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Abstract. In 2024, Mosić et al. defined the Moore-Penrose m-weak group inverse (MP-m-WGI) of a
complex matrix by combining the Moore-Penrose inverse with m-weak group inverse in an appropriate
way. In this paper, we generalize it to rings with involution and define the MP-m-WGI of an element in
rings with involution. Some expressions and characterizations for this generalized inverse are presented.
Then, we establish the relationship between the MP-m-WGI and (b, c)-inverse. Finally, we give some
equivalent characterizations when the MP-m-WGI coincides with other generalized inverses, such as the
Drazin inverse and the pseudo core inverse.

1. Introduction

As a classical generalized inverse, the Moore-Penrose inverse (MP inverse) was introduced by Moore
[15] and latter rediscovered independently by Bjerhammar [2] and Penrose [22]. The m-weak group inverse
(m-WGI) introduced in [30] is a new type of generalized inverses. The m-WGI covers the core-EP inverse
[13], the weak group inverse [25] and the generalized group inverse (or GGI) [6]. For more results of the
MP inverse and the m-WGI, readers can see [9, 16–18, 22, 23].

Using the MP inverse and the m-WGI, Mosić et al.[19] defined the Moore-Penrose m-weak group
inverse (MP-m-WGI) of a complex matrix, which is very significant as a generalization for the MP weak
group inverse [24], the MPD inverse [12, 19] and the dual core inverse [1]. For a complex matrix A and
m ∈ N, the symbols A†, AWOm and A †O stand for the MP inverse, the m-WGI and the core-EP inverse [13] of
A, respectively. The MP-m-WGI of A is defined as

A†,WOm = A†AWOm A

and presents uniquely determined solution to matrix equations

XAX = X, AX = (A †O)m+1Am+1, XA = A†(A †O)m+1Am+2.

A number of expressions and characterizations of the MP-m-WGI were given.
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Motivated by the work of Mosić above, we put forward the notion of MP-m-WGI in rings with involution
as a generalization for both m-WGI in rings and MP-m-WGI for complex matrices.

This paper is organized as follows. In Section 2, we present some necessary definitions and auxiliary
lemmas. In Section 3, we define the MP-m-WGI in rings with involution and give some expressions for
MP-m-WGI. In Section 4, we investigate the relationship between the MP-m-WGI and other generalized
inverses in rings, such as the (b, c)-inverse, the inverse along an element, the Drazin inverse and the pseudo
core inverse.

2. Preliminaries

Let R be a ring with involution. An involution ∗ in R is an anti-isomorphism of degree 2, i.e. for any
r, s ∈ R,

(r∗)∗ = r, (rs)∗ = s∗r∗, (r + s)∗ = r∗ + s∗.

Definition 2.1. [22] An element a ∈ R is said to be Moore-Penrose invertible if there exists x ∈ R satisfying the
following equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.

Such an x is unique when it exists, and is called the Moore-Penrose inverse (MP inverse) of a and denoted by a†.

Moreover, x is called a {1}-inverse of a (or a is regular) if the equation (1) holds. If x satisfies equations
(1) and (3), then x is called a {1, 3}-inverse of a and denoted by a(1,3). If x satisfies equations (1) and (4), then
x is called a {1, 4}-inverse of a and denoted by a(1,4).

Definition 2.2. [3] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak , ax2 = x, xa = ax,

then a is called Drazin invertible. Such an x is unique and denoted by aD when it exists.

The smallest positive integer k satisfying above equations is called the Drazin index of a, denoted by
i(a). In particular, if i(a) = 1, x is called the group inverse of a and denoted by a#.

Definition 2.3. [7] Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x, (ax)∗ = ax,

then x is called the pseudo core inverse of a. It is unique and denoted by a DO when the pseudo core inverse exists.

The smallest positive integer k satisfying above equations is called the pseudo core index of a. If a is
pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with the
Drazin index [7]. In particular, x is called the core inverse of a and denoted by a #O when k = 1 [1, 23].

The dual pseudo core inverse [7] was defined similarly.

Definition 2.4. [30] Let a ∈ R and m ∈N. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x, (ak)∗am+1x = (ak)∗am,

then x is called the m-weak group inverse (m-WGI) of a. When the m-WGI of a exists and is unique, it is denoted by
aWOm .
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The smallest positive integer k satisfying above equations is called the m-weak group index of a. If a
is m-weak group invertible, then a is Drazin invertible and the m-weak group index is equal to the Drazin
index.

The symbols R{1}, R{1,3}, R{1,4}, R†, RD, RWOm , R DO, R DO denote sets of all regular, {1, 3}-invertible, {1, 4}-
invertible, Moore-Penrose invertible, Drazin invertible, m-weak group invertible, pseudo core invertible
and dual pseudo core invertible elements in R, respectively.

Recall that x ∈ R is a minimal weak Drazin inverse [27] of a ∈ R if xak+1 = ak for some k ∈N and ax2 = x.
Many generalized inverses such as Drazin inverse, pseudo core inverse, m-WGI and DMP inverse [12] are
special cases of minimal weak Drazin inverses. So the following Lemmas 2.5 and 2.6 can efficiently simplify
some proofs.

Lemma 2.5. [7] Let a ∈ R. If there exist x ∈ R and k ∈N such that

xak+1 = ak, ax2 = x,

then we have

(1) ax = amxm for arbitrary positive integer m;

(2) xax = x;

(3) a is Drazin invertible, aD = xk+1ak and i(a) ≤ k.

Lemma 2.6. [29] Let a ∈ RD and k1, . . . , kn, s1, . . . , sn ∈N. If x1, . . . , xn are minimal weak Drazin inverses of a and
sn , 0, then

n∏
i=1

aki xsi
i = akxs

n, (1)

where k =
n∑

i=1
ki and s =

n∑
i=1

si .

Lemma 2.7. [7] Let a ∈ R and l, k ∈ N+ with l ⩾ k. Then a ∈ R DO with i(a) = k if and only if a ∈ RD with i(a) = k
and al

∈ R{1,3}. In this case, a DO = aDal(al)(1,3).

Applying Lemmas 2.6 and 2.7, we get the following corollary immediately.

Corollary 2.8. [20] Let a ∈ R DO with i(a) = k and l ∈N+ with l ⩾ k. Then

(a DO)m = (aD)mal(al)(1,3) for m ∈N+.

Lemma 2.9. [30] Let a ∈ R and m ∈N. If a ∈ R DO, then

aWOm = (a DO)m+1am. (2)

Proof. It follows by [30, Corollaries 4.3, 4.9 and 4.11].

Lemma 2.10. [9] Let a ∈ R. Then

(1) Ra = Ra∗a if and only if a ∈ R{1,3};

(2) aR = aa∗R if and only if a ∈ R{1,4}.
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3. MP-m-WGI in rings with involution

In this section, we introduce the MP-m-WGI in R using the MP inverse and the m-WGI, which generalize
the MP-m-WGI of a complex matrix.

Theorem 3.1. Let a ∈ R† ∩ R DO and m ∈N. The system of equations

xax = x, ax = (a DO)m+1am+1, xa = a†(a DO)m+1am+2 (3)

has a unique solution: x = a†aWOm a = a†aaWOm+1 = a†(a DO)m+1am+1.

Proof. First, by [30, Proposition 4.8], (aWOm )2a = aWOm+1 , then we have

a†aWOm a = a†a(aWOm )2a = a†aaWOm+1 .

In addition, it follows from Lemma 2.9 that

a†aWOm a
(2)
= a†(a DO)m+1am+1.

Take x = a†aWOm a. Then by Lemmas 2.5 and 2.6,

ax = aa†(a DO)m+1am+1 (1)
= aa†aaD(a DO)m+1am+1 = aaD(a DO)m+1am+1 (1)

= (a DO)m+1am+1,

xax = a†(a DO)m+1am+1(a DO)m+1am+1 = a†(a DO)m+1aa DOam+1 (1)
= a†(a DO)m+1am+1

and
xa = a†(a DO)m+1am+2.

Therefore, x = a†aWOm a = a†aaWOm+1 = a†(a DO)m+1am+1 is a solution to the system (3).
Next, we prove the uniqueness of the solution. Suppose that x is a solution to the system (3). Then by

Lemmas 2.5 and 2.9, we have

x = xax = (xa)x = a†(a DO)m+1am+2x = a†(a DO)m+1am+1(ax)

= a†(a DO)m+1am+1(a DO)m+1am+1 = a†(a DO)m+1am+1 (2)
= a†aWOm a.

Definition 3.2. Let a ∈ R† ∩ R DO and m ∈ N. The Moore-Penrose m-weak group inverse (MP-m-WGI for
short) of a is defined as

a†,WOm = a†aWOm a.

Similar to the cases of complex matrices in [19], many generalized inverses are special cases of MP-m-
WGI in R:

• For m = 1, a†,WO1 = a†aWOa is the MPWGI [24];

• For m = 2, a†,WO2 = a†aWO2 a is the MP-2-WGI (MPGGI) ;

• For m ⩾ i(a), aWOm = aD by [30], a†,WOm = a†aaD = a†,D is the MPD inverse;

• For m ⩾ 1 = i(a), aWOm = a# and a†,WOm = a†aa# is the dual core inverse [28];

The following proposition gives a expression for the MP-(m + 1)-WGI using the MP-m-WGI and the
MPD inverse in R.

Proposition 3.3. Let a ∈ R† ∩ R DO and m ∈N. Then

a†,WOm+1 = a†,Da†,WOm a.
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Proof. Since aDaaWOm+1
(1)
= a(aWOm+1 )2 = aWOm+1 , it follows that

a†,WOm+1 = a†aWOm+1 a = a†aDaaWOm+1 a

= a†aDaa†aaWOm+1 a = (a†aDa)(a†aaWOm+1 )a

= a†,Da†,WOm a.

The following result gives a expression of the MP-m-WGI in R in terms of {1}-inverse.

Proposition 3.4. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. Then (ak)∗ak+m+1
∈ R{1} and

a†,WOm = a†ak((ak)∗ak+m+1)−(ak)∗am+1.

Proof. First, since

(ak)∗ak+m+1(ak+m+1)(1,3)((ak)(1,3))∗(ak)∗ak+m+1

= (ak)∗(ak+m+1(ak+m+1)(1,3))∗(ak(ak)(1,3))∗ak+m+1

= (ak+m+1(ak+m+1)(1,3)ak)∗ak(ak)(1,3)ak+m+1 = (ak)∗ak+m+1,

it follows that (ak)∗ak+m+1
∈ R{1}.

Next, taking p = ((ak)∗ak+m+1)−(ak)∗ak+m+1, we have p2 = p and

Rp = R((ak)∗ak+m+1)−(ak)∗ak+m+1 = R(ak)∗ak+m+1

= R(ak)∗akam+1 = Rakam+1 = Rak,

where R(ak)∗ak = Rak is obtained from ak
∈ R{1,3} by Lemmas 2.7 and 2.10. So, ak = akp.

Therefore, by Lemma 2.5, we have

a†,WOm = a†aaWOm+1 = a†ak(aWOm+1 )k = a†akp(aWOm+1 )k

= a†ak((ak)∗ak+m+1)−(ak)∗ak+m+1(aWOm+1 )k

= a†ak((ak)∗ak+m+1)−(ak)∗am+2aWOm+1

= a†ak((ak)∗ak+m+1)−(ak)∗am+1.

The following result gives a expression of the MP-m-WGI in R in terms of Drazin inverse and {1, 3}-
inverse.

Proposition 3.5. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. If l ∈N+ with l ⩾ k, then

a†,WOm = a†(aD)m+1al(al)(1,3)am+1 = a†al(al+m+1)(1,3)am+1.

Proof. Since a ∈ R DO and l ⩾ k, it follows from Lemma 2.7 that al, al+m+1
∈ R{1,3}. Then by Corollary 2.8, we

have

aWOm
(2)
= (a DO)m+1am = (aD)m+1al(al)(1,3)am.

In addition, since

al(al)(1,3)R = al+m+1(al+m+1)(1,3)R,
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it follows that

aWOm = (aD)m+1al(al)(1,3)am = (aD)m+1al+m+1(al+m+1)(1,3)am = al(al+m+1)(1,3)am.

Therefore,

a†,WOm = a†aWOm a = a†(aD)m+1al(al)(1,3)am+1 = a†al(al+m+1)(1,3)am+1.

A new expression for a†,WOm can be given in terms of idempotents e = 1 − aa†,WOm and f = 1 − a†,WOm a.

Theorem 3.6. Let a ∈ R† ∩ R DO and m ∈ N. For elements e = 1 − aa†,WOm = 1 − aaWOm+1 and f = 1 − a†,WOm a, the
following statements hold:

(1) a ± e ∈ R−1 and a ± f ∈ R−1;

(2) a†,WOm = (1 − f )(a ± e)−1(1 − e).

Proof. (1) Let i(a) = k. First, we have

e = 1 − aa†,WOm = 1 − aa†aaWOm+1 = 1 − aaWOm+1 .

Notice that aWOm+1 is a minimal weak Drazin inverse of a. Then by [27, Theorem 3.10], we have a ± e ∈ R−1

with

(a + e)−1 = (a + (1 − aaWOm+1 ))−1 = aWOm+1 + (1 − aWOm+1 a)
k−1∑
i=0

(−a)i,

(a − e)−1 = (a − (1 − aaWOm+1 ))−1 = aWOm+1 − (1 − aWOm+1 a)
k−1∑
i=0

ai.

Now, recall the Jacobson’s lemma [10]: Let a, b ∈ R. If 1 − ab is invertible, then so is 1 − ba and
(1 − ba)−1 = 1 + b(1 − ab)−1a. Thus, by Jacobson’s lemma, a ± f ∈ R−1 with

(a + f )−1 = (a + (1 − a†,WOm a))−1

= 1 + (a†,WOm − 1)(a + (1 − aa†,WOm ))−1a

= 1 + (a†,WOm − 1)(a + e)−1a,

(a − f )−1 = (a − (1 − a†,WOm a))−1

= −1 + (a†,WOm + 1)(a − (1 − aa†,WOm ))−1a

= −1 + (a†,WOm + 1)(a − e)−1a.

(2) It is direct to verify that

(1 − f )(a + e)−1(1 − e)

= a†,WOm a(aWOm+1 + (1 − aWOm+1 a)
k−1∑
i=0

(−a)i)aa†,WOm

= a†aaWOm+1 a(aWOm+1 + (1 − aWOm+1 a)
k−1∑
i=0

(−a)i)aaWOm+1

= a†aaWOm+1 aaWOm+1 aaWOm+1

= a†aaWOm+1 = a†,WOm ,

where aWOm+1 aaWOm+1 = aWOm+1 is obtained from Lemma 2.5.
Similarly, it can be verified that (1 − f )(a − e)−1(1 − e) = a†,WOm .



S. Xu et al. / Filomat 39:9 (2025), 2929–2940 2935

Theorem 3.1 indicates that a†,WOm is a solution to the system (3). Motivated by [19, Corollary 2.2, Theorem
2.2], the following theorem shows that a†,WOm is also a solution to the following systems of equations.

Theorem 3.7. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. Then the following statements are equivalent:

(1) x = a†,WOm ;

(2) xax = x, xa = a†(aD)m+1al(al)(1,3)am+2 and ax = (aD)m+1al(al)(1,3)am+1 for l ∈N+ with l ⩾ k;

(3) xax = x, xa = a†al(al+m+1)(1,3)am+2 and ax = al(al+m+1)(1,3)am+1 for l ∈N+ with l ⩾ k;

(4) xax = x, axa = (a DO)m+1am+2, ax = (a DO)m+1am+1, xa = a†(a DO)m+1am+2;

(5) a†ax = x, ax = (a DO)m+1am+1;

(6) a†ax = x, a†ax = a†(a DO)m+1am+1;

(7) xa†a = x, xa† = a†(a DO)m+1am+1a†;

(8) x(a DO)m+1am+1 = x, xa = a†(a DO)m+1am+2;

(9) a†(a DO)m+1am+2x = x, ax = (a DO)m+1am+1.

Proof. (1)⇔ (2)⇔ (3) follows by Theorem 3.1 and Proposition 3.5.
(1) ⇒ (4) : Suppose x = a†,WOm . Then by Theorem 3.1, x satisfies xax = x, ax = (a DO)m+1am+1, xa =

a†(a DO)m+1am+2, and thus axa = (a DO)m+1am+2.
(4)⇒ (1) : It is obvious by Theorem 3.1.
(4)⇒ (5) : Since ax = (a DO)m+1am+1, it follows that a†ax = a†(a DO)m+1am+1 = a†,WOm = x.
(5)⇒ (6) : Obviously.
(6)⇒ (1) : Suppose a†ax = x and a†ax = a†(a DO)m+1am+1. Then

x = a†ax = a†(a DO)m+1am+1 = a†,WOm .

The rest part can be proved similarly.

Remark 3.8. Recall from [23, Theorem 2.8] that Ra† = Ra∗ and a†R = a∗R. So, we obtain more equivalent
characterizations for x = a†,WOm in Theorem 3.7 immediately. For example:

(6
′

) a†ax = x, a∗ax = a∗(a DO)m+1am+1;

(7
′

) xa†a = x, xa∗ = a†(a DO)m+1am+1a∗.

4. Relationships with other generalized inverses

In this section, we wish to investigate the relationships between the MP-m-WGI and other generalized
inverses in R. Before that, recall the following two known definitions.

Definition 4.1. [14] Let a, d, x ∈ R. Then x is the inverse of a along d if

xad = d = dax and Rx ⊆ Rd, xR ⊆ dR.

Definition 4.2. [4] Let a, b, c, x ∈ R. Then x is called a (b, c)-inverse of a if

x ∈ bRx ∩ xRc and xab = b, cax = x.

Actually, [4, Proposition 6.1] provided the following equivalent characterization for (b, c)-inverse.

Lemma 4.3. [4] Let a, b, c, x ∈ R. Then x is a (b, c)-inverse of a if and only if

xax = x, xR = bR, Rx = Rc.
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As proved in [4], the inverse along an element is a particular case of (b, c)-inverse when b = c. So
according to Lemma 4.3, we obtain the following immediately.

Lemma 4.4. Let a, d, x ∈ R. Then x is the inverse of a along d if and only if

xax = x, xR = dR, Rx = Rd.

The right annihilator of a is denoted by a◦ and is defined by a◦ = {x ∈ R : ax = 0}. Similarly, the left
annihilator of a is the set ◦a = {x ∈ R : xa = 0}. The following theorem reveals the relationship between the
MP-m-WGI and the (b, c)-inverse in R.

Theorem 4.5. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. Then the following statements are equivalent:

(1) x = a†,WOm ;

(2) x is the (a†ak, (ak)∗am+1)-inverse of a;

(3) xax = x, xR = a†akR, Rx = R(ak)∗am+1;

(4) xax = x, ◦x = ◦(a†ak), x◦ = ((ak)∗am+1)◦.

Proof. (2)⇔ (3) follows by Lemma 4.3.
(1)⇒ (3) : Suppose x = a†,WOm . Then by Theorem 3.1, xax = x.
Recall that if y ∈ R is a minimal weak Drazin inverse of a, then yR = akR and Ry∗ = R(ak)∗ by [27]. Since

aWOm+1 and a DO are both minimal weak Drazin inverses of a, it follows that aWOm+1 R = akR and R(a DO)∗ = R(ak)∗.
Then we have

xR = a†,WOm R = a†aaWOm+1 R = a†aakR = a†akR

and

Rx = Ra†,WOm = Ra†(a DO)m+1am+1 = R(a DO)m+1am+1

= Raa DOam+1 = R(a DO)∗a∗am+1 = R(ak)∗a∗am+1 = R(ak)∗am+1.

(3) ⇒ (1) : Suppose xax = x, xR = a†akR and Rx = R(ak)∗am+1. From the above proof, we have a†,WOm

satisfies these three equations. Then by the uniqueness of (b, c)-inverse [4], x = a†,WOm .
(3)⇔ (4) : First, we get that x is regular by xax = x. In addition,

(ak)∗am+1(aD)m+1((ak)(1,3))∗(ak)∗am+1

= (ak)∗aaD(ak(ak)(1,3))∗am+1

= (ak)∗a(aDak(ak)(1,3))am+1

= (ak)∗aa DOam+1 = (ak)∗am+1,

which implies that (ak)∗am+1 is regular. Also, since a†ak(aD)kaa†ak = a†ak(aD)kak = a†ak, it follows that a†ak is
regular. Thus, by [23, Lemmas 2.5 and 2.6], the proof is completed.

Inspired by Theorem 4.5, the following results provide the relationship between the idempotent aa†,WOm

and the (b, c)-inverse, as well as the idempotent a†,WOm a and the (b, c)-inverse.

Proposition 4.6. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. Then the following statements are equivalent:

(1) x = aa†,WOm ;

(2) x is the (ak, (ak)∗am+1)-inverse of 1;

(3) x2 = x, xR = akR, Rx = R(ak)∗am+1;
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(4) x2 = x, ◦x = ◦(ak), x◦ = ((ak)∗am+1)◦.

Proof. The proof is similar to Theorem 4.5.

Proposition 4.7. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. Then the following statements are equivalent:

(1) x = a†,WOm a;

(2) x is the (a†ak, (ak)∗am+2)-inverse of 1;

(3) x2 = x, xR = a†akR, Rx = R(ak)∗am+2;

(4) x2 = x, ◦x = ◦(a†ak), x◦ = ((ak)∗am+2)◦.

Proof. The proof is similar to Theorem 4.5.

Notice that a ∈ R† ∩ R DO in Theorem 4.5, Furthermore, if a ∈ R† ∩ R DO
∩ R DO, we obtain the following

relationship between the MP-m-WGI and the inverse along an element in R.

Theorem 4.8. Let a ∈ R† ∩ R DO
∩ R DO with i(a) = k and m ∈N. Then the following statements are equivalent:

(1) x = a†,WOm ;

(2) x is the inverse of a along a†ak(ak)∗am+1;

(3) xax = x, xR = a†ak(ak)∗am+1R, Rx = Ra†ak(ak)∗am+1;

(4) xax = x, ◦x = ◦(a†ak(ak)∗am+1), x◦ = (a†ak(ak)∗am+1)◦.

Proof. (2)⇔ (3) follows by Lemma 4.4.
(1)⇒ (3) : Suppose x = a†,WOm . Then by Theorem 3.1, xax = x.
Since a ∈ R DO

∩ R DO, it follows that ak
∈ R{1,3} ∩ R{1,4} by Lemma 2.7. Moreover, by Lemma 2.10, we have

Rak = R(ak)∗ak and Rak(ak)∗ = R(ak)∗. Thus,

a†ak(ak)∗am+1R = a†ak(ak)∗R = a†akR

and

Ra†ak(ak)∗am+1 = Rak(ak)∗am+1 = R(ak)∗am+1.

Thus, by Theorem 4.5, xR = a†ak(ak)∗am+1R and Rx = Ra†ak(ak)∗am+1.
(3) ⇒ (1) : Suppose xax = x, xR = a†ak(ak)∗am+1R, Rx = Ra†ak(ak)∗am+1. From the above proof, we have

a†,WOm satisfies these three equations. Thus, x = a†,WOm follows by the uniqueness of the inverse along an
element [14] .

(3)⇔ (4) : First, x is regular by xax = x. Moreover, it is direct to verify that

a†ak(ak)∗am+1((aD)m+1((ak)(1,3))∗(ak)(1,4)a)a†ak(ak)∗am+1 = a†ak(ak)∗am+1,

which implies that a†ak(ak)∗am+1 is regular. Thus, by [23, Lemmas 2.5 and 2.6], the proof is completed.

Let A be a complex matrix with index k. Recall that A is called k-EP [11] if it satisfies A†Ak = AkA†. Some
equivalent characterizations of k-EP matrices are presented in [5]. In addition, Zou et al.[31] proved that
A is k-EP if and only if A†Ak+1 = Ak = Ak+1A†. As one side case of k-EP matrix, it was proved in [26] that
A is left k-EP (or left power-EP) if and only if A†Ak+1 = Ak. Now we have the following results in the ring
context.

Lemma 4.9. Let a ∈ R† ∩ RD with i(a) = k. If x, y ∈ R are minimal weak Drazin inverses of a, then a†ax = y if and
only if a†ak+1 = ak and x = y.
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Proof. Suppose that a†ax = y. Then a†ak+1 = a†aak = a†axak+1 = yak+1 = ak. In addition, since ax = aa†ax = ay,

it follows that x
(1)
= aDax = aDay = y.

Conversely, suppose that a†ak+1 = ak and x = y. Then by Lemma 2.5, we have a†ax = a†ak+1xk+1 = akxk+1 =
x = y.

Applying Lemma 4.9, some equivalent characterizations are given in the following proposition when
the MP-m-WGI coincides with the Drazin inverse.

Proposition 4.10. Let a ∈ R† ∩ R DO with i(a) = k and m,n ∈N with m + 1 < n. Then the following statements are
equivalent:

(1) a†,WOm = aD;

(2) a†ak+1 = ak and aWOm+1 = aD;

(3) a†,D = aD and aWOm+1 a = aaWOm+1 ;

(4) a†,D = aWOm+1 ;

(5) a†,WOm = aWOn ;

(6) a†,WOn−1 = aWOm+1 .

In this case, a†,WOl = aD for l ∈N with l ⩾ m.

Proof. (1)⇔ (2)⇔ (4) follows by Lemma 4.9.
(2)⇔ (3) : By Lemma 4.9, we get that a†,D = a†aaD = aD is equivalent to a†ak+1 = ak. Then by [30, Theorem

4.13], aWOm+1 = aD is equivalent to aWOm+1 a = aaWOm+1 .
(1) ⇔ (5) : By [30, Theorem 4.13], aWOm+1 = aD is equivalent to aWOm+1 = aWOn , which implies that a†,WOm = aD

is equivalent to a†,WOm = aWOn by Lemma 4.9.
(5) ⇔ (6) : It follows from Lemma 4.9 that a†,WOm = a†aaWOm+1 = aWOn is equivalent to aWOm+1 = aWOn and

a†ak+1 = ak. Similarly, aWOm+1 = aWOn and a†ak+1 = ak is also equivalent to a†,WOn−1 = a†aaWOn = aWOm+1 . Thus, the
proof is completed.

In this case, since aWOm+1 = aD, it follows from [30, Proposition 4.8] that aWOl+1 = aD for l ∈ N with l ⩾ m.
Thus, a†,WOl = aD for l ∈Nwith l ⩾ m.

Remark 4.11. For a complex matrix A with index k, it follows from Proposition 4.10 that A†,WOm = AD if and only
if A is left k-EP (or left power-EP) and AWOm+1 = AD. More equivalent conditions are omitted in the complex matrix
context.

Recall that an element a ∈ R is called ∗-DMP [21] with index k if k is the smallest positive integer such
that (ak)# and (ak)† exist with (ak)# = (ak)†. The following proposition presents conditions under which the
MP-m-WGI coincides with the pseudo core inverse.

Proposition 4.12. Let a ∈ R† ∩ R DO with i(a) = k and m ∈N. Then the following statements are equivalent:

(1) a†,WOm = a DO;

(2) a is ∗-DMP;

(3) a†aa DO = aWOn for some positive integer n.

Proof. (1) ⇒ (2) : Suppose a†,WOm = a DO. First, by Lemma 4.9, a†,WOm = a†aaWOm+1 = a DO if and only if a†ak+1 = ak

and aWOm+1 = a DO. Then by [30, Corollary 4.14], aWOm+1 = a DO if and only if a DO = aD. Thus, a is ∗-DMP by [8,
Lemma 2.3].

(2) ⇒ (1) : Suppose a is ∗-DMP. Then by [8, Lemma 2.3], a DO = aD, which is equivalent to a DO = aWOm+1 by
[30, Corollary 4.14]. Moreover, since a ∈ R† and a is ∗-DMP, it follows that a is k-EP by [31, Theorem 3.19],
which implies that a†ak+1 = ak. Thus, a†,WOm = a DO.

(2)⇔ (3) is similar to (1)⇔ (2).
The proof is completed.
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From the proof of Proposition 4.12, we know that a†,WOm = a DO(or a is ∗-DMP) can imply a†,WOm = aD . So it
is natural to consider whether they are equivalent. However, the following example shows that a†,WOm = aD

may not imply a†,WOm = a DO(or a is ∗-DMP).

Example 4.13. Let R = M4(Z) and take the involution as the transpose, where Z stands for the set of all integers.

Set a =


1 0 0 1
0 1 0 0
0 0 0 1
0 0 0 0

 ∈ R with i(a) = 2. By computation, we have

a† =


1 0 −1 0
0 1 0 0
0 0 0 0
0 0 1 0

 , aD =


1 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

 ,

a DO =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , aWO =


1 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0

 .
Thus, a†a3 = a2 and aWO = aD, which implies that a†,WOm = aD for m ∈N by Proposition 4.10. However, since a DO , aD,
it follows that a is not ∗-DMP by [8, Lemma 2.3].
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