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On 2-absorbing ideals of MV-algebras
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Abstract. The concept of 2-absorbing ideals in MV-algebras, which generalizes the notion of prime ideals,
is introduced in this paper. We present several results related to 2-absorbing ideals, provide examples,
and explore some of properties. One notable result is that the intersection of two prime ideals, which is
not necessarily a prime ideal, is shown to be a 2-absorbing ideal. The number of minimal prime ideals
contained in a 2-absorbing ideal under different conditions are computed. Furthermore, we demonstrate
that if every 2-absorbing ideal is maximal, then the MV-algebra can have at most one prime ideal. Finally,
these new ideals are used to classify the ideals of MV-algebra.

1. Introduction

MV-algebras were introduced and studied by Chang in 1958 as an algebraic counterpart of the Luka-
siewicz infinite valued propositional logic [3, 4]. For further results on MV-algebras see [3, 5, 7, 13], and for
a deeper understanding of ideals, we refer to [6, 10, 11]. Chang also introduced the concept of prime ideals
in MV-algebras, which play a crucial role since every proper ideal can be expressed as an intersection of
prime ideals, including itself [13]. Studying ideals is important for a better understanding of MV-algebras,
and for this purpose, various ideals have been introduced in this structure. This motivated us to introduce
a new ideal, study it, and obtain a classification for these ideals. Various generalizations of prime ideals
have since been studied, and in this paper, we introduce the concept of 2-absorbing ideals. The aim of
this article is to define 2-absorbing ideals and demonstrate their distinctiveness through examples. It is
known that the intersection of two prime ideals is not necessarily prime. In this paper, it is proved that
their intersection is 2-absorbing. Moreover, it is shown that this result does not hold for the intersection
of three prime ideals. We examine the connection of these ideals with other ideals, and we also represent
this connection in the form of a diagram. By utilizing these ideals, the number of minimal prime ideals
contained within a 2-absorbing ideal is investigated. It is established that for every 2-absorbing ideal, the
maximum number of associated minimal prime ideals is two. Additionally, if a 2-absorbing ideal is not a
prime ideal, it will also be found to have exactly two minimal prime ideals. Furthermore, we demonstrate
that if the collection of 2-absorbing ideals coincides with the collection of maximal ideals in an MV-algebra,
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then that algebra can have at most one prime ideal. When considering the case where A/I is locally finite,
it is confirmed that I is a 2-absorbing ideal, while an example is illustrated to show that the converse does
not generally hold. Additionally, we show that every proper ideal can be expressed as an intersection of
2-absorbing ideals that contain it. 2-absorbing ideals in MV-chains are also examined, and it is proved that
every proper ideal in this context is indeed a 2-absorbing ideal. Finally, the conditions under which I/S is
a 2-absorbing ideal in A/S are studied.

2. Preliminaries

We recollect some definitions and results which will be used in the sequel:

Definition 2.1. ([4]) An MV-algebra is a structure (A,⊕, ∗, 0) of type (2, 1, 0) such that the following axioms hold,
for each a, b ∈ A:
(MV1) (A,⊕, 0) is an abelian monoid;
(MV2) (a∗)∗ = a;
(MV3) 0∗ ⊕ a = 0∗;
(MV4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

Define 1 = 0∗ and the auxiliary operation ⊙which are as follows:

a ⊙ b = (a∗ ⊕ b∗)∗.

Two operations ∨ and ∧ are defined on A :

a ∨ b = a ⊕ (a∗ ⊙ b) = b ⊕ (a ⊙ b∗) and a ∧ b = a ⊙ (a∗ ⊕ b) = b ⊙ (b∗ ⊕ a).

Also, for any two elements a, b ∈ A, a ≤ b iff a∗⊕b = 1 iff a⊙b∗ = 0.Obviously, ≤ is a partial order on A which
is called the natural order on A.We say that an MV-algebra A is an MV-chain if it is linearly ordered relative
to natural order. Boolean algebras are just the MV-algebras obeying the additional equation a ⊕ a = a, for
all a ∈ A.
The element a ∈M is said to have order n and is written as ord(a) = n if n is the smallest natural number for
which na = 1. We say that the element a has a finite order and write ord(a) < ∞. An MV-algebra A is locally
finite if every nonzero element of A has finite order.
Throughout this paper, A is an MV-algebra.

Remark 2.2. ([13]) If A is locally finite, then A is a chain.

Theorem 2.3. ([13]) If a, a1, a2, ..., an are elements of A, then the following hold:
(i) a ∧ (a1 ⊕ a2 ⊕ ... ⊕ an) ≤ (a ∧ a1) ⊕ (a ∧ a2) ⊕ ... ⊕ (a ∧ an).
(ii) a ∧ (a1 ∨ a2 ∨ ... ∨ an) = (a ∧ a1) ∨ ... ∨ (a ∧ an).

Definition 2.4. ([5, 7, 11, 13]) An ideal of A is a nonempty subset I of A which is closed under ⊕ and such that if
b ∈ I, a ∈ A and a ≤ b, then a ∈ I.
We denote the set of all ideals of A by Id(A).
A proper ideal I of A is called:
• A prime ideal, if a ∧ b ∈ I implies that a ∈ I or b ∈ I, for each a, b ∈ A.
We denote the set of all prime ideals of A by Spec(A).
• A primary ideal, if a ⊙ b ∈ I, then there exists n ∈N such that an

∈ I or bn
∈ I, for each a, b ∈ A.

• An obstinate ideal, if a, b < I imply a ⊙ b∗ ∈ I and b ⊙ a∗ ∈ I, for all a, b ∈ A.
• A quasi implicative ideal, if for any a ∈ A such that an

∈ I for some n ≥ 1, then a ∈ I.
• An implicative ideal, if for any a, b, c ∈ A such that c ⊙ (b∗ ⊙ a∗) ∈ I and b ⊙ a∗ ∈ I, then c ⊙ a∗ ∈ I.
• A Boolean ideal, if a ∧ a∗ ∈ I, for all a ∈ A.
• A maximal ideal if and only if whenever J is an ideal such that I ⊆ J ⊆ A, then either J = I or J = A.
• A prime ideal P of A is called a minimal prime ideal of I whenever:
(i) I ⊆ P;
(ii) If there exists Q ∈ Spec(A) such that I ⊆ Q ⊆ P, then P = Q.
We denote the set of all minimal prime ideals of I by Min(I).
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Theorem 2.5. ([7]) (i) Let I be an obstinate ideal of A. Then I is a maximal ideal of A.
(ii) If I is an implicative and maximal ideal, then I is an obstinate ideal.

Remark 2.6. ([13]) If I is an ideal of A, then a ⊕ b ∈ I iff a ∨ b ∈ I.

Lemma 2.7. ([13]) (i) Let X ⊆ A. Denote by (X] the ideal generated by X. Then we have
(X] = {a ∈ A | a ⩽ x1 ⊕ x2 ⊕ ... ⊕ xn, f or some n ∈N and x1, ..., xn ∈ X}.
In particular, (a] = {x ∈ A | x ⩽ na, f or some n ∈N}.
(ii) For I, J ∈ Id(A), we put

I ∧ J = I ∩ J I ∨ J = (I ∪ J] = {x ∈ A | x ≤ a ⊕ b, f or some a ∈ I and b ∈ J}.

(iii) If a, b ∈ A, then (a] ∩ (b] = (a ∧ b] and (a] ∨ (b] = (a ⊕ b].
For I ∈ Id(A) and a ∈ A \ I we denote by I(a) = I ∨ (a] = (I ∪ {a}].
For I(a) we have the next characterization:
I(a) = {x ∈ A | x ≤ y ⊕ na, for some y ∈ I and integer n ≥ 0}.

Theorem 2.8. ([13]) For any A, the following are equivalent:
(i) A is an MV-chain;
(ii) Any proper ideal of A is prime;
(iii) {0} is a prime ideal;
(iv) Spec(A) is linearly ordered.

Theorem 2.9. ([13]) Every proper ideal of A is contained in a maximal ideal of A.

Theorem 2.10. ([13]) Let I ∈ Id(A). Then I = ∩{P ∈ Spec(A) | I ⊆ P}.

Definition 2.11. ([13]) Let A and B be MV-algebras. A function f : A −→ B is a morphism of MV-algebras if and
only if it satisfies the following conditions, for every a, b ∈ A:
(i) f (0) = 0;
(ii) f (a ⊕ b) = f (a) ⊕ f (b);
(iii) f (a∗) = ( f (a))∗.

Definition 2.12. ([9]) Let X be a nonempty subset of A. AnnA(X) is the annihilator of X defined by: AnnA(X) =
{a ∈ A | a ∧ x = 0,∀x ∈ X}

Definition 2.13. ([2]) Let X be a nonempty subset of A. For an ideal I of A, the set

(I : X) = {a ∈ A | a ∧ x ∈ I, for all x ∈ X}.

• (I : X) is clearly an ideal of A and if I = 0, then (0 : X) = Ann(X).

Theorem 2.14. ([2]) Let I be a proper ideal of A and P ∈ Spec(A) such that I ⊆ P. Then there exists P∗ ∈ Min(I)
such that P∗ ⊆ P.

Definition 2.15. ([13]) A nonempty subset S of A is called ∧-closed system in A if 1 ∈ S and a, b ∈ S imply that
a ∧ b ∈ S.

We denote by S(A) the set of all ∧-closed systems of A (clearly 1, A ∈ S(A)). For S ∈ S(A) in A, we
consider the relation θS defined by:

(a, b) ∈ θS if and only if there exists e ∈ S ∩ B(A) such that a ∧ e = b ∧ e.

Lemma 2.16. ([13]) θS is a congruence on A.

For a ∈ A,we denote by a/S the equivalence class of a relative to θS and A/S = A/θS.
By PS : A→ A/S,we denote the canonical map defined by PS(a) = a/S, for every a ∈ A. Clearly, 0 = 0/S, 1 =
1/S in A/S and for every a, b ∈ A,



A. H. Movahed et al. / Filomat 39:9 (2025), 2941–2951 2944

a/S ⊕ b/S = (a ⊕ b)/S and (a/S)∗ = a∗/S.

So, PS is an onto morphism of MV-algebras ([13]).

Theorem 2.17. ([13]) For a proper ideal P ∈ Id(A), A/P is a chain if and only if P ∈ Spec(A).

Definition 2.18. ([1]) Let C(X) be the set of all continuous functions on topological space X to the real interval [0, 1].
For every f , 1 ∈ C(X), define

( f ⊕ 1)(x) = f (x) ⊕ 1(x) = min{1, f (x) + 1(x)}, for all x ∈ X;
f ∗(x) = ( f (x))∗ = 1 − f (x), for all x ∈ X;

0(x) = 0, for all x ∈ X.

The structure (C(X),⊕, ∗, 0) is called the MV-algebra of continuous functions.

Let f , 1 ∈ C(X). Define

Z( f ) = {x ∈ X : f (x) = 0}

It is clear Z( f ∧ 1) = Z( f ) ∪ Z(1) and ( f ∧ 1)(x) = min{ f (x), 1(x)}, for every x ∈ X.

Theorem 2.19. ([1]) Let X be a topological space with x ∈ X. Then Mx = { f ∈ C(X) : f (x) = 0} is a maximal ideal
of C(X).

3. A generalization of prime ideals in MV-algebras

In this section, we introduce the concept of a 2-absorbing ideal and explore its relationship with prime
ideals. Several properties of these ideals are stated and proved, and an equivalent definition is provided.

Definition 3.1. A proper ideal I of A is called a 2-absorbing ideal if a, b, c ∈ A such that a ∧ b ∧ c ∈ I, then a ∧ b ∈ I
or a ∧ c ∈ I or b ∧ c ∈ I.

Example 3.2. (i) Let A = {0, a, b, c, d, 1}. Where 0 < a, b < c < 1, 0 < b < d < 1, with the diagram below (see Figure
1):

1

c d

ba

0

Figure 1: A nonlinearly ordered

Define ⊕, ⊙ and ∗ as follows:

⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1
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∗ 0 a b c d 1
1 d c b a 0

Then (A,⊕, ∗, 0) is an MV-algebra ([12]). I0 = {0}, I1 = {0, a}, I2 = {0, b, d}, and I4 = A are ideals. I0, I1 and I2 are
2-absorbing ideals. Since I4 is not proper, so it is not a 2-absorbing ideal.
(ii) Let X = R. Obviously, I = {k ∈ C(X) : (1, 5) ⊆ Z(k)} is an ideal of C(X). Put

f (x) =


−x + 1 x ∈ (0, 1)
x − 3 x ∈ (3, 4)
1 x ∈ (−∞, 0] ∪ [4,∞)
0 x ∈ [1, 3]

1(x) =


x − 5 x ∈ (5, 6)
−x + 4 x ∈ (3, 4)
1 x ∈ (−∞, 3] ∪ [6,∞)
0 x ∈ [4, 5]

h(x) =


x − 4 x ∈ (4, 5)
−x + 3 x ∈ (2, 3)
1 x ∈ (−∞, 2] ∪ [5,∞)
0 x ∈ [3, 4]

Now, we have Z( f ∧ 1 ∧ h) = [1, 5]. Thus f ∧ 1 ∧ h ∈ I.
On the other hand, Z( f ∧ 1) = [1, 3] ∪ [4, 5],Z( f ∧ h) = [1, 4] and Z(1 ∧ h) = [3, 5].
It is clear that f ∧ 1 < I, f ∧ h < I and 1 ∧ h < I. Hence I is not a 2-absorbing ideal of C(X).
(iii) Let X = R. Put

f (x) =


0 x ∈ (−∞, 0]
x x ∈ (0, 1)
1 x ∈ [1,∞)

1(x) =


1 x ∈ (−∞, 0]
0 x ∈ [1,∞)
−x + 1 x ∈ (0, 1)

h(x) =


1 x ∈ (−∞,−1] ∪ [2,∞)
0 x ∈ [0, 1]
−x x ∈ (−1, 0)
x − 1 x ∈ (1, 2)

Obviously, f ∧ 1 ∧ h = 0 but f ∧ 1, 1 ∧ h and f ∧ h do not belong to the zero ideal of C(X). The zero ideal is not a
2-absorbing ideal.

Proposition 3.3. (i) If P is a prime ideal of A, then P is a 2-absorbing ideal.
(ii) Let I be a primary ideal and a quasi implicative ideal of A. Then I is a 2-absorbing ideal.
(iii) Let I be a proper ideal of A. Then I =

⋂
{P | P is a 2-absorbing ideal and I ⊆ P}.

(iv) If A/I is locally finite, then I is a 2-absorbing ideal.
(v) If A \ {1} is an ideal of A, then A \ {1} is a 2-absorbing ideal.

Proof. (i) Suppose a, b, c ∈ A with a ∧ b ∧ c ∈ P and a ∧ c, b ∧ c < P. Then (a ∧ b) ∧ c ∈ P. Since P is a prime
ideal, so a ∧ b ∈ P or c ∈ P. If a ∧ b ∈ P, then we are done. If c ∈ P, since a ∧ c, b ∧ c ≤ c and P is an ideal, so
a ∧ c, b ∧ c ∈ P,which is a contradiction.
(ii) Suppose a ∧ b ∧ c ∈ I, for some a, b, c ∈ A. Obviously, (a ∧ b) ⊙ c ∈ I and since I is primary, so there exists
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n ∈N such that (a∧ b)n
∈ I or cn

∈ I. If (a∧ b)n < I, for all n ∈N, then a∧ b < I. Now, we show that a∧ c ∈ I or
b ∧ c ∈ I. As cn

∈ I and I is a quasi implicative ideal, hence c ∈ I. By ideal property, we deduce that a ∧ c ∈ I
and b ∧ c ∈ I. Thus I is a 2-absorbing ideal.
(iii) Always, I ⊆

⋂
{P | P is a 2-absorbing ideal and I ⊆ P}. By (i), we have

{P | P ∈ Spec(A) and I ⊆ P} ⊆ {P | P is a 2-absorbing ideal and I ⊆ P}.

Then ⋂
{P | P is a 2-absorbing ideal and I ⊆ P} ⊆

⋂
{P | P ∈ Spec(A) and I ⊆ P}.

It follows from Theorem 2.10 that
⋂
{P | P is a 2-absorbing ideal and I ⊆ P} ⊆ I. Therefore

I =
⋂
{P | P is a 2-absorbing ideal and I ⊆ P}.

(iv) By Remark 2.2 and Theorem 2.17, it is clear.
(v) Suppose a ∧ b ∧ c ∈ A \ {1} for some a, b, c ∈ A. By contrary, assume that a ∧ b = 1, a ∧ c = 1 and b ∧ c = 1.
Since a∧ b ≤ a∨ b, so a∨ b = 1. By hypothesis 1 , (a∧ b)∧ c = 1∧ c = (a∨ b)∧ c = (a∧ c)∨ (b∧ c) = 1∨ 1 = 1,
which is a contradiction.

Corollary 3.4. (i) Every maximal ideal of A is a 2-absorbing ideal.
(ii) If I is an obstinate ideal of A, then I is a 2-absorbing ideal.
(iii) Let A be an MV-chain. Then every proper ideal of A is a 2-absorbing ideal.
(iv) Let I be an implicative and maximal ideal. Then I is a 2-absorbing ideal.

Remark 3.5. (i) In general, the converse of Proposition 3.3 (i), is not true. In Example 3.2 (i), I0 is a 2-absorbing
ideal, but is not a prime ideal.
(ii) In Example 3.2 (i), I0 is a 2-absorbing ideal but is not a maximal ideal.
(iii) It is easy to verify that I1 in Example 3.2 (i), is a 2-absorbing ideal; however, it is not an obstinate ideal.
(iv) In Example 3.2 (i), I0 is a 2-absorbing ideal, but is not a primary ideal. Because a ⊙ d = 0 ∈ I0, but an, dn < I0,
for each n ∈N.
(v) If every proper ideal of A is a 2-absorbing ideal, then A is not necessarily a chain. This is illustrated by Example
3.2 (i).
(vi) In general, the converse of Proposition 3.3 (iv), is not true. In Example 3.2, I0 is a 2-absorbing ideal, but A/I0 is
not a chain. Hence A/I0 is not locally finite.
(vii) The zero ideal is generally not a 2-absorbing ideal, as shown in Example 3.2 (iii). However, by Corollary 3.4, we
can conclude that if A is an MV-chain, then the zero ideal is a 2-absorbing ideal.
(viii) In Example 3.2 (i), I0 is a 2-absorbing ideal, but is not an implicative ideal. Because 1 ⊙ (b∗ ⊙ c∗) = 0 ∈ I0 and
b ⊙ c∗ = 0 ∈ I0, but 1 ⊙ c∗ < I0.

We recall that intersection two prime ideals is not necessarily a prime ideal. In the following proposition,
we show that intersection two prime ideals is always a 2-absorbing ideal.

Proposition 3.6. If P and Q are prime ideals of A, then P ∩Q is a 2-absorbing ideal.

Proof. Assume that a, b, c ∈ A whenever a∧ b∧ c ∈ P∩Q and a∧ c, b∧ c < P∩Q.We have (a∧ b)∧ c ∈ P∩Q
hence (a ∧ b) ∧ c ∈ P and (a ∧ b) ∧ c ∈ Q. Since P and Q are prime ideal, so a ∧ b ∈ P or c ∈ P and a ∧ b ∈ Q or
c ∈ Q.We have four cases:
Case 1: If a ∧ b ∈ P and a ∧ b ∈ Q, then a ∧ b ∈ P ∩Q.
Case 2: Let a ∧ b ∈ P and c ∈ Q. Then a ∈ P or b ∈ P. Suppose that a ∈ P, hence a ∧ c ∈ P. Since c ∈ Q, so
a ∧ c ∈ Q. Therefore a ∧ c ∈ P ∩Q, which is a contradiction. If b ∈ P and c ∈ Q, then b ∧ c ∈ P and b ∧ c ∈ Q.
Hence b ∧ c ∈ P ∩Q,which is a contradiction.
Case 3: This case is similar to case 2.
Case 4: If c ∈ P and c ∈ Q, then c ∈ P ∩Q. Furthermore, a ∧ c, b ∧ c ∈ P ∩Q, which is a contradiction.
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Remark 3.7. (i) The converse of the previous proposition is not generally true. For instance, in Example 3.2 (i),
I0 ∩ I1 is a 2-absorbing ideal, while I0 is not prime.
(ii) Both I1 and I2 in Example 3.2 (i), are prime ideals, and I1 ∩ I2 = {0}. However, the intersection is 2-absorbing but
not prime.
(iii) The intersection of three prime ideals is not necessarily 2-absorbing. This can be demonstrated in the example
below.

Example 3.8. Let X = R. By Theorem 2.19, we have M1,M2 and M3 are maximal ideals of C(X). It follows from
Propositions 3.3 and 3.6 that M1∩M2 and M3 are 2-absorbing ideals of C(X).We want to show that (M1∩M2)∩M3 is
not a 2-absorbing ideal. So it can be conclude that the intersection of 2-absorbing ideals is not necessarily a 2-absorbing
ideal.
Obviously, (M1 ∩M2) ∩M3 = {k ∈ C(X) : {1, 2, 3} ⊆ Z(k)}. Put

f (x) =


1 x ∈ (−∞, 0] ∪ [2,∞)
−x + 1 x ∈ (0, 1]
x − 1 x ∈ (1, 2)

1(x) =


1 x ∈ (−∞, 1] ∪ [3,∞)
−x + 2 x ∈ (1, 2]
x − 2 x ∈ (2, 3)

h(x) =


1 x ∈ (−∞, 2] ∪ [4,∞)
−x + 3 x ∈ (2, 3)
x − 3 x ∈ [3, 4)

Obviously, Z( f ∧ 1 ∧ h) = {1, 2, 3} then f ∧ 1 ∧ h ∈ (M1 ∩M2) ∩M3. But Z( f ∧ 1) = {1, 2},Z(1 ∧ h) = {2, 3} and
Z( f ∧ h) = {1, 3}, so f ∧ 1, 1 ∧ h and f ∧ h do not belong to (M1 ∩M2) ∩M3. Therefore (M1 ∩M2) ∩M3 is not a
2-absorbing ideal.

Remark 3.9. Intersection (meet) and join of any family of 2-absorbing ideals are not necessarily 2-absorbing ideals.
We can see in Example 3.8. Also, in Example 3.2 (i), I1 ∨ I2 = A is not a 2-absorbing ideal.

Theorem 3.10. If all 2-absorbing ideals of A are maximal, then A has at most one prime ideal and this ideal is a
maximal ideal.

Proof. Assume that P1 and P2 are prime ideals of A. It follows from Proposition 3.6, that P1 ∩ P2 is a
2-absorbing ideal. Also, P1 ∩ P2 is a maximal ideal and is contained in both, therefore P1 = P2.

Proposition 3.11. Let I be a proper ideal of A and let P be a prime ideal of A such that I ⊆ P. Then P ∈Min(I) if and
only if for each a ∈ P there exists b ∈ A \ P such that a ∧ b ∈ I.

Proof. Assume that for each a ∈ P, there exists b ∈ A \ P such that a ∧ b ∈ I. We show that P ∈ Min(I). By
contrary, suppose there exists Q ∈ Min(I) such that Q ⫋ P. Thus, there exist a ∈ P \ Q and b ∈ A \ P such
that a ∧ b ∈ I ⊆ Q. Hence a ∧ b ∈ Q, since Q is prime and a < Q, it follows that b ∈ Q. Consequently, b ∈ P,
which leads to a contradiction.
Conversely, assume that there exists a ∈ P such that for each b ∈ A \P, a∧ b < I.Define the set S = {a∧ b | b ∈
A \ P} ∪ {1}. This set S is a ∧-closed system in A. So there exists K ∈ Spec(A) such that K ∩ S = ∅. If K ⊆ P,
since P is minimal over I, so K = P and a ∈ K. However, since a ∧ 1 = a ∈ S, hence a ∈ K ∩ S, which is a
contradiction. Now, if K ⊈ P, then there exists x ∈ K \ P. We know that a ∧ x ≤ x, hence a ∧ x ∈ K. Clearly,
a ∧ x ∈ S, therefore K ∩ S , ∅, which again results in a contradiction.

Theorem 3.12. Let I be a 2-absorbing ideal of A. Then |Min(I)| ≤ 2.
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Proof. We denote T = {Pi | Pi ∈ Min(I)}. By Theorems 2.9 and 2.14, it follows that T is nonempty. We
proceed by contradiction, suppose T has at least three elements. Assume that P1,P2 ∈ T are two distinct
prime ideals. So there exists a1 ∈ P1 \ P2 and there exists a2 ∈ P2 \ P1.We show that a1 ∧ a2 ∈ I. It follows
from Theorem 3.11, that there exists r2 < P1 and there is an r1 < P2 such that a1 ∧ r2 ∈ I and a2 ∧ r1 ∈ I.
Obviously, a1, a2 < P1 ∩ P2. Since a1 ∧ r2, a2 ∧ r1 ∈ I ⊆ P1 ∩ P2 and P1,P2 are prime ideals, we conclude that
r1 ∈ P1 \ P2 and r2 ∈ P2 \ P1. Thus r1, r2 < P1 ∩ P2 and we obtain that r1 ∨ r2 < P1 ∩ P2. (Because r1, r2 ≤ r1 ∨ r2
and if r1 ∨ r2 ∈ P1 ∩ P2, then r1, r2 ∈ P1 ∩ P2, which is a contradiction). Observe that r1 ∨ r2 < P1 and
r1 ∨ r2 < P2. Since a1 ∧ r2 ∈ I and a2 ∧ r1 ∈ I, so by Remark 2.6, we get (a2 ∧ r1)∨ (a1 ∧ r2) ∈ I. By Theorem 2.3,
(a1∧a2)∧ (r1∨r2) = (a1∧a2∧r1)∨ (a1∧a2∧r2) ≤ (a2∧r1)∨ (a1∧r2) and we conclude that (a1∧a2)∧ (r1∨r2) ∈ I.
Since (r1 ∨ r2) ∧ a1 < P2 and (r1 ∨ r2) ∧ a2 < P1, it follows that neither (r1 ∨ r2) ∧ a1 ∈ I nor (r1 ∨ r2) ∧ a2 ∈ I.
Given that I is a 2-absorbing ideal, we conclude that a1 ∧ a2 ∈ I. Now suppose there exists P3 ∈ T such that
P3 is neither P1 nor P2.We can choose x1 ∈ P1 \ (P2 ∪ P3), x2 ∈ P2 \ (P1 ∪ P3) and x3 ∈ P3 \ (P1 ∪ P2). By the
previous argument, we get x1 ∧ x2 ∈ I. Also, since I ⊆ P1 ∩ P2 ∩ P3, so x1 ∧ x2 ∈ P1 ∩ P2 ∩ P3.We deduce that
either x1 ∈ P3 or x2 ∈ P3, leading to a contradiction. Therefore T can contain at most two elements.

Proposition 3.13. If I is a 2-absorbing ideal of A such that I is not a prime ideal, then |Min(I)| = 2.

Proof. As I is 2-absorbing, hence by Theorem 3.12, |Min(I)| ≤ 2. Assume for contradiction, |Min(I)| , 2, that
is, |Min(I)| = 1.On the other hand Min(I) = P, it follows from Proposition 3.11, that for each a ∈ P there exists
b ∈ A \ P such that a ∧ b ∈ I. Since I is not prime, so a, b < I. We have a < I, hence there exists Q ∈ Spec(A)
such that I ⊆ Q and a < Q. By Theorem 2.14, we deduce that there exists P∗ ∈Min(I) such that P∗ ⊆ Q. Since
obviously, P , P∗, which contradicts the hypothesis that |Min(I)| = 1.

Remark 3.14. In Example 3.2 (i), I0 is a 2-absorbing ideal, but is not prime ideal, and |Min(I0)| = 2. In the same
example, for the ideal I2, we have |Min(I2)| = 1.

Lemma 3.15. Let I be a 2-absorbing ideal of A. Suppose that (a]∩ (b]∩ J ⊆ I for some a, b ∈ A and an ideal J of A. If
a ∧ b < I, then either (a] ∩ J ⊆ I or (b] ∩ J ⊆ I.

Proof. Assume that (a]∩ J ⊈ I and (b]∩ J ⊈ I.Hence, there are some x, y ∈ J such that a∧ x < I and b∧ y < I.
Since a ∧ b ∧ x ∈ I and a ∧ b < I and a ∧ x < I, so b ∧ x ∈ I. Also, a ∧ b ∧ y ∈ I and a ∧ b < I and b ∧ y < I,
thus a ∧ y ∈ I.We have a ∧ b ∧ y ∈ I and a ∧ b ∧ x ∈ I, so (a ∧ b ∧ y) ⊕ (a ∧ b ∧ x) ∈ I. Since I is an ideal and
by Theorem 2.3, we conclude that (a ∧ b) ∧ (x ⊕ y) ∈ I. By hypothesis a ∧ b < I and I is a 2-absorbing ideal,
so a ∧ (x ⊕ y) ∈ I or b ∧ (x ⊕ y) ∈ I. If a ∧ (x ⊕ y) ∈ I, then a ∧ x ∈ I (because a ∧ x ≤ a ∧ (x ⊕ y)), which is
a contradiction. Similarly, if b ∧ (x ⊕ y) ∈ I, then b ∧ y ∈ I (because b ∧ y ≤ b ∧ (x ⊕ y)), which is again a
contradiction.

Next, we present an equivalent definition of a 2-absorbing ideal.

Theorem 3.16. Let I be a proper ideal of A. Then I is a 2-absorbing ideal of A if and only if whenever I1 ∩ I2 ∩ I3 ⊆ I
for some ideals I1, I2, I3 of A, then either I1 ∩ I2 ⊆ I or I2 ∩ I3 ⊆ I or I1 ∩ I3 ⊆ I.

Proof. First we show that I is a 2-absorbing ideal. Suppose I1 ∩ I2 ∩ I3 ⊆ I for some ideals I1, I2, I3 of A, then
I1 ∩ I2 ⊆ I or I2 ∩ I3 ⊆ I or I1 ∩ I3 ⊆ I. Let a, b, c ∈ A and a ∧ b ∧ c ∈ I. Assume also that a ∧ b < I and b ∧ c < I.
Let I1 = (a], I2 = (b] and I3 = (c]. Then I1 ∩ I2 ∩ I3 = (a] ∩ (b] ∩ (c] = (a ∧ b ∧ c] ⊆ I. Since I1 ∩ I2 ⊈ I and
I2 ∩ I3 ⊈ I, so I1 ∩ I3 = (a ∧ c] ⊆ I; that is, a ∧ c ∈ I.
Conversely, assume that I is a 2-absorbing ideal of A and I1 ∩ I2 ∩ I3 ⊆ I for some ideals I1, I2, I3 of A, such
that I1 ∩ I2 ⊈ I. We show that I2 ∩ I3 ⊆ I or I1 ∩ I3 ⊆ I. By contrary, if I2 ∩ I3 ⊈ I and I1 ∩ I3 ⊈ I. So there
exist a1 ∈ I1 and a2 ∈ I2 such that (a1] ∩ I3 ⊈ I and (a2] ∩ I3 ⊈ I. Also, (a1] ∩ (a2] ∩ I3 ⊆ I and (a1] ∩ I3 ⊈ I and
(a2]∩ I3 ⊈ I, it follows from Lemma 3.15, that a1 ∧ a2 ∈ I. Since I1 ∩ I2 ⊈ I, so there are a ∈ I1, b ∈ I2, such that
a ∧ b < I. As (a] ∩ (b] ∩ I3 ⊆ I and a ∧ b < I, by Lemma 3.15, we have (a] ∩ I3 ⊆ I or (b] ∩ I3 ⊆ I. Here three
cases arise.
Case 1: Suppose (a] ∩ I3 ⊆ I, but (b] ∩ I3 ⊈ I. As (a1] ∩ (b] ∩ I3 ⊆ I and (b] ∩ I3 ⊈ I and (a1] ∩ I3 ⊈ I,
hence (a1] ∩ (b] ⊆ I. On the other hand, a1 ∧ b ∈ I. Also, since a1, a ∈ I1, so a1 ⊕ a ∈ I1 and we deduce
that (a1] ∨ (a] = (a1 ⊕ a] ∈ I1. Since (a] ∩ I3 ⊆ I and (a1] ∩ I3 ⊈ I, so ((a1] ∨ (a]) ∩ I3 ⊈ I. Now, we have
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((a1] ∨ (a]) ∩ (b] ∩ I3 ⊆ I and (b] ∩ I3 ⊈ I and ((a1] ∨ (a]) ∩ I3 ⊈ I, again by Lemma 3.15, we conclude that
((a1]∨ (a])∩ (b] ⊆ I.On the other hand, (a1 ⊕ a)∧ b ∈ I,we know a∧ b ≤ (a1 ⊕ a)∧ b, therefore a∧ b ∈ I,which
is a contradiction.
Case 2: Suppose (b] ∩ I3 ⊆ I, but (a] ∩ I3 ⊈ I. Since a2, b ∈ I2, so a2 ⊕ b ∈ I2 and by Theorem 2.7, (a2] ∨ (b] ∈ I2.
Also, (b] ∩ I3 ⊆ I and (a2] ∩ I3 ⊈ I, we deduce that ((b] ∨ (a2]) ∩ I3 ⊈ I.We have (a] ∩ ((b] ∨ (a2]) ∩ I3 ⊆ I and
((b]∨ (a2])∩ I3 ⊈ I and (a]∩ I3 ⊈ I, it follows from Lemma 3.15, that (a]∩ ((a2]∨ (b]) ∈ I.We get a∧ (a2 ⊕ b) ∈ I
and so a ∧ b ∈ I,which is a contradiction.
Case 3: Suppose (b]∩ I3 ⊆ I and (a]∩ I3 ⊆ I.We know that (a2]∩ I3 ⊈ I and (b]∩ I3 ⊆ I, hence ((b]∨ (a2])∩ I3 ⊈ I.
Also, (a]∩ I3 ⊆ I and (a1]∩ I3 ⊈ I, thus we deduce that ((a1]∨ (a])∩ I3 ⊈ I. Since ((a]∨ (a1])∩ ((b]∨ (a2])∩ I3 ⊆ I
and ((a] ∨ (a1]) ∩ I3 ⊈ I and ((b] ∨ (a2]) ∩ I3 ⊈ I by Lemma 3.15 we conclude that, ((a] ∨ (a1]) ∩ ((b] ∨ (a2]) ⊆ I.
Thus we get (a ⊕ a1) ∧ (b ⊕ a2) ∈ I. It is clear that a ∧ b ≤ (a ⊕ a1) ∧ b ≤ (a ⊕ a1) ∧ (b ⊕ a2). Therefore a ∧ b ∈ I,
which is a contradiction.

Example 3.17. Let ∗R be a non-standard model of real numbers with natural order and ε be a positive infinitesimal
element of ∗R. Let ε2 = ε · ε, ..., εn = ε · ε · ... · ε(n − times), where · is the usual product in the field ∗R; then εi > 0
for any i ∈N and εi

≪ ε j, for i > j.
The unit interval ∗[0, 1] ⊆∗ R is an semilocal MV-algebra with the operations: x ⊕ y = min{1, x + y}, x∗ = 1 − x. Let
N be the ordered set of positive natural numbers. For every n ∈ N, let En be the subalgebra of ∗[0, 1] generated by
{ε, ε2, ..., εn

} and E be the subalgebra
⋃
n∈N

En generated by {ε, ε2, ..., εn, . . .} ([8]). The ideals of E are {0}, (ε], ..., (εi]...,

where i ∈N and (εi] ⊆ (ε j], for any i > j. I = (ε3] is a 2-absorbing ideal. Consider: I1 = (ε2], I2 = (ε] and I3 = (ε5].
It is clear that I1 ∩ I2 ∩ I3 ⊆ I and I2 ∩ I3 ⊆ I and I1 ∩ I3 ⊆ I.

Remark 3.18. Let I1, I2 and I be ideals of A and let I ⊆ I1 ∪ I2. Then I ⊆ I1 or I ⊆ I2.

Proposition 3.19. If I is a 2-absorbing ideal of A, then for all a, b ∈ A such that a ∧ b < I, (I : a ∧ b) ⊆ (I : a) or
(I : a ∧ b) ⊆ (I : b).

Proof. Suppose that a ∧ b < I where a, b ∈ A and t ∈ (I : a ∧ b). Hence t ∧ a ∧ b ∈ I. By hypothesis I is a
2-absorbing ideal and a∧b < I, thus either t∧a ∈ I or t∧b ∈ I.We deduce that t ∈ (I : a) or t ∈ (I : b). Therefore,
(I : a ∧ b) ⊆ (I : a) ∪ (I : b). By Remark 3.18, we conclude that (I : a ∧ b) ⊆ (I : a) or (I : a ∧ b) ⊆ (I : b).

Proposition 3.20. If I is a 2-absorbing ideal of A, then (I : x) is a 2-absorbing ideal of A for all x ∈ A \ I.

Proof. Let a, b, c be elements of A such that a ∧ b ∧ c ∈ (I : x). Then a ∧ b ∧ c ∧ x = a ∧ (b ∧ c) ∧ x ∈ I. Since I is
a 2-absorbing ideal of A, so a ∧ x ∈ I or b ∧ c ∧ x ∈ I or a ∧ b ∧ c ∈ I. If b ∧ c ∧ x ∈ I, we are done. If a ∧ x ∈ I,
since a ∧ b ∧ x ≤ a ∧ x, then x ∧ a ∧ b ∈ I. If a ∧ b ∧ c ∈ I, then a ∧ b ∈ I or a ∧ c ∈ I or b ∧ c ∈ I, which implies
x ∧ a ∧ b ∈ I or x ∧ a ∧ c ∈ I or x ∧ b ∧ c ∈ I.

The converse of the previous proposition is true when (I : x) is a prime ideal, for all x ∈ A \ I.

Proposition 3.21. Let (I : x) be a prime ideal of A, for all x ∈ A \ I. Then I is a 2-absorbing ideal of A.

Proof. Suppose a∧ b∧ c ∈ I,where a, b, c ∈ A and a∧ b < I, a∧ c < I. This implies a, b, c < I. By the hypothesis,
(I : a), (I : b) and (I : c) are prime ideals. Since a ∧ b ∧ c ∈ I, so we know that a ∧ b ∈ (I : c). Therefore, either
a ∈ (I : c) or b ∈ (I : c). This leads to b ∧ c ∈ I.

Remark 3.22. By Proposition 3.20 and the fact that (0 : x) = Ann(x), we conclude that if the zero ideal is a 2-
absorbing ideal, then Ann(x) must also be 2-absorbing, for all x , 0. However, Ann(x) is not necessarily a 2-absorbing
ideal. In Example 3.2 (i), it can be easily verified that Ann(0) = A, which is not a 2-absorbing ideals.

Proposition 3.23. Let I be a proper ideal of A such that if there exist proper ideals H and K whenever H ∩ K = I,
implies that H = I or K = I. Then I is a 2-absorbing ideal of A.
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Proof. Suppose that a∧ b∧ c ∈ I and a∧ b < I.We show that a∧ c ∈ I or b∧ c ∈ I.On contrary, we assume that
a∧c < I and b∧c < I. Then K = (I∪{a∧c}] and H = (I∪{b∧c}] are the ideals of A properly contain I. It is clear
that K , I and H , I, hence by hypothesis K∩H , I.On the other hand, there exists p ∈ H∩K such that p < I.
By Lemma 2.7, p ≤ (a1 ⊕ n(a∧ c))∧ (a2 ⊕m(b∧ c)), for some a1, a2 ∈ I and positive integers n,m. If b = a1 ⊕ a2
and r = m + n, then p ≤ (a1 ⊕ n(a ∧ c)) ∧ (a2 ⊕m(b ∧ c)) ≤ (b ⊕ r(a ∧ c)) ∧ (b ⊕ r(b ∧ c)) = b ⊕ r((a ∧ c) ∧ (b ∧ c)).
Since b ⊕ r(a ∧ b ∧ c) ∈ I, so we conclude that p ∈ I,which is a contradiction.

The converse of the above proposition is generally not true. In Example 3.2 (i), we observe that I0 is a
2-absorbing ideal and I1 ∩ I2 = I0, but I0 , I1 and I0 , I2.

Proposition 3.24. Let f : A −→ B be an MV-homomorphism and let J be a 2-absorbing ideal of B. Then f−1(J) is a
2-absorbing ideal of A.

Proposition 3.25. If I is a 2-absorbing ideal of A and S is a ∧-closed system of A such that I∩ S = ∅, then I/S is also
a 2-absorbing ideal of A/S.

Proof. Suppose that (a/S)∧ (b/S)∧ (c/S) ∈ I/S, so (a∧ b∧ c)/S ∈ I/S. By Theorem 2.16, we get a∧ b∧ c ∈ I. If
(a/S)∧ (b/S) < I/S and (b/S)∧ (c/S) < I/S, then (a∧ b)/S, (b∧ c)/S < I/S. Since I is a 2-absorbing ideal, so we
deduce that a ∧ c ∈ I. Therefore (a ∧ c)/S ∈ I/S.

The relationships between 2-absorbing ideals and other ideals is shown in the diagram below.

Maximal ideal

Obstinate ideal Prime ideal

Primary ideal2-absorbing ideal

Implicative

⋆2

⋆2

⋆3

⋆3

⋆1

Figure 2

⋆1 :=Max, ⋆2 :=Boolean ideal, ⋆3 :=Quasi implicative.

Conclusion and future research

The concept of a prime ideal plays a fundamental role in the study of MV-algebras, and the notion
of 2-absorbing ideal is a generalization of it. We demonstrated that every prime ideal is a 2-absorbing
ideal, and by providing an example, showed that every 2-absorbing ideal is not necessarily a prime ideal.
Additionally, an example was presented illustrating that the zero ideal is not always 2-absorbing, although
it can be in chains. We also proved that the intersection of two prime ideals is a 2-absorbing ideal. The
number of minimal prime ideals over a 2-absorbing ideal was also examined, and it was concluded that
if I is not a prime ideal, then |Min(I)| = 2. It was shown that every proper ideal I can be expressed as an
intersection of 2-absorbing ideals, including I. For future research, we want to study the topology resulting
from these ideals and obtain its properties.
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