) + η(Ω2)Ω1 − 1(Ω1,Ω2)ξ.

Here we have Ω1, ξ ∈ TM, we equate the tangential and normal components of (39) we have,

∇̃Ω1Ω2 = ∇Ω1Ω2 + η(Ω2)Ω1 − 1(Ω1,Ω2)ξ, (41)

and

π̃(Ω1,Ω2) = π(Ω1,Ω2) (42)

It can be observed that the SFF , as defined by the LCC and the SSMC, are identical.
As a result the following can be inferred.

Theorem 4.1. If M is a CR-submanifold of a LPKM
⋆

Mn with respect to a SSMC, then

1. M admits SSMC.
2. The SFF with respect to Riemannian connection and SSMC are equal.

If M be a CR-submanifold of a LPKM is peudo parallel in the sense of Chaki with respect to SSMC.
Then we have

(∇̃Ω1π)(Ω2,Ω3) = 2α(Ω1)π(Ω2,Ω3) + α(Ω2)π(Ω1,Ω3) + α(Ω3)π(Ω1,Ω2), (43)

for all Ω1,Ω2,Ω3 on M.
In view of (41) and (18) we have from (43)

(∇Ω1π)(Ω2,Ω3) + 1(π(Ω2,Ω3), ξ) − 1(Ω1, π(Ω2,Ω3))ξ
− η(Ω2)π(Ω1,Ω3) − η(Ω3)π(Ω1,Ω2)
= 2α(Ω1)π(Ω2,Ω3) + α(Ω2)π(Ω1,Ω3) + α(Ω3)π(Ω1,Ω2), (44)

which implies that,

∇
⊥

Ω1
π(Ω2,Ω3) − π(∇Ω1Ω2,Ω3) − π(Ω2,∇Ω1Ω3)

+ 1(π(Ω2,Ω3), ξ) − 1(Ω1, π(Ω2,Ω3))ξ
− η(Ω2)π(Ω1,Ω3) − η(Ω3)π(Ω1,Ω2)
= 2α(Ω1)π(Ω2,Ω3) + α(Ω2)π(Ω1,Ω3) + α(Ω3)π(Ω1,Ω2). (45)

Substituting Ω3 = ξ in (45) and utilizing the equation (7), we have

α(ξ)π(Ω1,Ω2) = 0 (46)

which implies π(Ω1,Ω2) = 0 provided α(ξ) , 0. Now we state the following:
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Theorem 4.2. Let M be a CR-submanifold of a LPKM
⋆

Mn with respect to SSMC. Then M is TG if and only if
M is Chaki PP with respect to SSMC, provided α(ξ) , 0.

Corollary 4.3. Let M be a CR- submanifold of a LPKM
⋆

Mn with respect to SSMC. Then M is TG if and only if
M is parallel with respect to SSMC.

Definition 4.4. A submanifold M of a LPKM
⋆

Mn which is associated with SSMC is said to be PP in the sense
of Deszcz with respect to SSMC if

¯̃R(Ω1,Ω2).π̃ = L1Q(1, π̃) (47)

this condition holds for all vector fields Ω1,Ω2 tangent to M, where the curvature tensor of
⋆

Mn is denoted by ¯̃R. We
can say that M is SP with respect to SSMC if L1 = 0.

Now we prove following theorem:

Theorem 4.5. Let M be a CR-submanifold of a LPKM
⋆

Mn with respect to SSMC. Then M is TG if and only if
M is Deszcz PP with respect to SSMC, provided L1 , −1.

Proof. Let M be a CR-submanifold of a LPKM
⋆

Mn with respect to SSMC. Suppose that M is PP in the sense of
Deszcz with respect to SSMC. Then we have from (47) that

¯̃R(Ω1,Ω2).π = L1Q(1, π) (48)

which implies that,

R̄⊥(Ω1,Ω2)π(Ω3,Ω4) − π(R̃(Ω1,Ω2)Ω3,Ω4) − π(Ω3, R̄(Ω1,Ω2)Ω4)
= L1[1(Ω2,Ω3)π(Ω1,Ω4) − 1(Ω1,Ω3)π(Ω2,Ω4) + 1(Ω2,Ω4)π(Ω1,Ω3) (49)
− 1(Ω1,Ω4)π(Ω2,Ω3)]. (50)

Substitute Ω1 = Ω4 = ξ in (49) and also we consider the equation (7) we obtain

(L1 + 1)π(Ω2,Ω3) = 0, (51)

then for all Ω1,Ω2 on M π(Ω2,Ω3) = 0. Therefore M is TG, since L1 , −1. Converse part also holds trivial. Hence
the result.

Corollary 4.6. Let M be a CR-submanifold of a LPKM
⋆

Mn with respect to SSMC. Then M is TG if and only if
M is SP with respect to SSMC.

From Corollary (4.3), (4.6) and theorem (4.1), (4.5), we can state the following:

Theorem 4.7. If M be a CR-submanifold of a LPKM
⋆

Mn with respect to SSMC. The following statements are
equivalent:

1. M is TG,
2. M is parallel with respect to SSMC,
3. M is SP with respect to SSMC,
4. M is PP in the sense of Chaki with respect to SSMC with α(ξ) , 0,
5. M is PP in the sense of Deszcz with respect to SSMC with L1 , −1.
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5. Conclusion

In this paper, we investigate pseudo parallel CR-submanifolds of LPKM, focusing on the notions
of pseudo parallelism as defined by Chaki and Deszcz. It is noteworthy that pseudo Ricci symmetric
manifolds or PP manifolds according to Chaki’s definition are different from Ricci pseudosymmetric
manifolds or PP manifolds as per Deszcz’s characterization. Nevertheless, we prove the equivalence of
PP CR-submanifolds, characterized both by Chaki and Deszcz, within LPKM under specific conditions.
Furthermore, we establish the equivalence of PP contact CR-submanifolds, considering both Chaki’s and
Deszcz’s definitions, with respect to a SSMCwithin LPKM, subject to specific conditions.
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