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Moore-Penrose m-weak group inverses in rings with involution

Shuxian Xu?, Jianlong Chen®*, Yukun Zhou?
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Abstract. In 2024, Mosi¢ et al. defined the Moore-Penrose m-weak group inverse (MP-m-WGI) of a
complex matrix by combining the Moore-Penrose inverse with m-weak group inverse in an appropriate
way. In this paper, we generalize it to rings with involution and define the MP-m-WGI of an element in
rings with involution. Some expressions and characterizations for this generalized inverse are presented.
Then, we establish the relationship between the MP-m-WGI and (b, c)-inverse. Finally, we give some

equivalent characterizations when the MP-m-WGI coincides with other generalized inverses, such as the
Drazin inverse and the pseudo core inverse.

1. Introduction

As a classical generalized inverse, the Moore-Penrose inverse (MP inverse) was introduced by Moore
[15] and latter rediscovered independently by Bjerhammar [2] and Penrose [22]. The m-weak group inverse
(m-WGI) introduced in [30] is a new type of generalized inverses. The m-WGI covers the core-EP inverse
[13], the weak group inverse [25] and the generalized group inverse (or GGI) [6]. For more results of the
MP inverse and the m-WGI, readers can see [9, 16-18, 22, 23].

Using the MP inverse and the m-WGI, Mosi¢ et al.[19] defined the Moore-Penrose m-weak group
inverse (MP-m-WGI) of a complex matrix, which is very significant as a generalization for the MP weak
group inverse [24], the MPD inverse [12, 19] and the dual core inverse [1]. For a complex matrix A and
m € N, the symbols A, A®n and A® stand for the MP inverse, the m-WGI and the core-EP inverse [13] of
A, respectively. The MP-m-WGI of A is defined as

AV®n = At A®n A
and presents uniquely determined solution to matrix equations
XAX =X, AX = (ADy1am1 - XA = AT(AD)ym14m+2,

A number of expressions and characterizations of the MP-m-WGI were given.

2020 Mathematics Subject Classification. Primary 15A09; Secondary 16W10.

Keywords. Moore-Penrose m-weak group inverse, Moore-Penrose inverse, m-weak group inverse, (b, c)-inverse.

Received: 05 September 2024; Accepted: 21 January 2025

Communicated by Dijana Mosi¢

Research supported by the National Natural Science Foundation of China (No. 12171083) and the Jiangsu Provincial Scientific
Research Center of Applied Mathematics under Grant No. BK20233002.

* Corresponding author: Jianlong Chen

Email addresses: shuxianxu215@163.com (Shuxian Xu), jlchen@seu.edu. cn (Jianlong Chen), 2516856280@qq . com (Yukun Zhou)

ORCID iDs: https://orcid.org/0009-0002-5530-7133 (Shuxian Xu), https://orcid.org/0000-0002-6798-488X (Jianlong
Chen), https://orcid.org/0000-0001-9470-2748 (Yukun Zhou)



S. Xu et al. / Filomat 39:9 (2025), 2929-2940 2930

Motivated by the work of Mosi¢ above, we put forward the notion of MP-m-WGI in rings with involution
as a generalization for both m-WGI in rings and MP-m-WGI for complex matrices.

This paper is organized as follows. In Section 2, we present some necessary definitions and auxiliary
lemmas. In Section 3, we define the MP-m-WGI in rings with involution and give some expressions for
MP-m-WGL. In Section 4, we investigate the relationship between the MP-m-WGI and other generalized
inverses in rings, such as the (b, c)-inverse, the inverse along an element, the Drazin inverse and the pseudo
core inverse.

2. Preliminaries

Let R be a ring with involution. An involution * in R is an anti-isomorphism of degree 2, i.e. for any
7, €R,

)y =r, () =sr, (F+s)=r+s"

Definition 2.1. [22] An element a € R is said to be Moore-Penrose invertible if there exists x € R satisfying the
following equations

MNaxa=a, @Q)xax=x ) (@ax)' =ax, (4)(xa)" = xa.

Such an x is unique when it exists, and is called the Moore-Penrose inverse (MP inverse) of a and denoted by a'.

Moreover, x is called a {1}-inverse of a (or a is regular) if the equation (1) holds. If x satisfies equations
(1) and (3), then x is called a {1, 3}-inverse of a and denoted by a"¥). If x satisfies equations (1) and (4), then
x is called a {1,4}-inverse of a and denoted by a.

Definition 2.2. [3] Let a € R. If there exist x € R and k € IN* such that

xa*' = a5, ax* =x, xa=ax,
then a is called Drazin invertible. Such an x is unique and denoted by aP when it exists.

The smallest positive integer k satisfying above equations is called the Drazin index of a4, denoted by
i(a). In particular, if i(2) = 1, x is called the group inverse of a and denoted by a*.

Definition 2.3. [7] Let a € R. If there exist x € R and k € IN* such that

xd*tt =4k ax? =x, (ax)" =ax,
then x is called the pseudo core inverse of a. It is unique and denoted by a® when the pseudo core inverse exists.
The smallest positive integer k satisfying above equations is called the pseudo core index of a. If a is
pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with the

Drazin index [7]. In particular, x is called the core inverse of 2 and denoted by a® when k = 1[1, 23].
The dual pseudo core inverse [7] was defined similarly.

Definition 2.4. [30] Let a € R and m € IN. If there exist x € R and k € IN* such that
xak+1 — llk, axZ =x, (ak)*am+1x — (ak)*aml

then x is called the m-weak group inverse (m-WGI) of a. When the m-WGI of a exists and is unique, it is denoted by
u@”l‘
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The smallest positive integer k satisfying above equations is called the m-weak group index of a. If a
is m-weak group invertible, then a is Drazin invertible and the m-weak group index is equal to the Drazin
index.

The symbols R, RI131 RUAIRT RP, R®:, RO, Rg denote sets of all regular, {1,3}-invertible, {1,4}-
invertible, Moore-Penrose invertible, Drazin invertible, m-weak group invertible, pseudo core invertible
and dual pseudo core invertible elements in R, respectively.

Recall that x € R is a minimal weak Drazin inverse [27] of a € R if xa**! = a* for some k € N and ax? = x.
Many generalized inverses such as Drazin inverse, pseudo core inverse, m-WGI and DMP inverse [12] are
special cases of minimal weak Drazin inverses. So the following Lemmas 2.5 and 2.6 can efficiently simplify
some proofs.

Lemma 2.5. [7] Let a € R. If there exist x € R and k € IN such that

then we have
(1) ax = a™x™ for arbitrary positive integer m;
(2) xax = x;
(3) a is Drazin invertible, aP® = x**1a* and i(a) < k.

Lemma 2.6. [29] Leta € RP and ki, ..., ky,51,...,5, € N. If x1,...,x, are minimal weak Drazin inverses of a and
s, # 0, then

n

H ak’xj’ =a‘xS, 1)

i=1

wherek =Y kjands =Y. s; .
i=1 i=1

Lemma 2.7. [7] Let a € Rand I,k € N* with | > k. Then a € R? with i(a) = k if and only ifa € RP with i(a) = k
and a* € RV3. In this case, a® = aPa'(a")?,

Applying Lemmas 2.6 and 2.7, we get the following corollary immediately.
Corollary 2.8. [20] Let a € R® withi(a) = kand | € N* with | > k. Then
@@y = (aPymal (@) for m € N*.
Lemma 2.9. [30] Leta € Rand m € N. Ifa € R®, then
a® = @®)" g, )
Proof. It follows by [30, Corollaries 4.3, 4.9 and 4.11]. O
Lemma 2.10. [9] Let a € R. Then
(1) Ra = Ra‘a ifand only ifa € R1%3);

(2) aR = aa'R if and only if a € RUA.
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3. MP-m-WGI in rings with involution

In this section, we introduce the MP-m-WGI in R using the MP inverse and the m-WGI, which generalize
the MP-m-WGI of a complex matrix.

Theorem 3.1. Let a € R" N R? and m € IN. The system of equations
xax = x, ax = (a®)""a"™, xa = a'(@®)"1g"+? (3)
has a unique solution: x = a'a®»a = ataa®m = gt (@@)m+1gm+1,
Proof. First, by [30, Proposition 4.8], (a®)2a = a®=1, then we have
ata®a = a*a(a®)?a = a*aa®.

In addition, it follows from Lemma 2.9 that

ata®nq @ at(@@)ymtigmtl,

Take x = a'a®a. Then by Lemmas 2.5 and 2.6,
ax = aa' (a@)" g+ @ aataaP @@y g"m N = qgP (@ g+l @ (@@)ym+lgm,

1
xax = a+(a®)m+1am+1(a®)m+1am+1 — a+(a®)m+1aa®am+l (:) a‘r(a@)mﬂamﬂ

and

m+2

)m+1a

xa =a'(a®

Therefore, x = ata®a = ataa® = a*(a®)"*14"*1 is a solution to the system (3).

Next, we prove the uniqueness of the solution. Suppose that x is a solution to the system (3). Then by
Lemmas 2.5 and 2.9, we have

X = xax = (XLI)X - a+(a®)m+1am+2x - ﬂ+(ﬂ®)m+161m+1(ﬂ9€)
2
= 4" (@) (@Y gl = gt (g @y g @ O,
[

Definition 3.2. Let a € R" N R® and m € N. The Moore-Penrose m-weak group inverse (MP-m-WGI for

short) of a is defined as
2O = Oy

Similar to the cases of complex matrices in [19], many generalized inverses are special cases of MP-m-
WGl in R:

e Form=1,a"® = 4'a®g is the MPWGI [24];

e Form = 2,a"® = 4'a®2q is the MP-2-WGI (MPGGI) ;

e Form >1i(a), a® = aP by [30], a"®» = ataaP = a™P is the MPD inverse;
e Form > 1 =1i(a), a® = a* and a"® = a*aa* is the dual core inverse [28];

The following proposition gives a expression for the MP-(m + 1)-WGI using the MP-m-WGI and the
MPD inverse in R.

Proposition 3.3. Leta € R* N R® and m € N. Then

@t — gt gt @y
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Proof. Since aPaa®r+ @ a(a®n1)? = g®nn it follows that
aP®n = gt a®nng = gtaPaa®n g
= a'aPaa’aa®a = (a*aPa) (@' aa® 1 )a
= a"Pat®ng,
O
The following result gives a expression of the MP-m-WGI in R in terms of {1}-inverse.
Proposition 3.4. Let a € R* N R® with i(a) = k and m € N. Then (a*y'a**"+' € R and
a®n = gk @by a ) @by e
Proof. First, since
(ak)*ak+m+1 (ak+m+1 )(1’3)((ak)(l’B))*(ak)*ak+m+l

— (ak)*(ak+m+l (ak+m+1)(1,3))*(ak(ak)(l,3))*ak+m+l

— (ak+m+1(ak+m+1)(1,3)ak)*ak(ak)(1,3)ak+m+l — (ak)*ak+m+1/

it follows that (a*)*ak+"+1 ¢ R,
Next, taking p = ((a*)'@*"*1)~(a*)'a@*"*!, we have p? = p and
RP — R((ak)*ak+m+l)—(ak)*ak+m+1 — R(ak)*ak+m+l

— R(ak)*akam+l — Rﬂkam+1 — Rﬂk,

where R(a¥)*a* = Ra* is obtained from a* € R''3! by Lemmas 2.7 and 2.10. So, a* = a*p.
Therefore, by Lemma 2.5, we have

a"®n = gt aa®nn = u+ak(a@nz+1 )k — a+akp(a@m+l )k
— a+ak((ak)*ak+m+1)—(ak)*ak+m+1(a@mH)k
— a+ak((ak)*ak+m+1)—(ak)*am-#Za@mﬂ
— a+ak((ak)=eak+n1+1)—(ak)*anﬁ—l.
O

The following result gives a expression of the MP-m-WGI in R in terms of Drazin inverse and {1, 3}-
inverse.

Proposition 3.5. Leta € Rt N RQ with i(a) = kand m € N. If| € N* with [ > k, then

a‘I‘,@m — a‘l‘(aD)m+lal(al)(l,3)am+l — ﬂ+ﬂl(ﬂl+m+1)(1’3)am+l.

Proof. Since a € R® and I > k, it follows from Lemma 2.7 that a!,a"*"*1 € R13}, Then by Corollary 2.8, we
have

2
LI@"’ (=) (a®)m+1am — (QD)'n+1ﬂl(al)(1’3)ﬂn’.
In addition, since

al (al)(l,S)R — al+m+1 (al+m+1 )(1'3)R,
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it follows that
a@,,, - (aD)m+1al(al)(1,3)am - (aD)n1+1al+m+1(al+m+1)(1,3)am - al(ﬂl+m+1)(1’3)ﬂm.
Therefore,
a‘l‘,@m — a*a@”’a — a‘l‘(aD)m+1al(al)(1,3)am+l — a‘l'al(al+m+l)(l,3)am+l‘
0

A new expression for a"®» can be given in terms of idempotents e = 1 — aa"@ and f = 1 — a"®nq.

Theorem 3.6. Let a € Rt N R® and m € IN. For elements e = 1 — aa™®» = 1 - aa®+ and f = 1 — a"Onq, the
following statements hold:

(1) ateeRanda+ f eRY;
(2) a¥® = (1= fa£e) ' (1-o).
Proof. (1) Leti(a) = k. First, we have
e=1-aa"® =1-aa"aa® =1 - qa®m,

Notice that a®+1 is a minimal weak Drazin inverse of a. Then by [27, Theorem 3.10], we have a + ¢ € R™!
with

=~

-1
@+e) =@+ 1—-aa®) =%+ (1-a®ma) Yy (-a),

T I
_ O

(a- e)_l =(@—-(1- aa@n1+1))_1 = g®m1 _ 1- a@m+1a) a.

i=

o

Now, recall the Jacobson’s lemma [10]: Let a,b € R. If 1 — ab is invertible, then so is 1 — ba and
(1=ba)™! =1+ b(1 — ab)™'a. Thus, by Jacobson’s lemma, a + f € R with

@+f)t=@+1-a"Ong)!
=1+ @@ - 1)@+ (1 -aa"®))la
=1+ @"® - 1)a+e) g,
@=f)"=@-Q1-a"Oa)
= -1+ @@ +1)@a—- (1 -aa"®))la
=-1+@"® +)@a-e)la
(2) Itis direct to verify that
(1-PHa+e)y'(1-e
k-1

— a+/@rr1a(a@1n+l +(1- a@mHQ) Z (_a)i)aa+/@r)l
=0

=
—_

ataa® (@@ + (1 — a®m14) (—a))aa®n

1

I
o

— a+aa@nz+1 aa@mﬂ aa@mﬂ

= ataa®m = PO

where a®n1qq®n1 = g®n js obtained from Lemma 2.5.
Similarly, it can be verified that (1 — f)(a —e) (1 —e) =a"®. O
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Theorem 3.1 indicates that a"®» is a solution to the system (3). Motivated by [19, Corollary 2.2, Theorem
2.2], the following theorem shows that a"®» is also a solution to the following systems of equations.

Theorem 3.7. Let a € R" N R? with i(a) = k and m € IN. Then the following statements are equivalent:
(1) x =a"®n;
(2) xax = x, xa = a*(@”)"*1al(a")13a"*? and ax = (aP)"*1a! (@) VDam* for | € N* with | > k;
(3) xax = x, xa = ata (@™ )12 gnd ax = @ (@)1 gm* for | € IN* with 1 > k;
(4) xax = x, axa = (a®)"1a"*2, ax = (a®)™ g+, xa = at (@) 1am+2;
(5) atax = x, ax = (a@)™1a"*;
(6) atax = x, atax = a* (a®@)"+1a"+1;
(7) xata = x, xat = at(@a®)"+1a"at;
(8) x(a®@)™1a"™! = x, xa = at(a®)"a"*?;
9) at(@®@)™1a™2x = x, ax = (a@)"1am+,

Proof. (1) © (2) & (3) follows by Theorem 3.1 and Proposition 3.5.

(1) = (4) : Suppose x = a"@:. Then by Theorem 3.1, x satisfies xax = x, ax = (@®)"*1g"*!, xa =
at(a®)"1a"*2, and thus axa = (a®)"*1a"+2.

(4) = (1) : It is obvious by Theorem 3.1.

(4) = (5) : Since ax = (a®)"™*1a"*1, it follows that afax = a (a®@)"*1a"™*! = 4"On = x,

(5) = (6) : Obviously.

(6) = (1) : Suppose atax = x and a*ax = a’ (a®)"* 1"+, Then

X = a*ax — a+(a®)m+1am+1 — a+'@'".
The rest part can be proved similarly. [

Remark 3.8. Recall from [23, Theorem 2.8] that Ra* = Ra* and a'R = a*R. So, we obtain more equivalent
characterizations for x = a"®n in Theorem 3.7 immediately. For example:

(6/) atax = x, a'ax = a*(u@)mﬂamﬂ;
(7') xata = x, xa* = a‘r(a®)m+1am+1a*'
4. Relationships with other generalized inverses

In this section, we wish to investigate the relationships between the MP-m-WGI and other generalized
inverses in R. Before that, recall the following two known definitions.

Definition 4.1. [14] Let a,d, x € R. Then x is the inverse of a along d if

xad =d =dax and Rx C Rd, xR C dR.
Definition 4.2. [4] Let a,b,c,x € R. Then x is called a (b, c)-inverse of a if

x € bRxNxRc and xab=D>b, cax = x.

Actually, [4, Proposition 6.1] provided the following equivalent characterization for (b, c)-inverse.

Lemma 4.3. [4] Leta,b,c,x € R. Then x is a (b, c)-inverse of a if and only if
xax =x, xR =bR, Rx = Rec.
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As proved in [4], the inverse along an element is a particular case of (b, c)-inverse when b = ¢. So
according to Lemma 4.3, we obtain the following immediately.

Lemma 4.4. Leta,d,x € R. Then x is the inverse of a along d if and only if
xax =x, xR =dR, Rx = Rd.

The right annihilator of a is denoted by a° and is defined by a° = {x € R : ax = 0}. Similarly, the left
annihilator of a is the set °a = {x € R : xa = 0}. The following theorem reveals the relationship between the
MP-m-WGI and the (b, ¢)-inverse in R.

Theorem 4.5. Let a € R" N R with i(a) = k and m € IN. Then the following statements are equivalent:
(1) x =a"®n;
(2) xis the (ata®, (a¥)'a™*")-inverse of a;
(3) xax =x, xR =a'a*R, Rx = R@*)'a™*;
(4) xax =x, °x =°(a*d"), x° = (@)yam1)°.

Proof. (2) & (3) follows by Lemma 4.3.

(1) = (3) : Suppose x = a"®», Then by Theorem 3.1, xax = x.

Recall that if y € R is a minimal weak Drazin inverse of a, then yR = a*R and Ry = R(a"y* by [27]. Since
a®1 and a® are both minimal weak Drazin inverses of g, it follows that a®+ R = #*R and R(a®)* = R(a")".
Then we have

xR = a"®nR = gTaa® R = a*ad" R = atad*R
and

Rx = RLI+'@"’ - Raf(a®)in+1am+1 — R(ﬂ®)m+1 m+1
— Raa®am+1 — R(a(@)*a*anﬁl R(Ll )* * m+1 R(ak)*am+1.
(3) = (1) : Suppose xax = x, xR = a'a*R and Rx = R(a")'a"*!. From the above proof, we have a"®»
satisfies these three equations. Then by the uniqueness of (b, ¢)-inverse [4], x = a"®n.
(3) © (4) : First, we get that x is regular by xax = x. In addition,
(ak)*aerl(aD)nHl((ak)(l 3)) (ak)* m+1
(ﬂk) ﬂﬂD(ﬂk(ﬂk)(l 3))* m+1
— (ﬂk) a(aDak(ak)(lﬁ))anHl
— (ak)*aa(@aerl (ak)* m+1

Dykak = atak, it follows that a'at is

which implies that (a¥)*a"*! is regular. Also, since ata*(aP) aata* = a*a"(a
regular. Thus, by [23, Lemmas 2.5 and 2.6], the proof is completed. O

Inspired by Theorem 4.5, the following results provide the relationship between the idempotent aa™®»
and the (b, c)-inverse, as well as the idempotent a"®»a and the (b, ¢)-inverse.

Proposition 4.6. Let a € R* N RQ with i(a) = k and m € IN. Then the following statements are equivalent:
(1) x = aa"®n;
(2) xis the (a*, (@) a™")-inverse of 1;

(3) x> =x, xR =a*R, Rx = R(a")*a"*;
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@) 2 =7x °x=°@) x°=(@yamy.
Proof. The proof is similar to Theorem 4.5. [
Proposition 4.7. Let a € Rt N R® with i(a) = k and m € N. Then the following statements are equivalent:
(1) x =a"Ong;
(2) xis the (ata*, (a¥)'a"™*?)-inverse of 1;
(3) x> =x, xR =a'a*R, Rx = R(@")'a"™*?;
(@) ¥* =x, °x="°(@@"a"), x°=((@")ya"*?).
Proof. The proof is similar to Theorem 4.5. [J

Notice that a € Rt N R? in Theorem 4.5, Furthermore, if 2 € R* N R® N Rg, we obtain the following
relationship between the MP-m-WGI and the inverse along an element in R.

Theorem 4.8. Let a € R" N R® N R with i(a) = k and m € IN. Then the following statements are equivalent:
(1) x =a"®n;
(2) x is the inverse of a along ata*(a*)'a™+!;
(3) xax = x, xR =ata"(@*)'a™ 'R, Rx = Ra'a(@a")y'a™!;
(4) xax = x, °x = °(ata*@ya™?"), x° = (ata*(@)am).

Proof. (2) & (3) follows by Lemma 4.4.
(1) = (3) : Suppose x = a"®», Then by Theorem 3.1, xax = x.
Since a € R? N Ry, it follows that a* € R N R4 by Lemma 2.7. Moreover, by Lemma 2.10, we have
a* = R(@")*a* and Ra*(a")* = R(a")". Thus,

‘l‘ak(ak)*am+lR — a‘f'ak(ak)*R — ﬂ+ﬂkR
and
Ra1‘ak(ak)* m+1 Rak(ak)*am+1 R(ak)* m+1

Thus, by Theorem 4.5, xR = aa*(a)*a”™*'R and Rx = Ra'a*(a")a™*1.

(3) = (1) : Suppose xax = x, xR = ata¥(@)a™'R, Rx = Ra'a*(a")*a"*!. From the above proof, we have
a"®n satisfies these three equations. Thus, x = a"®» follows by the uniqueness of the inverse along an
element [14] .

(3) © (4) : First, x is regular by xax = x. Moreover, it is direct to verify that

tl ( k)*am+1((aD)m+1((ak)(1 3)) (ﬂk)(l 4)a)a+ak(ak)>e m+1l _ _ ak(ak)x- m+1
which implies that ata*(a*)*a™*! is regular. Thus, by [23, Lemmas 2.5 and 2.6], the proof is completed. [

Let A be a complex matrix with index k. Recall that A is called k-EP [11] if it satisfies ATAk = AkAt Some
equivalent characterizations of k-EP matrices are presented in [5]. In addition, Zou et al.[31] proved that
Ais k-EP if and only if ATAF1 = AF = AM1AT As one side case of k-EP matrix, it was proved in [26] that
A is left k-EP (or left power-EP) if and only if ATA*! = A*. Now we have the following results in the ring
context.

Lemma 4.9. Let a € R' N RP with i(a) = k. If x, y € R are minimal weak Drazin inverses of a, then a'ax = vy if and
only ifatd*! = a¥ and x = y.
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+

Proof. Suppose that atax = y. Then a'a**! = a*ad* = ataxa™! = ya**! = a*. In addition, since ax = aa*ax = ay,

: 1
it follows that x £ aPax = aPay = y.
Conversely, suppose thata'a**! = 4* and x = y. Then by Lemma 2.5, we have a'ax = ata*1x**1 = gfxk+1 =

x=y. O

Applying Lemma 4.9, some equivalent characterizations are given in the following proposition when
the MP-m-WGI coincides with the Drazin inverse.

Proposition 4.10. Let a € R N R® with i(a) = k and m,n € N with m + 1 < n. Then the following statements are
equivalent:

(1) a*®n =qP;

() ata*! = dk and a®m = aP;

(3) a'P =aP and a®1a = aa®m;
@) atP = g®m;

(5) at®n = g,

(6) at®1 = g®na,

In this case, a™® = aP for 1 € N with | > m.

Proof. (1) & (2) & (4) follows by Lemma 4.9.

(2) © (3) : By Lemma 4.9, we get that a"” = ataaP = aP is equivalent to a'a**! = a*. Then by [30, Theorem
4.13], a®1 = 4P is equivalent to a®1a = aa®n.

(1) & (5) : By [30, Theorem 4.13], a®=1 = P is equivalent to a® = a®:, which implies that a"® = gP
is equivalent to a"® = 4® by Lemma 4.9.

(5) © (6) : It follows from Lemma 4.9 that a"®» = g%aa®@+1 = @ is equivalent to a®+ = a® and
atd™! = gk, Similarly, a®+ = a® and ata¥*! = 4* is also equivalent to a"@-1 = ataa® = g®1. Thus, the
proof is completed.

In this case, since a®1 = g, it follows from [30, Proposition 4.8] that a®+ = 4P for | € N with [ > m.
Thus, at?® =aP forl e Nwith! > m. O

Remark 4.11. For a complex matrix A with index k, it follows from Proposition 4.10 that A¥®» = AP if and only
if Ais left k-EP (or left power-EP) and A®» = AP. More equivalent conditions are omitted in the complex matrix
context.

Recall that an element a € R is called +-DMP [21] with index k if k is the smallest positive integer such
that (a°)* and ()" exist with (@*)* = (@°)t. The following proposition presents conditions under which the
MP-m-WGI coincides with the pseudo core inverse.

Proposition 4.12. Let a € R" N R® with i(a) = k and m € IN. Then the following statements are equivalent:
(1) a¥®n = g®;
(2) ais »DMP;
(3) ataa® = a® for some positive integer n.

Proof. (1) = (2) : Suppose a"®» = g®. First, by Lemma 4.9, a"® = a'qa®1 = 4@ if and only if a'a**! = #*
and a®+ = 4@, Then by [30, Corollary 4.14], a®mn = @ if and only if a® = gP. Thus, g is *~DMP by [8,
Lemma 2.3].

(2) = (1) : Suppose a is *-DMP. Then by [8, Lemma 2.3], a® = 4P, which is equivalent to a® = a®=1 by
[30, Corollary 4.14]. Moreover, since a € Rt and a4 is -DMP, it follows that a is k-EP by [31, Theorem 3.19],
which implies that a*#*! = a*. Thus, a"®» = 4®,

(2) © (3) is similar to (1) & (2).

The proof is completed. [
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From the proof of Proposition 4.12, we know that a"®» = 4®(or a is +-DMP) can imply a"® = aP . So it
is natural to consider whether they are equivalent. However, the following example shows that a"®» = gP
may not imply a"®» = 4®(or a is +-DMP).

Example 4.13. Let R = My(Z) and take the involution as the transpose, where Z stands for the set of all integers.
1 0 01

Seta = € Rwith i(a) = 2. By computation, we have

0100
0 001
0 0 0O

1 0 -1 0 1 0 0 1
s lo1 0 0 ,_fo100

10 0 0 oy “10 0 0 o}
00 1 0 0 0 0 O
1 0 0 O 1 0 0 1
o_[01 00 o 0100

0 0 0 0oy 0 0 0 o
0 0 0 O 0 0 0 O

Thus, a*a® = a* and a® = aP, which implies that a¥®» = aP for m € IN by Proposition 4.10. However, since a® # aP,

it follows that a is not *-DMP by [8, Lemma 2.3].
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